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Abstract
This paper proposes a task and method for estimating a se-
quence of facial action units (AUs) solely from speech. AUs
were introduced in the facial action coding system to objec-
tively describe facial muscle activations. Our motivation is
that AUs can be useful continuous quantities for represent-
ing speaker’s subtle emotional states, attitudes, and moods in
a variety of applications such as expressive speech synthe-
sis and emotional voice conversion. We hypothesize that the
information about the speaker’s facial muscle movements is
expressed in the generated speech and can somehow be pre-
dicted from speech alone. To verify this, we devise a neural
network model that predicts an AU sequence from the mel-
spectrogram of input speech and train it using a large-scale
audio-visual dataset consisting of many speaking face-tracks.
We call our method and model “crossmodal AU sequence es-
timation/estimator (CAUSE)”. We implemented several of the
most basic architectures for CAUSE, and quantitatively con-
firmed that the fully convolutional architecture performed best.
Furthermore, by combining CAUSE with an AU-conditioned
image-to-image translation method, we implemented a system
that animates a given still face image from speech. Using this
system, we confirmed the potential usefulness of AUs as a rep-
resentation of non-linguistic features via subjective evaluations.
Index Terms: Non-linguistic features, action units (AUs),
crossmodal transfer, facial animation synthesis

1. Introduction
Being able to quantify non-linguistic information in speech,
such as expressions and moods can be useful for a variety of ap-
plications. These applications include dialogue systems, emo-
tional voice conversion, expressive speech synthesis, and talk-
ing head generation.

One example of non-linguistic feature extraction from
speech is the extraction of parameters related to the movement
of the thyroid cartilage based on a physiologically grounded
model for describing voice fundamental frequency contours
(called the Fujisaki model) [1]. The Fujisaki model is partic-
ularly appealing in that its parameters characterize the intona-
tion of speech in a continuous and physiologically meaningful
way, and once these parameters can be extracted, it allows natu-
ral and detailed control of the intonation by manipulating them.
However, the downside is these features are so low-order that
it is not easy to interpret how they are related to higher-order
information such as expressions and moods. Therefore, there
are still many issues that need to be resolved before they can be
used as an effective intermediate representation in the applica-
tions described above.

Another example is the extraction of the emotional content
of speech. Despite recent advances in the field of speech emo-
tion recognition, obtaining accurate and reliable techniques re-

mains a formidable challenge, hampered by several obstacles.
One such obstacle is the limited number of reliable datasets
suitable for real-world applications. While there are several
publicly available emotion-labeled datasets consisting of acted
speech (which is rarely found in real-world conversation), there
are very few when it comes to those consisting of naturally spo-
ken or spontaneous speech. Another obstacle is the ambiguity
of emotional labels. Since emotions are subjective, even if a la-
beled dataset could be created, it would suffer from low human
annotator agreement. To overcome these obstacles, an approach
called crossmodal transfer has recently been proposed [2]. The
idea is to first train a facial expression recognizer using labeled
facial images, and then train a speech emotion recognizer us-
ing the audio part of unlabeled videos of human speech in the
wild so that its predictions match those of the facial expression
recognizer applied to the face-tracks of the corresponding seg-
ments. The hypothesis behind this idea is that the emotional
content of speech is correlated with the facial expression of the
speaker, and that facial expression recognition is a relatively
easier task to solve. Nevertheless, in pretraining the facial ex-
pression recognizer, the aforementioned problem of label am-
biguity remains an issue. To address this, the authors propose
to use an emotion-labeled dataset of still facial images called
FERPlus [3]. Unlike other existing emotion-labeled datasets,
FERPlus was created by incorporating a measure of uncertainty
into the labeling scheme by having ten human annotators la-
bel each image. As a result, the trained speech emotion rec-
ognizer will be able to predict a sequence of the distributions
over eight emotional states (neutral, happiness, surprise, sad-
ness, anger, disgust, fear, and contempt) from speech. While
this approach is indeed powerful for a speech emotion recogni-
tion task, emotional states defined in a categorical space would
be too abstract to accurately represent the fine and subtle ex-
pressions and moods of speech.

