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ABSTRACT

Permutation invariant training (PIT) has recently attracted at-
tention as a framework to achieve end-to-end time-domain au-
dio source separation. Its goal is to train a separation network
that takes a mixture signal as input and produces the J under-
lying source signals. Since the order of the output signals is
arbitrary, the idea of PIT is to first find the best output-target
assignment and then update the network parameters based on
the error given by that assignment at each iteration. However,
there are two known problems with PIT: One is that it has a
time complexity of O(J !), which makes it infeasible as J in-
creases, and the other is that it is prone to getting stuck in bad
local optimal solutions due to the hard output-target assign-
ment process. To overcome these problems simultaneously,
in this paper, we propose AttentionPIT, which uses an atten-
tion mechanism to find soft output-target assignments for sep-
aration network training, and can be run in polynomial time
in J , as with the recently proposed fast PIT variants such as
SinkPIT and HungarianPIT. The training loss of AttentionPIT
is fully differentiable, allowing us to simultaneously perform
processes corresponding to soft output-target assignment and
network parameter update through backpropagation. Experi-
ments on the LibriMix corpus revealed that while Attention-
PIT works reasonably well on its own, it works even better
when combined with SinkPIT and HungarianPIT so that At-
tentionPIT is run only in the early stages of training.

Index Terms— End-to-end audio source separation, per-
mutation invariant training (PIT), attention

1. INTRODUCTION

The task of separating and extracting the signal of each sound
source from a monaural mixture of multiple sources is called
monaural source separation. Since the emergence of powerful
methods based on deep neural networks (DNNs), the level of
sound source separation performance has been dramatically
improved. The methods proposed so far can be broadly clas-
sified into two approaches: spectral-based and time-domain-
based ones. The spectral-domain approach aims to predict bi-
nary, soft, or complex-valued time-frequency masks that ex-
tract the components corresponding to the source signals from
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an input mixture signal [1–3]. The time-domain approach, on
the other hand, aims to perform separation in an end-to-end
fashion by designing and training a neural network model that
takes a mixture signal as input and outputs a set of J signals
(hereafter referred to as a separation network). One problem
in training a separation network is that the order of the out-
put signals depends on the architecture and parameters of the
network and it is usually difficult to predict in advance which
source each output signal corresponds to. Therefore, simply
using the error between the output signals and the target sig-
nals arranged in a predetermined order as the training loss
will not provide satisfactory performance to the network. To
tackle this problem, a framework called permutation invariant
training (PIT) [4] has been proposed. The idea is to first find
the best output-target assignment for each training sample,
and then update the network parameters based on the error
given by that assignment at each iteration. This technique, or
its utterance-level extension called uPIT [5], has been shown
to be effective for the above problem and is currently being
employed to train many types of separation networks, includ-
ing the time-domain audio separation network (TasNet) [6],
convolutional TasNet (ConvTasNet) [7], dual-path recurrent
neural network (DPRNN) [8], Wavesplit [9], as well as for the
successive downsampling and resampling of multi-resolution
features (SuDoRM-RF) [10].

However, since the time complexity of the exhaustive
search for the best output-target assignment is O(J !), PIT
becomes more challenging as the number of sources in-
creases (say, to more than ten). For example, when J = 20,
J ! = 2.4 × 1018, which makes training infeasible. Some
methods have recently been proposed to overcome this obsta-
cle. One of them is called SinkPIT [11], which exploits the
fact that permutation matrices are a special case of doubly
stochastic matrices, and that the Sinkhorn-Knopp algorithm
can converge an arbitrary positive matrix to a doubly stochas-
tic matrix. The authors showed that the Frobenius inner
product between the pairwise error matrix (namely, a matrix
with each element being the error between a different pair of
the output and target signals) and the doubly stochastic matrix
converged from a certain matrix expressed using the pairwise
error matrix is equivalent to the PIT loss. Using this loss leads
to a time complexity of O(J2). Another example is Hungar-
ianPIT [12], which uses the Hungarian algorithm [13–15], a
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method that can solve the assignment problem in polynomial
time, to find the best output-target assigment instead of an
exhaustive search. The time complexity of HungarianPIT is
O(J3), which is still at a level sufficient to handle realistic
scenarios (e.g., up to twenty sources).

