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Abstract
We propose a learning-based postfilter to reconstruct the

high-fidelity spectral texture in short-term Fourier transform
(STFT) spectrograms. In speech-processing systems, such as
speech synthesis, conversion, enhancement, separation, and
coding, STFT spectrograms have been widely used as key
acoustic representations. In these tasks, we normally need to
precisely generate or predict the representations from inputs;
however, generated spectra typically lack the fine structures that
are close to those of the true data. To overcome these limita-
tions and reconstruct spectra having finer structures, we propose
a generative adversarial network (GAN)-based postfilter that is
implicitly optimized to match the true feature distribution in ad-
versarial learning. The challenge with this postfilter is that a
GAN cannot be easily trained for very high-dimensional data
such as STFT spectra. We take a simple divide-and-concatenate
strategy. Namely, we first divide the spectrograms into multiple
frequency bands with overlap, reconstruct the individual bands
using the GAN-based postfilter trained for each band, and fi-
nally connect the bands with overlap. We tested our proposed
postfilter on a deep neural network-based text-to-speech task
and confirmed that it was able to reduce the gap between syn-
thesized and target spectra, even in the high-dimensional STFT
domain.
Index Terms: postfilter, deep neural network, generative adver-
sarial network, statistical parametric speech synthesis

1. Introduction
The aim with many speech-processing systems, including
speech synthesis, conversion, enhancement, separation, and
coding, is to produce speech with quality indistinguishable from
clean and real speech. However, the quality of synthesized or
processed speech is usually not as good as that of real speech.
In this paper, we address the problem of restoring spectro-
temporal fine details of a synthetic speech signal to make it
sound like real speech.

Many methods for statistical parametric speech synthesis
and voice conversion tend to produce over-smoothed spectra,
which often result in muffled and buzzy synthesized speech.
This is caused by a side effect of assuming a particular form
of loss function (e.g., mean squared error) or distribution (e.g.,
Gaussian) for parameter training of the acoustic model. Con-
ventionally, postfiltering methods based on the global variance
[1, 2] or modulation spectrum [3] have proved to be effective in
improving the intelligibility of synthesized speech.

Speech enhancement and separation are typically carried
out using a Wiener filter or time-frequency mask. While a time-
frequency mask allows aggressive suppression of noise com-
ponents, it can also over-suppress and damage speech compo-

nents. A Wiener filter provides a conservative way of separat-
ing out a speech signal from a mixture signal so that the sum
of the separated signals is ensured to be equal to the mixture;
however, it often produces artifacts perceived as time-varying
tones known as musical noise. To reduce artifacts or musical
noise in processed speech, postprocessing methods using cep-
stral smoothing techniques have been proposed [4].

The limitation of these postprocessing methods is that they
rely on heuristics due to the difficulty of modeling the exact
probability density of the spectrograms of real speech. This typ-
ically causes generated spectra to lack the fine structures that are
close to those of the true data. Recently, learning-based postfil-
ters have been proposed [5, 6]. These postfilters are optimized
using a particular form of loss function or distribution. How-
ever, it is difficult to completely overcome the over-smoothing
problem as long as a manually designed metric is used.

To overcome these limitations, we previously proposed [7]
the use of a generative adversarial network (GAN) [8], which
makes it possible to generate random samples following the un-
derlying data distribution without the need for the explicit form
of its density, to construct a postfilter for acoustic-feature se-
quences generated using a deep neural network (DNN)-based
text-to-speech (TTS) synthesizer. In that work, we discussed
the effectiveness of our postfilter when applied to a sequence of
low-dimensional vocoder parameters, such as the mel-cepstral
features; however, its effectiveness when applied to a sequence
of high-dimensional features, such as the short-time Fourier
transform (STFT) spectra, has not been clarified.

Motivated by this background, in this paper, we propose
a GAN postfilter that allows the handling of high-dimensional
features, such as the STFT spectra, so that it can be applied to
any speech-processing system (not limited to speech synthesis)
that produces the spectrograms of speech. This is particularly
useful and convenient because once a magnitude spectrogram
is obtained, we can use phase-reconstruction algorithms [9] to
reconstruct a time-domain waveform signal.

We also previously proposed a DNN-based TTS system that
directly produces a sequence of STFT spectra in the hope of
going beyond the limitation of the sound quality of vocoders
[10]. In this paper, we investigate the application of our pro-
posed postfilter to the STFT spectrograms generated using our
DNN-TTS system. The experimental results revealed that the
use of the proposed postfilter had a certain effect in reducing the
gap between synthesized and target spectra, even in the high-
dimensional STFT domain.