Given the aforementioned applications in mind, the features
we wish to extract from speech are quantities that are easy to
interpret, like emotional states, but also capture fine and sub-
tle features that are linked to the physiological or anatomical
mechanisms behind speech, like the Fujisaki model parameters.
As quantities that satisfy these requirements, in this paper, we
focus on the facial action units (AUs) defined in the facial ac-
tion coding system (FACS) [4]. AUs are facial muscular activ-
ity units that are related to the contraction or relaxation of spe-
cific facial muscles, and they can describe nearly any anatomi-
cally possible facial expression. In this paper, inspired by the
idea of the abovementioned crossmodal transfer, we propose
a task and a method for estimating a sequence of the AU in-
tensities solely from speech. Since it is not clear how much
AU-related information is actually contained in speech, an in-
teresting question is whether it is really possible to estimate the
AU intensities from speech alone, and if so, how precise the
estimation can be. One of our goals is to gain some insight
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into this non-trivial question. We collectively refer to our task,
method, and model as the “crossmodal action unit sequence es-
timation/estimator (CAUSE)”. In addition, by combining the
proposed CAUSE with “GANimation” [5], an AU-conditioned
image-to-image translation method based on generative adver-
sarial networks (GANs) [6, 7], we implement a system that can
animate a given still face image from speech. This system al-
lows us to visually check the subjective validity of the AUs ex-
tracted using CAUSE.

2. Related Work
In this paper, we choose to implement a system that generates
facial animations from speech mainly for the purpose of sub-
jective evaluation of CAUSE. While many attempts have al-
ready been made to implement speech-to-face systems, owing
to space limitations, we mention a few that are relevant below.

Examples from the most recent studies include talking-
head generation [8, 9], lip-syncing [10], and face image recon-
struction from speech (Speech2Face) [11]. The first two focus
mainly on predicting mouth and head movements and gestures
from speech, while the last one focuses on predicting the ap-
pearance of the person speaking, such as the person’s age, gen-
der and ethnicity. To the best of our knowledge, no attempt has
yet been made to utilize AUs for these tasks, and we believe that
incorporating CAUSE would further augment these systems.

3. Method
3.1. AU Detection

AUs were introduced in the FACS to objectively describe facial
muscle activations. While there are few freely available tools
for AU detection, a toolkit called OpenFace1 [12] provides a
reliable function for detecting the presence and intensity of 18
AUs, either from images or from videos [13]. In our work, we
used OpenFace to extract the intensities of 17 AUs2 from an im-
age or each frame of a video, excluding the AU for which only
presence prediction was given. We used the pretrained models
for all the functions made available by the developers of Open-
Face.

3.2. Datasets

For the current task, we used the VoxCeleb2 dataset [14] for
training and testing CAUSE, and the CelebA dataset [15] for
training GANimation and testing facial animation synthesis us-
ing CAUSE and GANimation. The VoxCeleb2 dataset contains
over one million utterances from 6,112 celebrities, extracted
from videos uploaded to YouTube. The CelebA dataset consists
of more than 200,000 celebrity images.

3.3. CAUSE

Our CAUSE is inspired by the idea of the crossmodal trans-
fer method [2]. For each video excerpted from the VoxCeleb2
dataset, we first compute the mel-spectrogram from the audio

1https://github.com/TadasBaltrusaitis/OpenFace
2AU1: inner brow raiser. AU2: outer brow raiser. AU4: brow low-

erer. AU5: upper lid raiser. AU6: cheek raiser. AU7: lid tightener.
AU9: noise wrinkler. AU10: upper lip raiser. AU12: lip corner puller.
AU14: dimpler. AU15: lip corner depressor. AU17: chin raiser. AU20:
lip streched. AU23: lip tightener. AU25: lips part. AU26: jaw drop.
AU45: blink.

