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ABSTRACT

This paper proposes a probabilistic generative model of a se-
quence of vectors called the latent trajectory hidden Markov
model (HMM). While a conventional HMM is only capable of
describing piecewise stationary sequences of data vectors, the
proposed model is capable of describing continuously time-
varying sequences of data vectors, governed by discrete hid-
den states. This feature is noteworthy in that it can be used
to model many kinds of time series data that are continuous
in nature such as speech spectra. Given a sequence of ob-
served data, the optimal state sequence can be decoded using
the expectation-maximization (EM) algorithm. Given a set of
training examples, the underlying model parameters can be
trained by either the expectation-maximization algorithm or
the variational inference algorithm.

Index Terms— Sequential modeling, Hidden Markov
model (HMM), Trajectory HMM, Latent trajectory HMM,
Expectation-Maximization algorithm, variational inference

1. INTRODUCTION

The weakness of hidden Markov models (HMMs) is that they
have difficulty in modeling and capturing the local dynam-
ics of feature sequences due to the piecewise stationarity as-
sumption and the conditional independence assumption on
feature sequences. Traditionally, in speech recognition sys-
tems, this limitation has been circumvented by appending dy-
namic (delta and delta-delta) components to the feature vec-
tors. HMM-based speech synthesis systems [1] also use the
joint vector of static and dynamic features as an observed
vector in the training process. In the synthesis process, on
the other hand, a sequence of static features is generated ac-
cording to the output probabilities of the trained HMM given
an input sentence by taking account of the explicit constraint
between the static and dynamic features [2]. Although the
HMM-based speech synthesis framework has many attractive
features, one drawback is that the criteria used for training and
synthesis are inconsistent. While the joint likelihood of static
and dynamic features is maximized during the training pro-
cess, the likelihood of only the static features is maximized
during the synthesis process. This implies that the model pa-
rameters are not trained in such a way that the generated pa-
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rameter sequences become optimal. To address this problem,
Zen [3] introduced a variant of HMM called the “trajectory
HMM,” which was obtained by incorporating the explicit re-
lationship between static and dynamic features into the tradi-
tional HMM. This has made it possible to provide a unified
framework for the training and synthesis of speech parameter
sequences, however, it causes difficulty as regards parameter
inference. Since the conditional independence assumption on
the feature vectors is lost, efficient algorithms for training and
decoding regular HMMs such as the Viterbi algorithm and the
Forward-Backward algorithm are no longer applicable to the
trajectory HMM. Thus, some approximations and brute-force
methods are usually necessary to obtain training and decoding
algorithms [3, 4].

In this paper, we propose formulating a new model called
the “latent trajectory HMM.” In contrast with the conven-
tional trajectory HMM, the present model splits the genera-
tive process of an observed feature sequence into two pro-
cesses, one for a sequence of the joint vectors of static and
dynamic features given HMM states and the other for an ob-
served feature sequence given the sequence of the joint vec-
tors. By treating the joint vector of static and dynamic fea-
tures as a latent variable to be marginalized out, we obtain a
probability density function of an observed feature sequence
with a different form from the likelihood function of the tra-
jectory HMM. As described below, this new formulation nat-
urally allows the combined use of powerful inference tech-
niques such as the expectation-maximization (EM) algorithm,
Viterbi algorithm and Forward-Backward algorithm for train-
ing and decoding, while still retaining the spirit of the original
trajectory HMM.

This work is not only directed towards speech synthesis
applications but also towards several different applications
such as voice conversion and acoustic-to-articulatory map-
ping, in which trajectory modeling has proven to be effec-
tive [5–7]. Another interesting application we have in mind
is audio source separation. Recently, we proposed methods
for single- and multi-channel audio source separation based
on factorial HMMs [8–11], where the spectrogram of a mix-
ture signal is modeled as the sum of the outputs emitted from
multiple HMMs, each representing the spectrogram of an un-
derlying source. One promising way to improve this approach
would be to incorporate the dynamics of source spectra. This
can be accomplished by plugging the present model into the
factorial HMM formulation. The present formulation will
play a key role in making this possible.
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2. TRAJECTORY HIDDEN MARKOV MODEL

We start by briefly reviewing the original formulation of
the trajectory HMM [3]. Let us use ct to denote a D-
dimensional static feature vector and define the joint vector
of ct and its velocity and acceleration components ot :=
[cTt ,∆cTt ,∆

2cTt ]
T ∈ R3D as the observed vector at time t.