This paper is organized as follows. In Section 2, we explain
the proposed GAN-based postfilter for STFT spectrograms. In
Section 3, we explain how we used it in our DNN-based TTS
system. We present the experimental results in Section 4 and
summarize our findings in Section 5.
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Figure 1: System overview of proposed GAN-based postfilter for high-dimensional STFT spectrograms

2. GAN-based postfilter
Our proposed postfilter is built upon the GAN-based postfilter
that we previously proposed [7]. In this section, we first briefly
review a GAN then explain the formulation for using a GAN as
a postfilter for vocoder parameters. Next, we introduce our pro-
posed postfilter that can be applied to high-dimensional STFT
spectrograms.

2.1. GAN

A GAN [8] is a framework for estimating a generative model by
an adversarial process, and the goal is to learn a generator distri-
bution PG(x) that matches the true data distribution PData(x).
It is composed of two networks. One is a generatorG that maps
noise variables z ∼ PNoise(z) to the data space x = G(z). The
other is a discriminator D that assigns probability p = D(x)
when x is sampled from the PData(x) and assigns probability
1− p when x is sampled from the PG(x). The D and G play a
two-player minmax game, and the GAN objective is written as

min
G

max
D

Ex∼PData(x)[logD(x)]

+ Ez∼PNoise(z)[log(1−D(G(z)))]. (1)

This enables the D to find the binary classifier that gives the
best possible discrimination between true and generated data
and simultaneously enables the G to fit the PData(x). Both G
and D can be trained using back-propagation.

2.2. GAN-based postfilter for vocoder parameters

By focusing on the functionality of a GAN that can implicitly
optimize the G to match the true data distribution through ad-
versarial learning, we previously proposed a GAN-based post-
filter to reconstruct the true spectral texture generated from a
vocoder [7]. We made three changes to the regular GAN archi-
tectures by using conditional, residual, and convolutional net-
works for postfiltering.

Conditional: Our goal is to reconstruct natural spectral tex-
ture x from synthesized spectral texture y and random noise z.
To achieve this, we use a conditional GAN (CGAN) [11, 12],
which is an extension of a GAN, where the G and D receive
additional y data as input:

min
G

max
D

Ex,y∼PData(x,y)[logD(x, y)]

+ Ez∼PNoise(z),y∼Py(y)[log(1−D(G(z, y), y))]. (2)

Here, z represents the stochastic fluctuation in reconstructing a
natural spectral texture from a synthesized one.

Residual: To shorten the entire process of generating the
spectral texture, we design the G as follows

G(x, y) = y +R(x, y), (3)

where R represents residual texture [13].
Convolutional: Based on the observation that a spectral

texture is structured in both time and frequency directions, we
use convolutional architecture to determine the structure with a
reasonably small number of parameters. In particular, we de-
sign the G as a fully convolutional network (FCN) [14] that
allows input segments to take an arbitrary length.

2.3. GAN-based postfilter for STFT spectrograms

The STFT spectrogram is not only high dimensional but also
has a different structure depending on the frequency bands, e.g.,
a clear harmonic structure can be observed in the low-frequency
band, while randomness increases in the high-frequency band.
This would make it difficult to estimate the spectrogram distri-
bution with our naive GAN-based postfilter described in Sec-
tion 2.2. To mitigate this problem, we propose converting
a spectrogram on a band-by-band basis. Namely, we divide
the spectrogram into multiple bands, reconstruct the individual
bands using the GAN-based postfilter trained for each band, and
finally concatenate them. The system overview is summarized
in Figure 1. We describe the details of each step as follows.

Partition: We first divide the spectrogram into N fre-
quency bands, each of which ranges from the fs

i -th to fe
i -th fre-

quency, where N is the number of bands and i = {1, . . . , N}.
The overlap between the i-th and i+1-th bands is set at vi, i.e.,
vi = fe

i − fs
i+1. We use the overlap representation to smoothly

concatenate the individual bands afterwards.
Postfiltering: We reconstruct the individual bands using

the GAN-based postfilter trained for each band. The spectro-
gram in each band is not only lower dimensional but also has a
more homogeneous structure than the entire spectrogram; there-
fore, we expect that it is easier to model.

Concatenation: To smoothly connect the reconstructed
spectrograms, we apply a window function (e.g., hanning, ham-
ming, or Blackman) to both ends of each band before connec-
tion, where the window width is 2vi and half of the window
function is applied to each end. This method works well, as
shown in the reconstructed spectrogram in Figure 1. In prelim-
inary experiments, we also tested a model in which the spec-
trograms are divided and connected without overlap. In this
model, the reconstructed spectrogram tends to have discontinu-
ity between the bands, causing a popping sound.