Figure 1: Illustration of CAUSE network training

part with a hop size matched to the video frame rate (25fps).
By doing so, we can obtain a pair of face-track sequences and
mel-spectrograms with each frame synchronized. We then per-
form AU detection using OpenFace on the face-track sequence
to extract a sequence of AU intensities. With the above prepa-
ration, our goal is to train a CAUSE network fθ that takes an
80-channel mel-spectrogram X ∈ R80×N of length N as input
and produces a sequence of the predicted AU intensities of the
same length Ŷ ∈ R17×N

Ŷ = fθ(X). (1)

By using Y ∈ R17×N to denote the AU intensity sequence pre-
dicted using OpenFace from the corresponding face-track se-
quence, the training loss is defined by

L(θ) = E(X,Y)[∥Y − fθ(X)∥1], (2)

where E(X,Y)[·] means the sample mean over all training exam-
ples, and ∥·∥1 denotes the mean of the absolute values of all the
matrix elements. An illustration of CAUSE network training is
shown in Fig. 1.

The architecture of fθ needs to be designed according to
the range of the mel-spectrogram on which the AU intensity at
each frame can depend. Since this is not evident, we tested
the following four types of architectures for comparison: a
frame-independent fully connected network (multilayer percep-
tron; MLP), a recurrent network (RNN), a regular convolutional
network (CNN), and a dilated convolutional network (DCNN).
If the AU intensity at each frame depends only on the mel-
spectrum at the corresponding frame, then the MLP architec-
ture should perform on par with the others. If not, a comparison
of the remaining three should give us some indication of the
range of the mel-spectrogram to focus on as a clue for infer-
ence. These architectures are devised as follows.
MLP: In the MLP architecture, the network consists of ten
fully-connected linear layers with 128, 128, 64, 64, 32, 32, 16,
16, 8, and 17 output channels, respectively, each followed by
a dropout layer with a dropout ratio of 0.1 and a leaky recti-
fied linear unit (LReLU) function with a negative slope of 0.1
except for the first and last layers. Weight normalization is ap-
plied to all the weights. This architecture is designed to process
the mel-spectrum of each frame independently.
RNN: In the RNN architecture, the network consists of a fully-
connected linear layer with 128 output channels, a four-layer
bidirectional long-short term memory (BiLSTM) network with
64 hidden units, and a fully-connected linear layer with 17 out-
put channels. Weight normalization is applied to the first and
last linear layers.
CNN: In the CNN architecture, the network consists of a fully-
connected linear layer with 128 output channels, eight 1D con-
volution layers with a kernel size of 3 and with 128, 64, 64, 32,
32, 16, 16, and 8 output channels, respectively, each followed
by a dropout layer with a dropout ratio of 0.1 and a gated lin-
ear unit (GLU) function, and a fully connected linear layer with
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Figure 2: Illustration of GANimation training

17 output channels. Weight normalization is applied to all the
learnable weights.
DCNN: The DCNN architecture is the same as the CNN archi-
tecture except that the dilation factors of the convolution layers
are set to 1, 3, 9, 27, 1, 3, 9, and 27, respectively. With these
settings, the receptive field of DCNN becomes much larger than
that of CNN even with the same number of parameters. Rela-
tively speaking, the CNN architecture is designed to look at a
local region in detail, while the DCNN architecture is designed
to look broadly at a large region.

3.4. GANimation

Once the AU intensity sequence has been extracted from
speech, we use it to animate a given still facial image to “vi-
sualize” the expression and mood of speech. To this end, we
choose to use GANimation [5], an image-to-image translation
method that uses AUs as conditioning variables.

Let F ∈ RC×H×W be an input face image, where H and
W are the vertical and horizontal sizes, respectively, and C is
the channel number (C = 3 for RGB images). Let y ∈ R17

be an AU intensity vector corresponding to a target expression.
The generator gϕ is a neural network that takes as inputs F and
y and ouputs a converted version of F:

F̂ = gϕ(F,y), (3)

with some architecture parameterized by ϕ. Below, we describe
the architectural design of gϕ and the losses used for its training,
along with the ideas behind them.
Architecture: gϕ is configured so that the attention mask
A ∈ (0, 1)1×H×W and color mask C ∈ RC×H×W are first
generated as internal representations, and then F̂ is given as