Another problem that PIT poses is convergence to a bad
local optimal solution. Since PIT alternates between output-
target assignment and network parameter update, it is inher-
ently prone to getting stuck in bad local solutions, compared
to the optimization in ordinary regression model training.
This is in some sense analogous to the k-means algorithm, a
well-known clustering method that alternates between cluster
assignment and cluster centroid update. Especially in the
early stages of training, when the separation network tends
to still be immature and produces only seemingly noisy sig-
nals, it would be better to leave the chance for every output
signal to correspond to any source, rather than assigning each
output signal to a different source exclusively. For the same
reason that the expectation-maximization algorithm, or soft
k-means algorithm, is less prone to local solutions than the
k-means algorithm, we believe that soft assignment is the key
to avoiding bad local solutions in PIT. SinkPIT and another
PIT variant called ProbPIT1 [16] are examples of methods
designed to find soft output-target assignments in the PIT
framework, and the method proposed in this paper takes a
similar approach in that regard. In particular, motivated by
the fact that the attention mechanism [17,18] has been proven
to be very good at finding soft assignments between the items
in a sequence or a pair of sequences, in this paper, we propose
AttentionPIT, which uses an attention mechanism for finding
soft output-target assignment in separation network training.
As will be explained later, the complexity of AttentionPIT is
O(J2) or O(J3) depending on the choice of regularization
loss. We will also show that while AttentionPIT works rea-
sonably well on its own, it works even better when combined
with HungarianPIT or SinkPIT so that AttentionPIT is run
only in the early stages of training.

2. METHOD

2.1. Notation and Problem Formulation

By using sj(n) to denote the signal of source j, the mixture
y(n) of J source signals, s1(n), . . . , sJ(n), is given by

y(n) =
∑
j

sj(n) (n = 1, . . . , N), (1)

where n and N denote the time index and the number of
sample points, respectively. The goal of monaural source
separation is to restore sj = [sj(1), . . . , sj(N)] ∈ R1×N

(j = 1, . . . , J) solely from y = [y(1), . . . , y(N)] ∈ R1×N .

1The complexity of ProbPIT is the same as PIT, namely, O(J !).

Fig. 1. Illustration of AttentionPIT

The DNN-based time-domain approach tackles this prob-
lem by designing a separation network fθ(·)

Ŝ = fθ(y) (2)

with some architecture parametrized by θ, where Ŝ =
[ŝ1; . . . ; ŝJ ] ∈ RJ×N , and by training θ so that Ŝ matches
the target S = [s1; . . . ; sJ ] ∈ RJ×N . Note that here we have
used ; to denote vertical concatenation of vectors or matrices.
However, which source each output signal ŝj corresponds to
depends on the architecture and parameters of fθ, and cannot
be easily predicted prior to training. The idea of PIT [4] is to
find the best output-target assignment at each iteration before
updating θ. We can write this in the form of a training loss as

L(θ) = ES,y

[
min
P∈P

D(Pfθ(y),S)

]
, (3)

where ES,y[·] means the sample mean over all training ex-
amples, and P ∈ P denotes a permutation matrix that corre-
sponds to a particular output-target assignment. D represents
a measure of the errors between the output and target signals.
One widely used measure is the mean of the negative scale-
invariant signal-to-distortion ratios (SI-SDRs) [19].

HungarianPIT [12] provides a way to search for the best
P in a O(J3) running time under fixed θ. Hence, local opti-
mality can be efficiently achieved by alternately updating P
and θ. However, for the reason mentioned earlier, it may not
necessarily be the best strategy for finding the jointly optimal
solution of P and θ.

2.2. AttentionPIT

Here, we describe AttentionPIT, which provides yet another
way to find soft output-target assignments during model train-
ing, different from SinkPIT [11] and ProbPIT [16]. In Atten-
tionPIT, an additional encoder network gϕ is introduced and
trained along with the separation network. The encoder is
configured to take Ŝ or S as input and to output

K = gϕ(Ŝ), (4)
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Q = gϕ(S). (5)

Each row of K,Q ∈ RJ×N ′
is expected to be a sequence

consisting of the features of the corresponding input signal,
where N ′ denotes the length of the output sequences. Using
K and Q, we can compute an “attention” matrix A with each
element ajj′ representing the similarity between the output
signal j and the target signal j′. If we use the expression of
the scaled dot-product attention [18], A is given by

A = softmax(KQT/
√
N ′), (6)

where softmax denotes a softmax function applied to each
column in a matrix so that the elements in each column sum
to 1. Here, it is important to note that the way our attention
matrix is computed differs from the regular attention mech-
anism employed in sequence-to-sequence models in that A
represents the correspondence between channels rather than
between time points: In the context of sequence-to-sequence
models, the scaled dot-product attention is given as A =
softmax(KTQ/