We write the sequences of the static features and the observed
vectors as c = [cT1 , . . . , c

T
T ]

T and o = [oT
1 , . . . ,o

T
T ]

T, re-
spectively. Thus, the dimensions of c and o become DT and
3DT . The relationship between c and o can be described
explicitly using a constant 3DT by DT matrix W as

o = Wc, (1)

where W is a sparse matrix that appends first and second
order time derivatives to the static feature vector sequence.

Within the traditional HMM framework, a sequence of
observed vectors, o, is simply assumed to be generated from
an HMM. Here, if we assume the emission probability density
to be a single Gaussian distribution, the probability density
function of o given a state sequence s = [s1, . . . , sT ] and an
HMM parameter set λ = {µ,U ,π}, with µ = {µi}1≤i≤I ,
U = {U i}1≤i≤I , and π = {πi,j}1≤i≤I,1≤j≤J , is given as

p(o|s,λ) = N (o;µs,Us) =

T∏
t=1

N (ot;µst ,U st), (2)

whereN (x;µ,Σ) denotes a Gaussian distribution with mean
µ and covariance Σ:

N (x;µ,Σ) ∝ 1

|Σ| 12
e−

1
2 (x−µ)TΣ−1(x−µ). (3)

µs and Us denote the mean sequence and a block diagonal
matrix whose diagonal elements are given by the sequence of
the covariance matrices of the emission densities over time:

µs = [µT
s1 , . . . ,µ

T
sT ]

T, (4)
Us = diag(U s1 , . . . ,U sT ). (5)

In HMM-based speech synthesis systems, the parameter set is
typically trained by solving the maximum likelihood estima-
tion problem

λ̂ = argmax
λ

log
∑
s

p(o|s,λ)p(s), (6)

where p(s) is given by the product of the state transition prob-
abilities. At the synthesis stage, given a state sequence s and
with the trained parameter λ, a static feature sequence c is
generated according to

ĉ = argmax
c

p(c|s,λ), (7)

where p(c|s,λ) is defined as

p(c|s,λ) ∝ N (Wc;µs,Us) (8)

∝ e−
1
2 (c

TW TU−1
s Wc−2cTW TU−1

s µs) (9)

Fig. 1. Illustrations that show the difference between HMM
and trajectory HMM.

= N (c; c̄s,V s). (10)

By completing the square in the exponent of (9) with respect
to c, we immediately obtain c̄s and V s as

c̄s = (W TU−1
s W )−1W TU−1

s µs, (11)

V s = (W TU−1
s W )−1. (12)

Thus, the solution to (7) is c̄s. Geometrically, (10) can be
viewed as a cutting plane of the density p(o|s,λ) at o = Wc.

As shown above, the traditional HMM-based frame-
work uses different criteria for training and synthesis: While
p(o|s,λ) is used for training, p(c|s,λ) is used for synthesis.
This implies that λ̂ is not necessarily optimal for generating
optimal c. To address this inconsistency between the training
and synthesis criteria, Zen [3] proposed introducing a frame-
work called the “trajectory HMM”, which also uses (10) as
the training criterion. Instead of solving (6), the parameter
set λ is thus trained by solving

{λ̂, ŝ} = argmax
λ,s

log p(c|s,λ)p(s), (13)

where c is treated as the observed data.
Unlike the regular HMM, the conditional independence

assumption on observed vectors does not hold in the trajec-
tory HMM: While the regular HMM assumes that each ob-
served vector depends only on the current state, (10) indi-
cates that the observed vector ct at each frame depends on
the entire state sequence. This implies that it is difficult to
directly apply the efficient decoding and training algorithms
used in the HMM framework (such as the Viterbi algorithm
and the Forward-Backward algorithm). Thus, some approxi-
mations and brute-force methods are usually necessary to per-
form training and decoding [3]. Because of this, the decoding
algorithm is not guaranteed to find the optimal state sequence
and the training algorithm is not guaranteed to converge to a
local optimal solution. Note that this also applies to the min-
imum generation error (MGE) training framework [4], which
uses (10) in which V s is replaced by an identity matrix as the
training criterion.



3. LATENT TRAJECTORY HMM

3.1. Model

While the HMM is only capable of describing piecewise sta-
tionary sequences of data vectors, the trajectory HMM is ca-
pable of describing continuously varying sequences of data
vectors, governed by discrete hidden states. This feature is
notable in that it can be used to model many kinds of time
series data that are continuous in nature, however, it causes a
difficulty as regards parameter inference. We propose intro-
ducing a conceptually similar framework based on a different
formulation, which is advantageous in that it alleviates the
difficulty related to parameter inference.

