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ABSTRACT
We previously introduced a phase-aware variant of the
non-negative matrix factorization (NMF) approach for au-
dio source separation, which we call the “Complex NMF
(CNMF).” This approach makes it possible to realize NMF-
like signal decompositions in the complex time-frequency
domain. One limitation of the CNMF framework is that the
divergence measure is limited to only the Euclidean distance.
Some previous studies have revealed that for source separa-
tion tasks with NMF, the generalized Kullback-Leibler (KL)
divergence tends to yield higher accuracy than when using
other divergence measures. This motivated us to believe that
CNMF could achieve even greater source separation accuracy
if we could derive an algorithm for a KL divergence counter-
part of CNMF. In this paper, we start by defining the notion
of the “dual” form of the CNMF formulation, derived from
the original Euclidean CNMF, and show that a KL divergence
counterpart of CNMF can be developed based on this dual
formulation. We call this “KL-CNMF”. We further derive
a convergence-guaranteed iterative algorithm for KL-CNMF
based on a majorization-minimization scheme. The source
separation experiments revealed that the proposed KL-CNMF
yielded higher accuracy than the Euclidean CNMF and NMF
with varying divergences.

Index Terms— Audio source separation, non-negative
matrix factorization (NMF), Complex NMF, generalized
Kullback-Leibler (KL) divergence

1. INTRODUCTION
Audio source separation has long been a challenging task in
the field of audio signal processing. A deep neural network-
based approach has recently proved powerful for supervised
audio source separation tasks where the mixture consists of
speech and noise [1]. Furthermore, a recently proposed ap-
proach called “deep clustering” [2] has made it possible to
deal with “cocktail party” scenarios where the interference
is also speech. Although these methods have been shown
to work well when a large number of training samples are
available, the non-negative matrix factorization (NMF) ap-
proach [3, 4] still remains attractive for audio source separa-
tion tasks particularly where only a limited amount of training
data is available or when prior knowledge about the underly-
ing sources is limited. In addition, since NMF is a generative
approach, it can be convenient in semi-supervised scenarios.

With the NMF approach, the magnitude (or power) spec-
trogram of a mixture signal, interpreted as a non-negative
matrix Y , is modeled as the product of two non-negative ma-
trices H and U . This can be interpreted as approximating the
observed spectrum at each time frame as a linear sum of basis
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spectra scaled by time-varying amplitudes, and amounts to
approximating the observed spectrogram as the sum of rank-1
spectrograms. In a supervised/semi-supervised setting, NMF
is first employed to train the basis spectra of each sound
source using individually recorded audio samples. At test
time, NMF is applied to the spectrogram of a test mixture
signal, where the subsets of the basis spectra are fixed at the
pretrained spectra.

Although the NMF approach has been shown to be suc-
cessful, one drawback is that it assumes the additivity of
magnitude (or power) spectra, which holds only approxi-
mately, and does not take account of phase information. To
address this drawback, we have previously proposed a frame-
work called the “Complex NMF (CNMF)” [5], where the
complex spectrum observed at each time frame is modeled
as the sum of components, each of which is described by
the multiplication of a static basis spectrum, a time-varying
amplitude and a time-varying phase spectrum. With a similar
motivation, Parry and Essa [6] and Fevotte et al. [7] proposed
a generative model of the complex spectrogram obtained with
the short-time Fourier transform (STFT) of a mixture signal,
where the power spectrogram of each component is modeled
as a rank-1 matrix whereas the phase spectrogram is treated
as uniformly distributed latent variables. It can be shown
that when we assume that each element of the complex spec-
trogram independently follows a zero-mean complex normal
distribution, the maximum likelihood estimation of the model
parameters amounts to fitting the NMF model to an observed
power spectrogram using the Itakura-Saito (IS) divergence as
a goodness-of-fit criterion. This approach is called IS-NMF.
A similar kind of generative model using a complex Cauchy
distribution instead of a complex normal distribution has
also been proposed [8]. IS-NMF and Cauchy-NMF treat the
phase spectrogram of each underlying component as a latent
variable to be marginalized out and the aim is to find the
expectation of the complex spectrogram of each component
taken over all possible phase spectrograms of all the com-
ponents. Although this estimator is reasonable if the phase
spectrograms are really stochastic, they are in fact determin-
istic and unique. Indeed, the phase part of this estimator is
always given as that of the observed mixture signal, which
certainly differs from the true value. By contrast, CNMF
allows us to find the jointly optimal estimates of the power
and phase spectrograms of all the components. Thus, we can
expect CNMF to lead to higher source separation accuracy
than the other NMF variants if the parameters can be properly
estimated.

