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Abstract

We propose a training framework for sequence-to-sequence
voice conversion (SVC). A well-known problem regarding a
conventional VC framework is that acoustic-feature sequences
generated from a converter tend to be over-smoothed, result-
ing in buzzy-sounding speech. This is because a particular
form of similarity metric or distribution for parameter train-
ing of the acoustic model is assumed so that the generated fea-
ture sequence that averagely fits the training target example is
considered optimal. This over-smoothing occurs as long as a
manually constructed similarity metric is used. To overcome
this limitation, our proposed SVC framework uses a similarity
metric implicitly derived from a generative adversarial network,
enabling the measurement of the distance in the high-level ab-
stract space. This would enable the model to mitigate the over-
smoothing problem caused in the low-level data space. Fur-
thermore, we use convolutional neural networks to model the
long-range context-dependencies. This also enables the simi-
larity metric to have a shift-invariant property; thus, making the
model robust against misalignment errors involved in the paral-
lel data. We tested our framework on a non-native-to-native VC
task. The experimental results revealed that the use of the pro-
posed framework had a certain effect in improving naturalness,
clarity, and speaker individuality.

Index Terms: voice conversion, deep neural network, genera-
tive adversarial network, similarity metric learning

1. Introduction

In this paper, we address the problem of converting the voice
characteristics of speech including speaker identity and pro-
nunciation quality. We are particularly interested in develop-
ing a real-time (or low-latency) pronunciation-conversion sys-
tem, which converts non-native speech into native-like intelli-
gible speech in an online manner. The problem of converting
non/para-linguistic information of speech while preserving lin-
guistic information is called voice conversion (VC). Since pro-
nunciation quality is part of a speaker’s identity in a wide sense,
the pronunciation-conversion problem can be seen as a special
class of the VC problem.

One successful VC framework involves statistical methods
based on Gaussian mixture models (GMMs) [1, 2, 3]. This
framework typically consists of collecting parallel data, namely
a pair of time-aligned feature sequences of source and target
speech and training a mapping function between the acoustic
features of the source and target speech using the parallel data.
At test time, the feature sequence of input speech is converted
using the trained mapping function. This GMM-based frame-
work uses a GMM to represent the conditional distribution of
the target feature given the source feature. Recently, a neu-
ral network (NN)-based framework based on restricted Boltz-
mann machines [4] and feed-forward deep NNs [5, 6] and an
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exemplar-based framework based on non-negative matrix fac-
torization (NMF) [7, 8] have also been proposed with notable
success.

A well-known problem regarding the conventional VC
frameworks is that acoustic-feature sequences generated from
a converter tend to be over-smoothed, resulting in buzzy-
sounding speech. This is caused by a side effect of assuming
a particular form of similarity metric (e.g., mean squared error
(MSE)) or distribution (e.g., Gaussian) for parameter training of
the acoustic model so that the generated feature sequence that
averagely fits the training target example is considered optimal.
This over-smoothing occurs as long as a manually constructed
similarity metric is used. Postfiltering methods based on the
global variance [9, 10] or modulation spectrum [11] have been
proposed with the aim of reconstructing the original spectro-
temporal fine texture. However, these methods rely on heuris-
tics since it is usually difficult to model the exact probabil-
ity density of the features of real speech. Recently, a direct
waveform-modification method using the spectrum differential
feature has been proposed [12]. This method avoids generating
over-smoothed spectra by transplanting the spectro-temporal
fine texture of the source speech into the generated speech.

Most conventional VC frameworks are designed to con-
vert acoustic features frame-by-frame. When it comes to a
pronunciation-conversion task, we must consider the contextual
or temporal dependencies of the conversion rules since the way
speakers pronounce each phoneme may differ depending on the
preceding, current, and succeeding contexts. To model long-
term dependencies, some attempts have been made to model the
mapping function using recurrent NNs (RNNs) [13] including
the long short-term memory networks [14]. However, RNNs are
not well suited to parallel implementations; thus, the conversion
process becomes computationally demanding.