√
J), when S and Ŝ are interpreted as J-

dimensional vector sequences. In our A, element ajj′ rep-
resents how likely the target signal j′ is to correspond to the
ouput signal j, which takes a value close to 1 if the output j
and the target j′ are similar, and 0 otherwise, and

S̃ = ATŜ (7)

becomes a matrix such that each row is a convex combination
of the output signals (the rows of Ŝ) that approximates one of
the target signals. Our goal is to train θ and ϕ so that S̃ fits S.
If we put (6) and (7) together and denote them as

S̃ = Attn(Q,K, Ŝ), (8)

the training objective to be minimized becomes

L(θ, ϕ) = ES,y

[
D(S̃,S)

]
(9)

= ES,y

[
D(Attn(gϕ(S), gϕ(fθ(y)), fθ(y)),S)

]
.

The time complexity for computing this loss is O(J2).
There should be a one-to-one correspondence between the

output and target signals. This corresponds to the case where
A satisfies the conditions for a permutation matrix. Since
using the above loss alone does not necessarily converge A
to a permutation matrix, we need a regularization term that
encourages A to become one. To this end, we introduce

R(θ, ϕ) = λES,y

[
1
J2 ∥AAT − I∥1

]
, (10)

as the regularization loss, where ∥ · ∥1 denotes the sum of
the absolute values of all the elements in a matrix and λ de-
notes the regularization weight. In the following experiment,
we gradually increased λ from 0 to 50 according to λ =
min(1.05e−1, 50) during training, where e denotes the num-
ber of epochs. The time complexity for computing this loss is

O(J3). Note that as an alternative, we also tried a sparsity-
inducing loss [20]

R(θ, ϕ) = λES,y

[
1
J

∑
j

(
∑

j′ |ajj′ |)/
√∑

j′ |ajj′ |2−1
√
J−1

]
, (11)

which takes a value of zero if each row of A contains only one
non-zero element and requires a time complexity of O(J2) to
compute, but there was no significant difference in the actual
training time up to J = 20 compared to (10).

The training loss of AttentionPIT is fully differentiable,
allowing us to simultaneously perform processes correspond-
ing to soft output-target assignment and network parameter
update through backpropagation. Here, it is interesting to
compare how SinkPIT and AttentionPIT differ in the way they
find soft output-target assignments during training. The dif-
ference between the two is the point in the loss computation
process at which the weighted mean is taken: SinkPIT uses
as the loss the weighted mean of the SI-SDRs of all possi-
ble output-target pairs, whereas AttentionPIT uses as the loss
the SI-SDR between each target signal and a weighted mean
(convex combination) of the output signals. Of course, this
difference alone is not conclusive enough to argue which is
superior, so they need to be compared experimentally.

While the time complexities of SinkPIT, HungarianPIT,
and AttentionPIT in terms of J are as decribed above, the ac-
tual training time is influenced not only by J but also by other
factors such as the hyperparameter settings and input signal
lengths, unless we assume a considerably large J . Therefore,
the superiority of each method should be discussed after the
source separation accuracy and actual training time have been
experimentally compared.

2.3. Architecture

The encoder network gϕ was designed to consist of four 1D
strided convolution layers with the kernel size of 8, stride size
of 2, and J output channels, each followed by an instance
normalization layer and a sigmoid linear unit (SiLU) function
except for the last layer. Hence, the length of the output se-
quence becomes 1/16th of the input signal (i.e., N ′ = N/16).
For the separation network fθ, we chose to use the ConvTas-
Net architecture [7].

3. EXPERIMENT

3.1. Datasets

For the experiment, we used the speech signals in the Lib-
riSpeech corpus [21] and the script2 made available by the
authors of [12, 22] to create training, validation, and evalua-
tion datasets for the clean mixtures (without noise) of 5, 10,
15, and 20 speakers. All the signals were sampled at 8 KHz,
and all the mixtures were created in the min mode [23]. These
datasets are referred to as LibriJMix.

2https://github.com/ShakedDovrat/LibriMix

708

Authorized licensed use limited to: NTT. Downloaded on November 07,2023 at 09:25:51 UTC from IEEE Xplore.  Restrictions apply. 