Instead of treating o as a function of c, we treat o as a
latent variable that is related to c through a soft constraint o ≃
Wc. The relationship o ≃Wc can be expressed through the
conditional distribution p(c|o). For example, we can define
p(c|o) as

p(c|o) ∝ exp

{
−1

2
(Wc− o)TΛ(Wc− o)

}
, (14)

where Λ is a constant positive definite matrix that can be set
arbitrarily. Indeed, this probability density function becomes
larger as o approaches Wc. By completing the square in
the exponent of (14) with respect to c, we can write p(c|o)
explicitly as

p(c|o) = N (c;mc|o,Λ
−1
c|o), (15)

where

mc|o = Ho, (16)

H = (W TΛW )−1W TΛ, (17)

Λc|o = W TΛW . (18)

By using this and p(o|s,λ) defined in (2), we can write
p(c|s,λ) as

p(c|s,λ) =
∫

p(c|o)p(o|s,λ)do, (19)

in a different way from (10). Geometrically, this can be
viewed as a marginal distribution of the set of the projected
values of o onto the subspace o = Wc. From (2) and (15),
the joint likelihood p(c,o|s,λ) can be written as

p(c,o|s,λ) = p(c|o)p(o|s,λ)

∝ exp

{
− 1

2

([
c

o

]
−mx

)T

Λx

([
c

o

]
−mx

)}
, (20)

where

mx = Λ−1
x

[
0

U−1
s µs

]
, (21)

Λx =

[
Λc|o −W TΛ

−ΛW HTΛc|oH +U−1
s

]
. (22)

Thus, p(x|s,λ) = N (x;mx,Λ
−1
x ) where x = [cT,oT]T.

By using the blockwise matrix inversion formula, Λ−1
x is

given as

Σx = Λ−1
x =

[
Σcc Σco

Σoc Σoo

]
, (23)

where

Σcc = Λ−1
c|o +HUsH

T, (24)

Σco = HUs, (25)

Σoc = UsH
T, (26)

Σoo = Us. (27)

Hence, (19) can be written as

p(c|s,λ) = N (c;Hµs,Σcc). (28)

We call this model the “latent trajectory HMM.” With this
framework, given a state sequence s and a parameter set λ, c
is generated according to

ĉ = argmax
c

p(c|s,λ). (29)

Obviously, the solution to this is Hµs.
It is important to note that with this framework, the

parameter inference problem can be dealt with using the
Expectation-Maximization (EM) algorithm by treating the
joint vector [cT,oT]T as the complete data.

3.2. Decoding and training algorithms

As with the trajectory HMM framework, the present frame-
work uses p(c|s,λ) for feature sequence generation, state de-
coding and parameter training in a consistent manner. The
problems of state decoding and parameter training can be for-
mulated as the following optimization problems:

ŝ = argmax
s

log p(c|s,λ)p(s) (30)

{λ̂, ŝ} = argmax
λ,s

log p(c|s,λ)p(s). (31)

Since the decoding problem (30) is a subproblem of the train-
ing problem (31), here we only derive an algorithm for solv-
ing the training problem (31).

By regarding the set consisting of c and o as the com-
plete data, this problem can be viewed as an incomplete data
problem, which can be dealt with using the Expectation-
Maximization (EM) algorithm. The likelihood of s and λ
given the complete data is given by (20). By taking the condi-
tional expectation of log p(c,o|s,λ) with respect to o given
c, s = s′ and λ = λ′, and then adding log p(q), we obtain
an auxiliary function

Q(s,λ) := Eo|c,s′,λ′ [log p(c,o|s,λ)] + log p(s). (32)

By leaving only the terms that depend on s and λ, Q(s,λ)
can be written as

Q(s,λ)
s,λ
= Eo|c,s′,λ′ [log p(o|s,λ)] + log p(s)



= −1

2

{
log |Us|+Tr

(
U−1

s R
)

− 2µT
sU

−1
s ō+ µT

sU
−1
s µs

}
+ log p(s), (33)

where

ō = Eo|c,s′,λ′ [o]

= µ′
s′ +Σ′

ocΣ
′−1
cc (c−Hµ′

s′), (34)

R = Eo|c,s′,λ′ [ooT]

= Σ′
oo −Σ′

ocΣ
′−1
cc Σ′

co + ōōT. (35)

Here, the prime mark indicates the values obtained using the
model parameters updated at the previous iteration. Since Us

is a block diagonal matrix, as given in (5), (33) can be decom-
posed into the sum of T individual terms:

Q(s,λ)
s,λ
= − 1

2

T∑
t=1

{log |U st |+Tr[U−1
st Rt]

− 2µT
stU

−1
st ōt + µT

stU
−1
st µst}

+ log πs1 +
T∑

t=2

log πst−1,st , (36)

where

ō =


ō1

...
ōT

 , R =


R1 ∗

. . .
∗ RT

 . (37)

With fixed λ, Q(s,λ) can be maximized with respect to s
by employing the Viterbi algorithm. With fixed s, Q(s,λ) is
maximized with respect to λ when

µi =

∑
t

1[st = i]ōt∑
t

1[st = i]
, (38)

U i =

∑
t

1[st = i](Rt − ōtµ
T
i − µiō

T
t + µiµ

T
i )∑

t

1[st = i]
, (39)

πi,j =

∑
t

1[st−1 = i, st = j]∑
t

1[st−1 = i]
, (40)

if
∑

t 1[st = i] ̸= 0 where i and j denote state indices and
1[·] denotes an indicator function that takes the value 1 if its
argument is true and 0 otherwise.

Overall, the parameter training algorithm can be summa-
rized as follows:

(E-step) Substitute s and λ into s′ and λ′ and recompute ō
and R using (34) and (35).

(M-step) Update λ using (38)–(40) and find

s = argmax
s

Q(s,λ) (41)

using the Viterbi algorithm.

Note that if λ is fixed, the above algorithm reduces to a state
decoding algorithm.

It may appear that a huge amount of computation for
inverting Σ′

cc is required to compute ō and R. How-
ever, this can be carried out very efficiently. First, by us-
ing the Woodbury matrix identity, Σ′−1

cc can be written as
Λc|o−Λc|o((HUsH

T)−1+Λc|o)
−1Λc|o. Next, since Λ can

be set arbitrarily, we set Λ at U−1
s to compute (HUsH

T)−1.
Under this setting, (HUsH

T)−1 is given as W TU−1
s W .

Since both W TU−1
s W and Λc|o are sparse symmetric band

matrices, (W TU−1
s W + Λc|o)

−1Λc|o can be computed
efficiently using the Cholesky decomposition.

To initialize s, one reasonable way would be to search for
s = argmaxs p(o|s,λ) using the Viterbi algorithm.

3.3. Variational learning algorithm

We describe a different approach for parameter training
based on variational inference. The random variables of
interest in our model are o, s and λ = {µ,P ,π} where
µ = {µi}1≤i≤I , P = {P i := U−1

i }1≤i≤I , and π =
{πi,j}1≤i≤I,1≤j≤J . We denote the entire set of the above
parameters as Θ = {o, s,λ}. Our goal is to compute the
posterior

p(Θ|c) = p(c,Θ)

p(c)
. (42)

By using the conditional distributions defined in 3.1, we can
write the joint distribution p(c,Θ) as

p(c,Θ) = p(c|o)p(o|s,λ)p(s). (43)

To obtain the exact posterior p(Θ|c), we must compute p(c),
which involves many intractable integrals. Instead of obtain-
ing the exact posterior, we consider approximating this poste-
rior variationally by solving an optimization problem:

argmin
q

KL(q(Θ)∥p(Θ|c)), (44)

where KL(·∥·) denotes the Kullback-Leibler (KL) divergence
between its two arguments, i.e.,

KL(q(Θ)∥p(Θ|c))

=
∑
s

∫∫
q(o, s,λ) log

q(o, s,λ)

p(o, s,λ|c)
dodλ. (45)

By restricting the class of the approximate distributions to
those that factorize into independent factors:

q(o, s,λ) = q(o)q(s)q(µ,P )q(π), (46)



we can use a simple coordinate ascent algorithm to find a lo-
cal optimum of (44). It can be shown using the calculus of
variations that the “optimal” distribution for each of the fac-
tors can be expressed as:

q̂(X) ∝ expEΘ\X [log p(c,Θ)], (47)

where X indicates one of the factors and EΘ\X [log p(c,Θ)]
is the expectation of the joint probability of the data and latent
variables, taken over all variables except X . From (47), the
variational distributions are given in the following form:

q̂(o) = N (o;m,Γ), (48)

q̂(µ,P ) =
∏
i

N (µi;ρi, (βiP i)
−1)W(P i;Bi, νi), (49)

q̂(πi) = Dir(πi;αi), (50)

where the parameters are updated via the following equations

m =


m1

...
mT

← R−1r, (51)

Γ =


Γ1 ∗

. . .
∗ ΓT

← R−1, (52)

R =


∑

i q(s1= i)νiBi O
. . .