F̂ = (1−A)⊙C+A⊙ F (4)

using A, C, and F, where 1 represents an array with all 1 el-
ements, and ⊙ denotes broadcasting followed by elementwise
multiplication. The coordinates where the attention mask takes
a zero value indicate the area of the input image to be converted.
The color mask is a quantity that corresponds to the difference
between the converted and input images.
Image Adversarial Loss: In training, one of the goals is to
make the generated image F̂ look as realistic as possible. Based
on the Wasserstein GAN formulation [7], the adversarial loss is
defined as the score produced by another neural network dψ ,
called critic, with some architecture parameterized by ψ. dψ
learns to produce a large value when it takes a fake image gen-
erated by gϕ as input and produce a small value when it takes
a real image as input. Conversely, gϕ is trained to deceive dψ ,
namely to force dψ to produce a small value when it takes a
fake image as input. By increasing this loss with respect to ψ
and decreasing it with respect to ϕ, gϕ is encouraged to gener-
ate images that are so realistic that dψ is unable to distinguish
them from real face images. In addition to this loss, a penalty

loss that encourages dψ to become Lipschitz continuous [16] is
included in the training objective. These losses are collectively
referred to as the image adversarial loss.
Attention Loss: With the architecture described above, if A =
1, then F̂ = F. This means that since F is a real face image,
the adversarial loss can be easily minimized with repect to ϕ
when all the elements of A are 1, namely when gϕ always pro-
duces its input as it is. To avoid this situation, we need to guide
the training so that as many elements of A as possible become
zero. This corresponds to making the area of the input image to
be converted as large as possible. In addition, the attention mask
must be spatially smooth so that no discontinuous patterns will
appear in the generated image. For these purposes, the norm
and total variation of A are further included in the training ob-
jective. These losses are collectively referred to as the attention
loss.
Conditional Expression Loss: In training, y is determined by
extracting the AU intensities from a randomly selected image
other than the input image. The generated image F̂ should be a
face image with an expression consistent with that y (Fig. 2).
Whether this is successful or not can be evaluated by the dif-
ference between y and the AU intensities extracted from F̂. To
this end, another neural network rρ, an AU predictor, with some
architecture parameterized by ρ is introduced. Since rρ must
become a good AU predictor, the training objective should in-
clude a loss for the difference between rρ(F) and y′, where y′

is the AU intensity vector extracted from F (using OpenFace).
Also, for the purpose described above, the loss for the differ-
ence between rρ(F̂) and y are further included in the training
objective. These losses are collectively referred to as the con-
ditional expression loss. Although dψ and rρ can be defined as
two separate networks, they can also be described as a multi-
task network that branches into two heads near the end of the
network.
Identity Loss: The identity of the face in F̂ will not necessarily
be preserved if no constraints are imposed during training. As a
way to address this, cycle-consistent training [17] is empirically
known to be effective. The idea is to assume that converting an
input image into a different domain and then converting back to
the original domain must result in the original input image. In
the current task, this can be induced by using a loss for the dif-
ference between gϕ(gϕ(F,y),y′) and F. This loss is referred
to as the identity loss.

3.5. Facial Animation Synthesis from Speech

Once fθ and gϕ have been trained, we can use them to ani-
mate a face image from speech (Fig. 3). First, we predict the
AU intensity sequence Ŷ = [ŷ1, . . . , ŷN ] = fθ(X) from the
mel-spectrogram X of input speech. Given a still image input
F, we can generate its converted version F̂n = gϕ(F, ŷn) by
using ŷn for each n. Finally, we obtain a facial animation by
concatenating all the generated images F̂1, . . . , F̂N in order.

4. Experiment
In this section, we present the results of objective and subjec-
tive evaluations. For the VoxCeleb2 dataset, we used the de-
velopment set for training and the test set for testing, with the
development set consisting of over a million videos and the test
set consisting of over 36,000 videos. For the CelebA dataset,
we used the first 162770 images for training and the remaining
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Table 1: MAEs and MSEs with 95% confidence intervals.