3.2. Baselines and Experimental Setup

SinkPIT, HungarianPIT, and AttentionPIT (hereafter abbrevi-
ated as Sink, Hun, and Attn, respectively) were compared in
terms of computation time and separation accuracy. Note that
if the computation time is unlimited, Hun is equilvalent to PIT
in terms of separation accuracy. In addition to these, versions
in which Attn was run up to 20 epochs and Sink or Hun was
run thereafter (abbreviated as Attn→Sink and Attn→Hun, re-
spectively) were also considered for comparison. For the im-
plementations of Sink and Hun, the scripts3 provided in the
Asteroid platform [23] were used as they are. Attn was im-
plemented on the same platform to make the condition as con-
sistent as possible. All the methods were run using the Adam
optimizer [24] with the batch size of 8 and learning rate of
0.001. For all the methods, the learning rate was reduced by
a factor of 0.5 if the loss was not improved for five consecu-
tive epochs. The β scheduler for SinkPIT was configured in
the same manner as in [11]. The negative mean SI-SDR was
used as D. The mean SI-SDR under the best output-target
assignment (found using the Hungarian algorithm [13–15])
was used for the validation and evaluation metrics. For each
method, the model that obtained the best validation metric
within 200 epochs was used for evaluation. The average num-
ber of iterations per second was used as the computational ef-
ficiency metric. All the methods were run on a single Tesla
V100 SXM2 GPU with a 32.0 GB memory and an Intel(R)
Xeon(R) Platinum 8160 24-core CPU @ 2.10GHz.

In a previous work [12], Hun and Sink were only com-
pared under different separation networks. In this experiment,
the separation network was fixed to ConvTasNet in order to
make a pure comparison of the training methods.

3.3. Results

Table 1 shows the average number of iterations run per second
for each method. The results show that Sink and Attn were
equally efficient and Hun was slightly more efficient than the
other two when J ≤ 15, but none of them had any prac-
tical problems in terms of training efficiency, at least up to
J = 20. Note that Attn was slightly faster when J = 20
than when J = 15 because the length of each mixture signal
was shorter on average due to the min mode, and probably
because the computational efficiency of Attn depends slightly
more on the length of each input signal than the other two:
In the min mode, each mixture signal stops with the short-
est source signal [22]. Table 2 shows the SI-SDR improve-
ment obtained with each method in each condition. Interest-
ingly, the method that showed the best performance differed
depending on J : Hun tended to show relatively higher perfor-
mance with smaller J , while Sink tended to show relatively
higher performance with larger J . On the other hand, Attn
showed the best performance when J = 10, but as with Hun,
the performance tended to become lower as J became larger.

3https://github.com/asteroid-team/asteroid

Table 1. Average number of iterations per second.

Dataset Sink Hun Attn
Libri5Mix 2.91 3.06 2.95
Libri10Mix 2.77 2.92 2.77
Libri15Mix 2.62 2.77 2.62
Libri20Mix 2.45 2.37 2.66

Table 2. SI-SDR improvement (dB).

Dataset Sink Hun Attn Att→Sin Att→Hun
Libri5Mix 8.16 8.24 8.22 8.30 8.43
Libri10Mix 4.97 4.91 5.20 5.29 5.17
Libri15Mix 4.29 4.06 4.07 4.36 4.22
Libri20Mix 3.91 3.66 3.51 3.92 3.89

The relatively lower performance of Hun compared to Sink
as J increases may be due to the fact that Hun is more prone
to bad local optima, as mentioned earlier. In Attn, there were
many cases where the attention matrices did not converge to
permutation matrices as J became larger, probably due to an
insufficient regularization effect. This is thought to be the
cause of the relative performance degradation as J becomes
larger. Of particular note is that Attn→Sink and Attn→Hun
performed better than Sink and Hun, respectively, which im-
plies the effect of Attn in avoiding bad local optima. It may
be possible to further improve the performance of Attn alone
by improving the λ scheduler or the loss definition for regu-
larization, but given the above results, it seems reasonable to
use Attn in combination with Sink or Hun. The above results
were obtained for the case where the separation network was
ConvTasNet, but a similar trend was observed for the case of
DPRNN [8].

4. CONCLUSION

In this paper, we proposed AttentionPIT, a new PIT variant
for end-to-end audio source separation network training that
can be run in polynomial time with respect to the number of
sources. The attention mechanism in AttentionPIT allows for
a seamless process of updating the network parameters while
finding soft output-target assignments through backpropaga-
tion. While the original PIT is inherently prone to getting
stuck in bad local optimal network parameters due to its hard
output-target assignment process, AttentionPIT is expected to
be effective in avoiding them. In experiments on the LibriMix
corpus, we found that while AttentionPIT works reasonably
well on its own, it works even better when combined with
SinkPIT or HungarianPIT so that AttentionPIT is run only in
the early stages of training. In the current experiment, we pro-
vided only the results of AttentionPIT applied to ConvTasNet.
Although we preliminarily tested its behavior when applied to
DPRNN as well, we plan to more thoroughly verify its effec-
tiveness on models other than ConvTasNet in the future.
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