3. Application to speech synthesis
In this section, we describe how we used the proposed GAN-
based postfilter in a DNN-based TTS system. The improved
components include direct STFT-spectra prediction from text,
postfiltering of the predicted STFT spectra, and waveform gen-
eration using enhanced STFT spectra and phase recovery.
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Figure 2: DNN-based acoustic model for STFT spectra. In this
model, logF0 (lf0) and voiced/unvoiced (v/uv) values are used
as input features as well as linguistic features.

Direct STFT-spectra prediction from text: Figure 2
shows the acoustic model used in this study. This acoustic
model directly predicts STFT spectra based on a feed-forward
NN [10]. Also, in contrast to a conventional DNN-based acous-
tic model [15], we use F0 information as input features as well
as linguistic features to predict STFT spectra, which include
harmonics derived from F0. To use the benefit of directly us-
ing the STFT spectra, the Kullback-Leibler divergence (KLD)-
based criterion [16, 17] is used for training a DNN effectively.
According to our previous experiment [10], this DNN-based
TTS system leads to better quality of synthetic speech than that
generated from a system using a vocoder.

Postfiltering of predicted STFT spectrograms: The pre-
dicted STFT spectra from the acoustic model is enhanced by
a signal-processing-based postfilter first [18], followed by the
proposed GAN-based postfilter described in the previous sec-
tion. We apply the signal-processing-based postfilter for en-
hancing spectral peaks of predicted spectral amplitudes as fol-
lows. 1) The predicted STFT spectral amplitudes are converted
into linear-scale cepstrum vectors that have the same dimen-
sions as the STFT amplitudes, 2) the postfilter is applied to the
cepstrum vectors for peak enhancement, and 3) the cepstrum
vectors after postfiltering are converted back into the spectral
amplitudes. These modified STFT spectra are then used as in-
put features for the proposed GAN-based postfilter.

Waveform generation based on phase recovery: The
speech-waveform generated from postfiltered STFT spectral
amplitudes is based on the well-known phase-recovery algo-
rithm proposed by Griffin and Lim [9]. The algorithm consists
of the following iterative steps.

1. Generate initial speech waveforms using the inverse
STFT of predicted STFT spectral amplitudes A with or
without a postfilter and random phase θ at each frame,
followed by overlap-add operations.

2. Window the speech waveforms and apply STFT at each
frame to obtain new spectral amplitudes Â and phase val-
ues θ̂.

3. Replace the STFT Â with the original A at each frame.

4. Generate new speech waveforms using the inverse STFT
of the original STFT spectral A and updated θ̂ followed
by overlap-add operations.

5. Go back to step 2 until convergence.

This framework may be considered as another type of
DNN-based speech-synthesis system without a vocoder to avoid
quality deterioration such as buzziness caused by using the
vocoder. In this framework, the quality of synthetic speech
totally relies on the prediction accuracy of the STFT spectra.

Table 1: Network architectures for GAN-based postfilter

Generator (Input: F × T spectrogram + F × T noise)

5× 5 128 conv., ReLU + input spectrogram
5× 5 256 conv., ReLU + input spectrogram
5× 5 128 conv., ReLU + input spectrogram
5× 5 1 conv.

Discriminator (Input: F × Tc spectrogram)

5× 5 64 conv. ↓, LReLU
5× 5 128 conv. ↓, BNorm, LReLU
5× 5 256 conv. ↓, BNorm, LReLU
5× 5 512 conv. ↓, BNorm, LReLU
1 fully connected, sigmoid

We observed that refinement of the amplitudes using a signal-
processing-based postfilter improves the synthesized speech
quality [10], but the filter is designed to enhance the peak frame-
by-frame; hence, the characteristics of the STFT spectra, i.e.,
time-frequency dependency, are not appropriately considered.
Therefore, the proposed GAN-based postfilter for the STFT
spectra is expected to further improve the synthesized speech
quality.

4. Experiments
4.1. Experimental conditions

The database that was provided for the Blizzard Challenge 2011
[19], which contains approximately 17 hours of speech data
composed of 12,000 utterances, was used for the experiment.
All data were down-sampled from 48 to 32 kHz. Two hun-
dred sentences not included in the database were used as a
test set. The speech data were windowed at a frame rate of
160 points (5 ms) to extract their frequency spectra with 1025
STFT points. The linguistic features for the DNN-based acous-
tic model were composed of 396 dimensions. The logF0 and
voiced/unvoiced values were also used as input features of the
DNN-based acoustic model. Five-hidden-layer feed-forward
neural networks with a sigmoid based activation function were
used for the acoustic model.