Except for some parallel-data-free frameworks [15, 16, 17],
many VC frameworks require accurately aligned parallel data of
source and target speech. When there is a large acoustic gap be-
tween source and target speech, collecting parallel speech data
can be a painstaking process since automatic time alignment
between the pair of acoustic-feature sequences becomes rela-
tively difficult. Since many frameworks are weak against mis-
alignment involved in parallel data, careful pre-screening and
manual correction may be required to make these frameworks
reliable. It is difficult to completely avoid misalignment errors
particularly in a pronunciation-conversion task where the acous-
tic characteristics of each phoneme pronounced by source and
target speakers can be very dissimilar.

In this paper, we propose a VC framework that (1) avoids
over-smoothing of converted feature sequences, (2) provides a
reasonable way of modeling time-dependent conversion rules,
and (3) is robust against misalignment errors involved in the par-
allel data. We use a similarity metric implicitly obtained with
a generative adversarial network (GAN) [18] that has been suc-
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cessful in image generation [19, 20] and has begun to be applied
in speech synthesis [21, 22, 23]. A GAN offers a framework for
training a generator in such a way that it can deceive a discrim-
inator that attempts to distinguish real data from the samples
drawn from the generator. Thus, we expect that measuring the
difference in the units in a particular layer in the GAN discrim-
inator between the generated and target speech will enable the
measurement of the similarity in high-level abstract space and
mitigate the over-smoothing problem caused in the low-level
data space. To model time-dependent conversion rules, we use
a segmental feature (a sequence of acoustic features with a du-
ration of hundreds of frames) as the input/output. For the gen-
erator, converter, and discriminator networks, we use a gated
convolutional NN (CNN) [24], so that this network structure
not only allows for modeling long-term dependencies by deep-
ening the layers but also offers robustness against misalignment
errors involved in the parallel data due to the nature of the CNN,
known as the shift invariance property.

We previously proposed a learning-based postfilter using a
GAN that adds a high-fidelty spectro-temporal texture to the
feature sequence obtained with parametric speech synthesis so
that the synthesized speech becomes as indistinguishable as
possible from real speech [21]. The proposed framework com-
bines the goals of VC and postfiltering, namely converting input
speech as close as possible to target speech and making the out-
put speech as indistinguishable as possible from real speech.
We tested our framework on a non-native-to-native VC task.
The experimental results showed that our proposed framework
can be used to improve naturalness, clarity, and speaker individ-
uality.

This paper is organized as follows. In Section 2, we explain
the proposed sequence-to-sequence VC (SVC) framework with
a GAN and gated CNN. We present the experimental results in
Section 3 and summarize our findings in Section 4.

2. Sequence-to-sequence voice conversion
2.1. Framework overview

In a conventional VC framework, the goal is to convert voice
characteristics, and a frame-by-frame approach, as shown in
Figure 1(a), has been widely used for this conversion. In con-
trast, our goal is not only to convert voice characteristics but
also convert pronunciation, e.g., to convert non-native speech to
native-like speech. To achieve this goal, we need to model the
temporal dependencies of a speech sequence. To achieve this,
the conventional frame-by-frame framework is difficult to apply
since it is limited to modeling the mapping function (namely,
the converter (C)) in a short time (e.g., 5 ms) and is not able to
model the temporal dependencies. Our proposed SVC frame-
work was developed to overcome this limitation, as shown in
Figure 1(b), which converts speech on a sequence-to-sequence
basis using a C' that models long-range context dependencies.
To obtain a suitable C, we need to find a suitable answers
to the following two questions: “How is the C optimized?”” and
“How is the sequence structure modeled?”. We answer the first
question in Section 2.2 and the second question in Section 2.3.

2.2. Optimization with learned similarity metric and GAN

Sequence-to-sequence VC is considered a matching problem.
Given a source acoustic-feature sequence = (z1, ..., x7) and
target acoustic-feature sequence y = (y1, ..., yr) as training
data, the C' that maps @ to y can be optimized by minimizing
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Figure 1: Comparison of voice-conversion frameworks

the following objective function:

Lsve = S(y, C(=)), ¢))
where S(x1, 2) is a similarity metric.