However, one limitation with the CNMF framework is
that the divergence measure used to measure the difference
between an observed spectrogram and the model is limited
to only the Euclidean distance (squared error) due to the fact
that the arguments are complex numbers unlike NMF. This is
in contrast to the conventional NMF framework where effi-
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cient algorithms have been proposed for different divergence
measures [7–14]. Some previous studies have revealed that
for source separation tasks with NMF, using the generalized
Kullback-Leibler (KL) divergence tends to yield higher accu-
racy than using other divergence measures [14] (though con-
sensus has yet to be reached [15]). This motivated us to expect
that we can achieve even higher source separation accuracy if
we can derive an algorithm for a KL divergence counterpart
of CNMF. In this paper, we start by defining the notion of
the “dual” form of the CNMF formulation, derived from the
auxiliary function of the original Euclidean CNMF, and show
that a KL divergence counterpart of CNMF can be developed
based on this dual formulation. We call this “KL-CNMF”. We
further derive a convergence-guaranteed algorithm for KL-
CNMF based on a majorization-minimization scheme.

2. EUCLIDEAN COMPLEX NMF
Let Yk,m ∈ C denote the complex spectrogram of an observed
mixture signal, where k and m denote the frequency and time
(frame) indices, respectively. While the NMF approach ap-
proximates the magnitude (or power) spectrum |Yk,m| at each
frame m as a linear sum of static basis spectra Hk,1, . . . , Hk,L
scaled by time-varying amplitudes U1,m, . . . , UL,m

|Yk,m| ≃
L∑

l=1

Hk,lUl,m, (1)

CNMF approximates the complex spectrum Yk,m at each
frame m as a linear sum of static basis spectra Hk,1, . . . , Hk,L
scaled by time-varying amplitudes U1,m, . . . , UL,m and mul-
tiplied by time-varying phase spectra ejϕ1,k,m , . . . , ejϕL,k,m

Yk,m ≃
∑
l

Hk,lUl,mejϕl,k,m . (2)

Here, it is important to emphasize that ϕl,k,m is indexed by
m, meaning that this model allows the phase spectrum of
each component to vary freely over time. For simplicity of
notation, let us hereafter put cl,k,m = ejϕl,k,m . In [5], we
considered an objective function

IEU (θ) =
∑
k,m

∣∣∣Yk,m −
∑
l

Hk,lUl,mcl,k,m

∣∣∣2 +R(U), (3)

where θ = {H,U ,C} and R(U) is a regularization term
for U . It is important to note that the complex NMF model
allows the components to cancel each other out, and so some
constraint is needed to induce the sparsity of U . For this pur-
pose, we defineR(U) using the ℓp norm

R(U) = 2λ
∑
l,m

|Ul,m|p, (4)

where λ > 0 weighs the importance of the sparsity cost rel-
ative to the fitting cost. When 0 < p < 2, R(U) promotes
sparsity if the norm of U is bounded. To bound U , we assume∑

k H
2
k,l = 1 or

∑
k Hk,l = 1.

Although it is difficult to solve the above optimization
problem analytically, a convergence-guaranteed algorithm for
finding a stationary point can be developed based on the aux-
iliary function concept. To derive the algorithm, we first intro-
duce the general principle of the auxiliary function approach
(majorization-minimization approach) [9, 16, 17].

We use F(θ) to denote an objective function that we want
to minimize with respect to θ. F+(θ, α) is defined as an aux-
iliary function for F(θ) if it satisfies

F(θ) = min
α
F+(θ, α). (5)

We call α an auxiliary variable. By usingF+(θ, α), F(θ) can
be iteratively decreased according to the following theorem:

Theorem 1. F(θ) is non-increasing under the updates, θ ←
argminθ F+(θ, α) and α← argminα F+(θ, α).