In the synthesis phase, we used the logF0 and
voiced/unvoiced values predicted from a conventional vocoder-
based system [20] as input features. In this conventional system,
49-dimensional bark-cepstral coefficients (plus the 0th coeffi-
cient) obtained from WORLD spectra, logF0, 25-dimensional
band aperiodicity measures, their dynamic and acceleration co-
efficients, and voice/unvoiced values were modeled based on
a DNN. Phoneme durations were estimated by a HMM-based
speech synthesis system [21].

In the postfiltering phase, we divided the spectrogram into
four frequency bands. We set the parameters as (fs

1 , f
e
1 ) =

(1, 320), (fs
2 , f

e
2 ) = (257, 576), (fs

3 , f
e
3 ) = (513, 832), and

(fs
4 , f

e
4 ) = (769, 1024). We connected the bands with the

hamming-window function where the window width was 2vi =
128 (i = 1, 2, 3). Table 1 lists the network architectures for the
GAN-based postfilter. The symbol ↓ indicates down-sampling
with stride 2. The terms ReLU, LReLU, and BNorm denote rec-
tified linear unit [22], leaky rectified linear unit [23, 24], and
batch normalization [25], respectively. As the input of the G,
we used theF×T spectrograms and the same-sized noise where
F is the frequency length and T is the frame length. The F was
320 for the first, second, and third bands and 256 for the fourth
band. We designed the G as an FCN, so we could take inputs
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Figure 3: Comparison of (1) TTS synthesized, (2) GAN postfiltered, and (3) original STFT spectrograms 1
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Figure 4: Results from subjective listening test

of arbitrary T . In the D, we used a fully connected architec-
ture at the last layer, so we fixed the input size as F × Tc with
Tc = 64. During pre-processing, we normalized spectrograms
to zero-mean and unit-variance for each dimension using the
training sets. We trained our postfilter using the Adam opti-
mizer [26] with a minibatch of size 16. The learning rate was
set to 0.0002 for the D and 0.001 for the G, and the momentum
term was set to 0.5.

4.2. Objective evaluation

Figure 3 shows the comparison of the (1) TTS synthesized, (2)
GAN postfiltered, and original STFT spectrograms. From (a)
to (d), we show the spectrograms in the individual frequency
bands. These results indicate that the proposed GAN-based
postfilter can not only emphasize the harmonic structure but
also reproduce the detailed structures that are similar to those in
the original spectrograms from the over-smoothed synthesized
spectrograms. Figure 3(e) shows all spectrograms. Our post-
filter enables the individual frequency bands to be connected
smoothly.

4.3. Subjective evaluation

We conducted a listening test to compare a DNN-based TTS
system with the proposed GAN-based postfilter with another

1In synthesizing speech, the phoneme duration is predicted in our
acoustic model; therefore, it does not always match the original dura-
tion. This means the time duration of the original spectrograms does
not exactly match those of the TTS synthesized and GAN postfiltered
spectrograms. We manually adjusted them for ease of viewing in the
figure.

DNN-based TTS system without the postfilter. The listening
test that we used is a normal preferences test. The test was
conducted in acoustically isolated quiet booths, and 18 native
speakers of English participated in the test. They were pre-
sented pairs of synthetic speech with or without the proposed
postfilter in random order, and were asked to choose a sample
that had better audio quality per pair. Eight sentences randomly
chosen from 200 test sentences were read out.

The results of the preference test are shown in Figure 4.
The preference score of the DNN-based TTS system with the
proposed postfilter was better than that of the system without
the filter, and the difference was statistically significant accord-
ing to t-test (p<0.01). Hence, we can conclude that the pro-
posed GAN-based postfilter can improve the quality of syn-
thetic speech in STFT representations.

5. Conclusions
We proposed a learning-based postfilter to reconstruct the high-
fidelity spectral texture in STFT spectrograms. To achieve this,
we first divide the spectrograms into multiple frequency bands
with overlap, reconstruct the individual bands using the GAN-
based postfilter trained for each band, and concatenate the bands
using the window functions. In the experiments, we applied our
postfilter to a DNN-based TTS system. The objective evaluation
of the results showed that the proposed postfilter can reproduce
fine structures that are close to those of the true data without dis-
continuity. Moreover, the subjective evaluation showed that our
proposed postfilter significantly improves speech quality. For
future work, we plan to apply our proposed postfilter to other
tasks such as voice conversion and speech enhancement.
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