In conventional VC frameworks, the similarity between the
source and target acoustic features is measured in the data space
using a particular form of similarity metric, e.g., MSE:

Data
‘CSVC

ally = C@)IP, @
where M, is the dimensions of y. The weak point of these
frameworks is that they are sensitive to the slight translation in
the data space. For example, this metric imposes a large error
when a sharp peak is shifted by only one frame. This causes
over-smoothing, resulting in buzzy-sounding speech.

To solve this problem, we use a similarity metric learned
using a GAN [18]. In the following sub-sections, we first give a
brief overview of a GAN then explain our proposed framework
with the similarity metric learned using a GAN.

2.2.1. Background: GAN

A GAN [18] is a framework for training a deep generative
model using a minimax game. The goal is to learn a gener-
ator distribution Pg(y) that matches the true data distribution
Ppata(y). It consists of two networks: a generator G that trans-
forms noise variables z ~ Pyoise(2) to data space y = G(z)
and a discriminator D that assigns probability p = D(y) when
y is a sample from the Ppata(y) and assigns probability 1 — p
when y is a sample from the Pg(y). In a GAN, the following
binary cross entropy is maximized and minimized with respect
to the D and G, respectively.

Lean =log D(y) + log(1 — D(G(z2)))- 3)
This enables the D to find the binary classifier that provides the
best possible discrimination between true and generated data
and simultaneously enables the G to fit Ppata(y). Both G and
D can be trained using back-propagation.

2.2.2. Similarity metric learning with GAN

In a GAN, its D’s hidden feature space is optimized to deter-
mine the key difference between true and generated data to dis-
criminate them. This means that a more abstract structure is
determined in the D’s hidden feature space than that in the data
space. We use this metric to measure similarity. This technique
is also used in computer vision [25], in which this similarity
metric enables a high-fidelity image to be generated. In the term
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D (y), which denotes the I-th layer hidden feature in the D, a
new similarity metric is written as

1
Lsve = 25, 1P ) — Dy(C())|I%, @
where M, is the dimension of D;(y).
Following a previous study [25], we train our model with
the joint objectives of the GAN objective with Equation 3 and

SVC objective with Equation 4:

L= L5+ Loan. (&)

Figure 2 gives an overview of the training procedure. In prac-
tice, we obtain better results when using not only a sample from
the G but also a sample from the C as the discriminator input.
This is because similar positive and negative samples are more
useful for the D to determine the decision boundary. In this
setting, the GAN objective function is rewritten as

Lcan = log D(y) +log(1 — D(G(2)))
+log(1 — D(C(x))). (6)

We optimize the G by minimizing Lcan, optimize the C' by
minimizing 'y[,SD\‘,C +Lcan, and optimize the D by minimizing
—Lcan. Here, 7 is the trade-off parameter between ESD{,C and
Lcan, which we set to 1 in the experiments.

2.3. Sequence modeling with gated CNN

To achieve SVC, we need to model the long-range context-
dependencies. To do so with a reasonably small number of
parameters, we use a CNN. Figure 3 shows the network archi-
tectures of the G, C, and D. We consider converting the F' x T’
time-sequential acoustic features (e.g., mel-cepstrum), where F’
is the feature dimension and 7' is the frame length. We care-
fully design the network architectures considering the objective
of each network. To convert the source acoustic features to the
target ones considering the temporal dependency in the overall
features, we design the C' using a one-dimensional (1D) CNN
[26, 27]. In this model, we regard the feature dimension as a
channel (i.e., RGB in the case of an image) and convolve the
feature using a (1, k7) kernel, where k7 is the kernel width in
the time direction. In the G and D, we focus on the 2D texture
(i.e., spectro-temporal structure) of acoustic features. Based on
this intuition, we treat them as image-like data [19, 20]. We
design the G to generate the 2D texture from K -dimensional
random noise using an up-sampling 2D CNN and design the D
to discriminate the 2D texture using a down-sampling 2D CNN.