It can be shown [5] that

I+EU (θ, α) =
∑
l,k,m

|Xl,k,m −Hk,lUl,mcl,k,m|2

βl,k,m

+ λ
∑
l,m

{
p|Vl,m|p−2U2

l,m + (2− p)|Vl,m|p
}
, (6)

is an auxiliary function of IEU (θ) where α = {X,V }, βl,k,m

can be any positive number satisfying
∑

l βl,k,m = 1, and
Xl,k,m ∈ C and Vl,m ≥ 0 are auxiliary variables satisfying∑

l

Xl,k,m = Yk,m. (7)

By using I+EU (θ, α), the update rules for α are derived as

Xl,k,m =Hk,lUl,mcl,k,m

+ βl,k,m

(
Yk,m −

∑
l

Hk,lUl,mcl,k,m

)
, (8)

Vl,m =Ul,m, (9)

and the update rules for θ are derived as

Hk,l =

∑
m Ul,m|Xl,k,m|/βl,k,m√∑

k(
∑

m Ul,m|Xl,k,m|/βl,k,m)2
, (10)

Ul,m =

∑
k Hk,l|Xl,k,m|/βl,k,m∑

k H
2
k,l/βl,k,m + λpV p−2

l,m

, (11)

cl,k,m =Xl,k,m/|Xl,k,m|. (12)

The CNMF algorithm can thus be summarized as follows:

1. Initialize H , U and C.
2. Update X and V using (8) and (9).
3. Update H , U and C using (10)–(12) and return to 2.

We call this “Euclidean CNMF (EU-CNMF)”.
Here, the auxiliary variable Xl,k,m can be viewed as an

estimate of the complex spectrogram of the l-th signal com-
ponent. At step 2, Xl,k,m is updated by adding the portion
of the error between the observed spectrogram and the model
to the current estimate of Hk,lUl,mcl,k,m. cl,k,m is then up-
dated at its argument Xl,k,m/|Xl,k,m|, and H and U are up-
dated using its magnitude |Xl,k,m|. Although the details are
omitted owing to space limitations, it can be shown that (8) is
an MMSE estimator of Xl,k,m, i.e., E[Xl,k,m|Y ,H,U ,C],
when seen from a generative model perspective. This is in
contrast to the Wiener filter E[Xl,k,m|Y ,H,U ], which only
uses the estimate of the power spectrogram.
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3. KULLBACK-LEIBLER COMPLEX NMF
Interestingly, it can be shown that the algorithm presented
above also converges to a stationary point of the following
optimization problem:

minimize JEU(θ̄)

subject to
∑
l

Xl,k,m = Yk,m, (13)

where θ̄ = {H,U ,X} and

JEU(θ̄) =
∑
l,k,m

(|Xl,k,m| −Hk,lUl,m)2

βl,k,m
+R(U). (14)

This can be confirmed as follows. The first term of the auxil-
iary function I+(θ, α) of EU-CNMF can be written as

|Xl,k,m −Hk,lUl,mcl,k,m|2 (15)

=|Xl,k,m|2 − 2Hk,lUl,mRe[c∗l,k,mXl,k,m] +H2
k,lU

2
l,m.

Now, by using the fact that a function g(z) = −Re(c∗z) with
complex arguments z and |c| = 1 is a tangent plane to a cone
f(z) = −|z|, where c indicates the direction of the tangent
line, we obtain an inequality

−Re(c∗z) ≥ −|z|. (16)

We therefore obtain

|Xl,k,m|2 − 2Hk,lUl,mRe[c∗l,k,mXl,k,m] +H2
k,lU

2
l,m

≥|Xl,k,m|2 − 2Hk,lUl,m|Xl,k,m|+H2
k,lU

2
l,m

=(|Xl,k,m| −Hk,lUl,m)2.