O
∑

i q(sT = i)νiBi

+HTΛc|oH, (53)

r =


∑

i q(s1= i)νiBiρi

...∑
i q(sT = i)νiBiρi

+HTΛc|oc, (54)

βi ←
∑
t

q(st= i), (55)

ρi ←
1

βi

∑
t

q(st= i)mt, (56)

B−1
i ←

∑
t

q(st= i)(Γt +mtm
T
t )− βiρiρ

T
i , (57)

νi ←βi + 3D, (58)

αi,j ←1 +
∑
t

q(st−1= i, st=j). (59)

W and Dir denote the Wishart distribution and the Dirichlet
distribution, respectively, defined as

W(X;V , ν) ∝ |X|
ν−d−1

2 e−
1
2Tr(V

−1X), (60)

Dir(x;α) ∝
∏
i

xαi−1
i , (61)

where X is a d×d symmetric matrix of random variables that
is positive definite and V is a d × d positive definite matrix.
q(st = i) and q(st−1 = i, st = j) can be computed using the
forward-backward algorithm as a subroutine, as in [12].

4. EXPERIMENTS

To confirm the generalization ability of the present model
and the convergence speed of the present training algo-
rithm, we conducted parameter training experiments using
mel-cepstrum sequences of speech as experimental data.
We chose the parameter training algorithm for the original
trajectory HMM developed by Zen et al. as the baseline
method. Zen’s algorithm uses the method of steepest ascent
for updating λ and the “delayed decision Viterbi algorithm”
for updating s. Readers are referred to [3] for the details.
Since the degrees of freedom of the trajectory HMM and
the latent trajectory HMM are exactly the same when the
numbers of hidden states are the same, the difference of the
log-likelihood scores obtained with the present and baseline
algorithms would reflect the difference in their generalization
abilities. The experimental conditions were as follows. We
used 25 speech data excerpted from the ATR speech database,
from each of which we obtained the mel-cepstrum sequence
of the first 250 frames. For both the proposed model and the
trajectory HMM, the numbers of hidden states were set at 14.
Λ were fixed at

Λ = diag(A, . . . ,A︸ ︷︷ ︸
T

), (62)

A =

0.0001−1 0 0

0 0.01−1 0

0 0 0.01−1

 . (63)

The workstation used to perform the experiments had an Intel
Core i3-2120 Processor with a 3.3GHz ×4 clock speed and a
7.7GB memory.

Fig. 2 shows the evolution of the log-likelihoods with re-
spect to the number of iterations and computation time during
the parameter training of the proposed model and the conven-
tional trajectory HMM. As Fig. 2 shows, the present algo-
rithm converged faster than the conventional algorithm. This
reveals the effectiveness of the combined use of efficient sta-
tistical inference techniques such as the EM algorithm and
the dynamic programming principle by the proposed algo-
rithm. It is also worth noting that the converged value of
the log-likelihood obtained with the proposed algorithm was
greater than that obtained with the conventional algorithm.
This implies the possibility that, compared with the conven-
tional model, the proposed model has a higher generalization
ability, namely an ability to fit an arbitrary set of feature se-
quences, given that the degrees-of-freedom of the two models
were the same.

Fig. 3 shows an example of parameter generation using
the proposed model. After training λ using 25 speech data,
a feature sequence ĉ was generated according to (29) given a
state sequence s. The figure at the top shows the spectrogram
of a speech sample and the figure at the bottom shows the
spectrogram constructed using ĉ obtained using the trained
λ and the state sequence s labeled from the speech sample.
As Fig. 3 shows, the proposed model was able to represent
the continuously time-varying nature of speech spectrograms
reasonably well, showing that it has a similar property to the
trajectory HMM.
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Fig. 2. Evolutions of the log-likelihoods with respect to the number of
iterations (top) and the computation time (bottom).

5. CONCLUSIONS

Inspired by the trajectory HMM framework proposed by Zen
et al., this paper proposed a probabilistic generative model for
describing continuously time-varying sequences of data vec-
tors governed by discrete hidden states. The proposed model
is advantageous over the conventional trajectory HMM in that
it makes it possible to derive convergence-guaranteed and ef-
ficient algorithms for parameter training and state decoding.
Interesting future work involves incorporating the proposed
model into the factorial HMM formulation to develop a new
method for audio source separation that takes account of the
dynamics of source spectra.
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