Based on the observation that acoustic features have region
dependency (e.g., they have different structures in voiced seg-
ments and unvoiced segments), we design all the CNNs using a
gated CNN [24]. In a gated CNN, gated linear units (GLUs) are
used as an activation function instead of regular rectified linear
units (ReLLUs) [28] or Tanh activations. A GLU is a data-driven
activation function, and the [-th-layer output H; is calculated
using the (I — 1)-th-layer output H;_; and model parameters
W,V,b,and c.

Hl:(Hl_l*W+b)®O'(Hl_1*V+C), 7
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Figure 4: Architectures of gated CNN

where o is the sigmoid function and ® is the element-wise prod-
uct between matrices. We show the gated CNN architecture in
Figure 4. This gated mechanism enables the information to be
propagated depending on the previous layer states and is well
suited to represent region dependency.

3. Experiments
3.1. Experimental conditions

In our VC experiments, we used an Indian male speaker as the
source (hereafter, the SRC) and an American male speaker as
the target (the TGT). The data consisted of 842 pair utterances
(roughly 1 hour). We used 83 utterances for evaluation and
the others for training. The data were sampled at 16 kHz, then
25 mel-cepstral coefficients (MCEPs), logarithmic fundamental
frequency (log Fp), and 5-band aperiodicities were extracted ev-
ery 5 ms by using the STRAIGHT analysis system [29]. To ob-
tain parallel utterances, we used dynamic time warping (DTW)
to align MCEP sequences of the source and target speakers [1].
The MCEPs were converted using the C' described in Section 2.
Log Fy was converted using a logarithm Gaussian-normalized
transformation [30], i.e., linear conversion based on the mean
and standard deviation of the source and target speech, which
is widely used in VC. Aperiodicities were directly used with-
out modification, since a previous study showed that converting
aperiodicites does not provide a statistically significant differ-
ence on synthesized speech [31].

Table 1 details the network architectures of the GG, C, and
D. The symbols | and 1 indicate down-sampling and up-
sampling, respectively. To upscale and downscale, we respec-
tively used convolutions and backward convolutions with stride
2. The terms LReLU and BNorm denote leaky ReLU [32, 33]
and batch normalization [34], respectively. We set the dimen-
sions of input and output as K = 100, F' = 25, and T' = 200
(this means that a temporal dependency in 200 frames X 5 ms
=1 sec. was captured). In training, we fixed the frame length
of the converter input, but we designed it as a fully convolu-
tional network (FCN) [35], so we could take inputs of arbitrary
length in synthesizing. During preprocessing, we normalized
the source and target MCEPs to zero-mean and unit-variance
for each dimension using their training sets, respectively. We
trained the GG, C, and D using the Adam optimizer [36] with
a minibatch of size 16. The learning rate was set to 0.0002 for
the C, 0.0001 for the GG, and 0.0002 for the D, respectively; the
momentum term S3; was set to 0.5.

To clarify the characteristics of our framework with a
learned similarity metric (the LSM), we implemented two
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Figure 5: Comparison of MCEPs (upper row) and STFT spectrograms (lower row) of SRC, TGT, FVC, MSE, and LSM

Table 1: Details of network architectures of G, C, and D
G (Input: K Random noise, Output: F' x T' MCEP)

1024 fully connected, BNorm, ReLU

[F'/4] - [T /4] - 128 fully connected, BNorm, ReLU
4 x 4 128 conv. 1, BNorm, GLU

4 X 4 2 conv. T, GLU

C (Input: F' x T MCEP, Output: F' x T MCEP)

(1 x 11 1024 conv., GLU ) X 5 stacks
1 x 112 F conv., GLU

D (Input: F' x T MCEP, Output: 1 Probability)

4 x 4128 conv. |, GLU

4 x 4 256 conv. |, BNorm, GLU
1024 fully connected, BNorm, LReLU
1 fully connected, sigmoid

frameworks for comparison. One is a state-of-the art frame-
by-frame VC framework (the FVC) [6] that uses a deep autoen-
coder to obtain a compact representation of MCEPs. It has 7
hidden layers, and the numbers of units in input, hidden, and
output layers are [25,100, 40, 15, 150, 15,40, 100, 25]. The
other framework has the same converter as the LSM but it is
optimized using MSE (the MSE).