Metric Zero MLP RNN CNN DCNN
MAE .3226±.0012 .2874±.0009 .2867±.0009 .2819±.0009 .2831±.0009
MSE .3715±.0023 .2597±.0018 .2572±.0017 .2516±.0017 .2546± .0017

Figure 3: Facial animation synthesis from speech Figure 4: Naturalness scores.

images for testing.

First, we evaluated the performance of CAUSE for each
architecture, where we used the audio part of each video in
the test set as the input to CAUSE, and the AU intensity se-
quence extracted from the corresponding face-track sequence
using OpenFace as the ground truth. For the objective perfor-
mance measures, we used the mean absolute error (MAE) and
mean square error (MSE). In addition to the predicted AU se-
quences obtained with MLP, RNN, CNN, and DCNN, we eval-
uated all-zero sequences (“Zero”) as the minimum performance
indicator. The results are shown in Table 1 along with 95%
confidence intervals. As the results show, CNN performed the
best, followed by DCNN, RNN, and MLP. We can draw some
insights from these results. After visually checking some of
the RNN predictions, we observed that there were many AU
intensity peaks that had timing gaps between the predicted and
ground truth sequences. Therefore, the use of the frame-wise er-
ror as the performance measure is probably the reason why the
performance of RNN came out lower than expected. The fact
that CNN worked slightly better than DCNN indicates that the
cues for predicting the AU intensities of the speaker’s face are
concentrated only in a rather short segment of speech, near the
current time. To put it a bit further, the speech segments distant
from the current time are too noisy to be useful cues for AU pre-
diction, and can rather confuse models that have the ability to
capture long-term dependencies. CNN had a smaller receptive
field than DCNN, allowing it to focus only on local segments,
which may be the reason for its relatively higher performance.
At the same time, the fact that CNN performed better than MLP
suggests that prediction cues exist not only in the current frame
but also in the neighboring frames.

We conducted a subjective test to evaluate the naturalness of
the facial animations generated by the method described in 3.5
with each architecture. For comparison, we also implemented a
version in which the AU intensity vectors are replaced with the
emotional state distribution vectors extracted using the cross-
modal transfer method [2]. We refer to this version as “cross-
modal emotion (CME)”. This version used the same CNN ar-
chitecture as the one used in CAUSE and was trained using
the FERPlus dataset [3]. Also, in this version, GANimation
was trained using the emotional state distribution vectors as the
conditioning variables instead. For this test, twenty-four sub-
jects participated. Each participant was asked to watch each
generated animation while listening to the corresponding input

Figure 5: Examples of generated animations.

speech and rate how well the face movement and expression in
the animation matched the expression and mood of the speech
by selecting 5: Excellent, 4: Good, 3: Fair, 2: Poor, or 1: Bad.
We call this a naturalness score. The test was conducted online
using Amazon Web Services, and each participant was asked to
use a headphone in a quiet environment. The results are shown
in Fig. 4. The results show that CAUSE was able to produce
more natural animations than CME for all the architectures.
This suggests the effectiveness of using the AU intensities as
intermediate features in the task of generating facial animations
from speech. In the comparisons of the four architectures, CNN,
RNN, and DCNN were able to produce more natural animations
than MLP. We believe that this is due to the fact that these three
architectures have the ability to take account of the temporal
dependencies in making AU sequence predictions, resulting in
smoother and more natural animations. Fig. 5 shows two ex-
amples of generated animations when given the same speech.
More examples can be found here3.

5. Conclusion
In this paper, we proposed CAUSE, a method for estimating an
AU intensity sequence from speech, and applied it to facial ani-
mation synthesis. For this, we built a neural network model that
predicts an AU sequence from the mel-spectrogram of given
speech and trained it using the speaking face-tracks in the Vox-
Celeb2 dataset and the AU sequences extracted by OpenFace
as the ground truths. From the experimental results, we found
that the CNN architecture was relatively better at handing the
current tasks than the other architectures tested. We also found
that using the AU intensities as intermediate features was found
to be more effective than using the emotional state distributions
for the task of generating facial animations from speech.

3http://www.kecl.ntt.co.jp/people/kameoka.hirokazu/Demos/cause/
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