Hence, JEU(θ̄) ≤ I+(θ, α). This implies that (6) is also an
auxiliary function of JEU(θ̄). Here, the difference is that the
roles of X = {Xl,k,m} and C = {cl,k,m} are reversed: X
is a model parameter and C is an auxiliary variable, while
X is an auxiliary variable and C is a model parameter in
the original CNMF. Thus, there is a duality between the op-
timization problem of the original CNMF and (13). (13)
can be interpreted as a problem of decomposing an observed
complex spectrogram Yk,m into the sum of L components
X1,k,m, . . . , XL,k,m such that the magnitude spectrogram of
each component is as close as possible to a rank-1 structure.
This gives a different explanation to the objective of CNMF.
We call this formulation technique “dual formulation.”

Since the KL divergence only allows non-negative argu-
ments, it cannot be straightforwardly used to measure the
difference between Yk,m and

∑
l Hk,lUl,mcl,k,m. However,

since the dual CNMF formulation uses the Euclidean distance
between non-negative values, |Xl,k,m| and Hk,lUl,m, as the
cost function, we can also use the KL divergence to measure
their difference, which leads us to an objective function

JKL(θ̄) =
∑
l,k,m

DKL(|Xl,k,m|∥Hk,lUl,m) +R(U), (17)

where DKL(x∥y) = x log x
y − x+ y. Thus, we can consider

the following optimization problem

minimize JKL(θ̄)

Fig. 1. KL-CNMF derivation process.

subject to
∑
l

Xl,k,m = Yk,m, (18)

which we call “KL-CNMF.”
The objective JKL(θ̄) is non-differentiable with respect

to Xl,k,m. In the following, we construct an easy-to-optimize
auxiliary function to obtain a closed form update rule for
Xl,k,m. First, we can show that

|Xl,k,m| log |Xl,k,m| − |Xl,k,m| logHk,lUl,m − |Xl,k,m|

≤|Xl,k,m|
{

|Xl,k,m|−Zl,k,m

Zl,k,m
+ logZl,k,m

}
− |Xl,k,m| logHk,lUl,m − |Xl,k,m|

=
|Xl,k,m|2
Zl,k,m

+ |Xl,k,m|
(
log

Zl,k,m

Hk,lUl,m
− 2
)
, (19)

by using the fact that a logarithmic function is a concave func-
tion and that for any concave function f(x), f(x) is below or
equal to its tangent at any point, namely f(x) ≤ f ′(z)(x −
z)+f(z). The equality of (19) holds when Zl,k,m = |Xl,k,m|.
The right-hand side of (19) still involves a non-differentiable
term |Xl,k,m|. Here, the coefficient

dl,k,m = log
Zl,k,m

Hk,lUl,m
− 2, (20)

can be either non-negative or negative. According to the sign
of dl,k,m, we can use the following inequalities

|Xl,k,m| ≤ |Xl,k,m|2
2Wl,k,m

+
Wl,k,m

2 , (21)

−|Xl,k,m| ≤ −Re[c∗l,k,mXl,k,m], (22)

to obtain
|Xl,k,m|2
Zl,k,m

+ dl,k,m|Xl,k,m|

≤Al,k,m|Xl,k,m|2 − 2Re[B∗
l,k,mXl,k,m] +Dl,k,m, (23)

where

Al,k,m :=

{
dl,k,m

2Wl,k,m
+ 1

Zl,k,m
(dl,k,m ≥ 0)

1
Zl,k,m

(dl,k,m < 0)
, (24)

Bl,k,m :=

{
0 (dl,k,m ≥ 0)
−dl,k,mcl,k,m/2 (dl,k,m < 0)

. (25)

Dl,k,m is given by dl,k,mWl,k,m/2 when dl,k,m ≥ 0 and
0 otherwise. The equalities of (21) and (22) hold when
Wl,k,m = |Xl,k,m| and cl,k,m = Xl,k,m/|Xl,k,m|, respec-
tively. Thus, we obtain an auxiliary function of JKL(θ̄) as

J +
KL(θ̄, ᾱ) =Al,k,m|Xl,k,m|2 − 2Re[B∗

l,k,mXl,k,m]
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+Dl,k,m +Hk,lUl,m +R+(U ,V ), (26)

where θ̄ = {H,U ,X} is a set of parameters, ᾱ = {Z,W ,C,V }
is a set of auxiliary variables, and R+(U ,V ) is an auxiliary
function ofR(U), given by

R+(U ,V ) (27)

=

{
2λ
∑

l,m{pV
p−1
l,m (Ul,m − Vl,m) + V p

l,m} (0 < p ≤ 1)

λ
∑

l,m{pV
p−2
l,m U2

l,m + (2− p)V p
l,m} (1 < p ≤ 2)

.