3.2. Objective evaluation

Figure 5 shows the comparison of the MCEPs and STFT spec-
trograms of the SRC, TGT, FVC, MSE, and LSM. In the FVC
and MSE, the spectral textures were over-smoothed both in the
mel-cepstral and spectral domains. In the LSM, the spectral tex-
tures similar to the target ones were reproduced not only in the
mel-cepstral domain but also in the spectral domain, although
the spectral conversion is performed in the mel-cepstral domain.

3.3. Subjective evaluation

We conducted listening tests by referring to the Voice Conver-
sion Challenge 2016 (VCC 2016) [37] at which naturalness and
similarity were used as evaluation metrics. We also evaluated
for clarity to assess the effectiveness in pronunciation conver-
sion. We conducted an AB test on naturalness and clarity: par-
ticipants were asked to select the preferred one or to opt for
neutral if they did not have any preference. To measure the
similarity of the VC samples, the same/different paradigm was
used: participants were given two samples and asked whether
the samples were produced by the same speaker. For evalua-
tion, ten sample pairs were selected from the test data. In the
AB test, all pairs were presented in both orders (AB and BA) to
eliminate bias in the order of stimuli. There were seven partici-
pants who were well-educated English speakers.
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Tables 2 and 3 list the average preference scores for nat-
uralness and clarity, respectively. These results indicate that
the LSM outperformed the other two. In particular, the differ-
ence was marked regarding clarity, indicating that the LSM is
effective against the over-smoothing problem. Figures 6 shows
the similarity to the TGT and SRC with the three frameworks.
All frameworks were competitive regarding dissimilarity to the
SRC, but the LSM outperformed the MSE and FVC and ex-
ceeded the neutral rate regarding similarity to the TGT. Hence,
we can conclude that the proposed framework can improve the
quality of VC.

Table 2: Average preference scores (%) for naturalness with
95% confidence intervals. Bold font indicates top scores.

Former Latter Neutral
FVCvs.LSM 329479 5434+84 129456
MSEvs. LSM  27.1+75  65.0 8.0 79 +45

Table 3: Average preference scores (%) for clarity with 95%
confidence intervals. Bold font indicates top scores.

Former Latter Neutral
FVC vs. LSM 171+£63 729475 10.0 5.0
MSEvs.LSM  100+£50 843 +6.1 57439

100
— Neutral

B Same: absolutely sure
[ Same: not sure

B Different: not sure

mE Different: absolutely sure

2
3

Percentage
Percentage
=
&

n
5

TGT LSM MSE FVC SRC
(a) Similarity to TGT

SRCTGT LSM FVC MSE
(b) Similarity to SRC

Figure 6: Similarity to TGT and SRC with VC frameworks

4. Conclusions

We explored sequence-to-sequence VC. To measure the similar-
ity for complex sequential data, we proposed a VC framework
that uses a similarity metric learned using a GAN. To model the
sequence structure, we introduced a gated CNN into our model.
In the experiments, we applied our framework to non-native-to-
native VC tasks. The results showed that our proposed frame-
work outperformed the state-of-the-art framework, as well as
that optimized using a conventional similarity metric, in terms
of naturalness, clarity, and speaker individuality. Our proposed
framework using a learned similarity metric is not limited to a
particular task, so we plan to apply it to other tasks such as TTS.
Acknowledgements: We thank Mr. Keisuke Oyamada (Univ.
of Tsukuba), who kindly provided us with the source code of the
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