As can be seen from (26), J +
KL(θ̄, ᾱ) is a quadratic function of

Xl,k,m. Thus, by using the method of Lagrange multipliers,
we obtain the update rule for Xl,k,m analytically as

Xl,k,m =
1

Al,k,m

(
Bl,k,m +

Yk,m −
∑

l
Bl,k,m

Al,k,m∑
l

1
Al,k,m

)
. (28)

This provides yet another form of filter that optimally decom-
poses Yk,m into L complex spectrograms X1,k,m, . . . , XL,k,m

using the estimates of H , U and c. When 0 < p ≤ 1, the
update rules for H and U can be derived as

Hk,l =

∑
m |Xl,k,m|∑

k

∑
m |Xl,k,m|

, (29)

Ul,m =

∑
k |Xl,k,m|

1 + λpV p−1
l,m

. (30)

Note that here we have used the ℓ1 norm constraint
∑

k Hk,l =
1 for H . The update rule for U when 1 < p ≤ 2 can also
be derived in closed form. The update rules for the auxiliary
variables ᾱ are derived as

Zl,k,m = |Xl,k,m|, (31)
Wl,k,m = |Xl,k,m|, (32)
cl,k,m = Xl,k,m/|Xl,k,m|, (33)
Vl,m = Ul,m. (34)

Overall, the optimization algorithm for KL-CNMF can be
summarized as follows:

1. Initialize H , U and X .
2. Update Z, W , C and V using (31)–(34).
3. Update H , U and X using (28)–(30) and return to 2.

For the initialization (step 1), we can use conventional NMF
algorithms followed by Wiener filtering or the EU-CNMF al-
gorithm to obtain the estimates of H , U and X .

The derivation process of KL-CNMF and its relationship
to EU-CNMF are illustrated in Fig. 1.

4. EXPERIMENTS
We conducted supervised source separation experiments to
compare the source separation accuracy of KL-CNMF (pro-
posed), EU-CNMF, KL-NMF, EU-NMF and IS-NMF. We
used three music recordings from the SiSEC 2013 database,
available at [18], as the experimental data. Each recording is
a mixture of 5 tracks, each of which is produced by a single
instrument or singer. The separated tracks are also available.

Fig. 2. Average SNR improvements obtained with KL-CNMF (pro-
posed), EU-CNMF, KL-NMF, EU-NMF and IS-NMF. We used three
music recordings from the SiSEC 2013 database [18], “Ultimate NZ
Tour”(top), “Bearlin - Roads”(middle) and “Fort Minor - Remember
the Name”(bottom), for the test data.

We performed 3-fold cross validation. We partitioned each
recording into three segments, used one segment as the test
data and the other two segments as the training data, repeated
signal-to-noise (SNR) evaluations three times with different
test segments, and took the average of the SNR improvements
obtained with the three repeated rounds. With all these meth-
ods, the basis spectra were pretrained using the individual
tracks of the training data, and then source separation was
performed on the test data. 6 basis spectra were assigned
to each track. Thus, a total of 30 basis spectra were used
for the separation. All the audio samples were monaural
and sampled at 22.05kHz. An STFT was computed using
a square-root Hanning window that was 32ms long with a
16ms overlap. Fig. 2 shows the SNR improvements after
the separations with all the methods. From these results, we
confirmed that KL-CNMF outperformed the other methods.

5. CONCLUSIONS
CNMF is a phase-aware variant of the NMF approach for
audio source separation, which makes it possible to realize
NMF-like signal separations in the complex time-frequency
domain. One limitation of the conventional CNMF is that the
divergence measure is limited to the Euclidean distance. This
paper proposed a KL divergence counterpart of CNMF, which
we call “KL-CNMF,” and derived an algorithm for finding a
locally optimal solution. We confirmed through supervised
source separation experiments that KL-CNMF outperformed
other NMF variants.
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