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Abstract
Non-parallel multi-domain voice conversion (VC) is a tech-
nique for learning mappings among multiple domains without
relying on parallel data. This is important but challenging owing
to the requirement of learning multiple mappings and the non-
availability of explicit supervision. Recently, StarGAN-VC has
garnered attention owing to its ability to solve this problem only
using a single generator. However, there is still a gap between
real and converted speech. To bridge this gap, we rethink con-
ditional methods of StarGAN-VC, which are key components
for achieving non-parallel multi-domain VC in a single model,
and propose an improved variant called StarGAN-VC2. Partic-
ularly, we rethink conditional methods in two aspects: training
objectives and network architectures. For the former, we pro-
pose a source-and-target conditional adversarial loss that allows
all source domain data to be convertible to the target domain
data. For the latter, we introduce a modulation-based condi-
tional method that can transform the modulation of the acoustic
feature in a domain-specific manner. We evaluated our meth-
ods on non-parallel multi-speaker VC. An objective evaluation
demonstrates that our proposed methods improve speech qual-
ity in terms of both global and local structure measures. Further-
more, a subjective evaluation shows that StarGAN-VC2 outper-
forms StarGAN-VC in terms of naturalness and speaker simi-
larity.1

Index Terms: voice conversion (VC), non-parallel VC,
multi-domain VC, generative adversarial networks (GANs),
StarGAN-VC

1. Introduction
Voice conversion (VC) is a technique for converting the
non/para-linguistic information between source and target
speech while preserving the linguistic information. VC has
been studied intensively owing to its high potential for various
applications, such as speaking aids and style/pronunciation con-
version.

One well-established approach to VC involves statistical
methods based on Gaussian mixture models (GMMs) [1, 2]
and neural networks (NNs) (including restricted Boltzmann
machines (RBMs) [3], feed forward NNs (FNNs) [4], recur-
rent NNs (RNNs) [5, 6], convolutional NNs (CNNs) [7], at-
tention networks [8, 9], and generative adversarial networks
(GANs) [7]). Many VC methods (including the above-
mentioned) are categorized as parallel VC, which learns a map-
ping using the training data of parallel utterance pairs. How-
ever, obtaining such data is often time-consuming or impracti-
cal. Moreover, even if such data are obtained, most VC meth-
ods rely on a time alignment procedure, which occasionally

1The converted speech samples are provided at http:
//www.kecl.ntt.co.jp/people/kaneko.takuhiro/
projects/stargan-vc2/index.html.

fails and requires other painstaking processes, i.e., careful pre-
screening or manual correction.

As a solution, non-parallel VC has begun to be studied.
Non-parallel VC, which is comparable to parallel VC, is gen-
erally quite challenging to achieve owing to its disadvantageous
training conditions. To mitigate this difficulty, several studies
have used additional data (e.g., parallel utterance pairs among
reference speakers [10, 11, 12, 13]) or extra modules (e.g., au-
tomatic speech recognition (ASR) modules [14, 15]). These ad-
ditional data and extra modules are useful for simplifying train-
ing but require other costs for preparation. To avoid such ad-
ditional costs, recent studies have introduced probabilistic deep
generative models, such as an RBM [16], variational autoen-
coders (VAEs) [17, 18]), and GANs [17, 19]. Among them,
CycleGAN-VC [19] (published [20] and further improved [21])
shows promising results by configuring CycleGAN [22, 23, 24]
with a gated CNN [25] and identity-mapping loss [26]. This
makes it possible to learn a sequence-based mapping func-
tion without relying on parallel data. With this improvement,
CycleGAN-VC performs comparably to parallel VC [2].

Along with non-parallel VC, another practically important
issue is non-parallel multi-domain VC, i.e., learning mappings
among multiple domains (e.g., multiple speakers) without rely-
ing on parallel data. This problem is challenging in terms of
scalability because typical VC methods (including CycleGAN-
VC) are designed to learn a one-to-one mapping; therefore, they
require the learning of multiple generators to achieve multi-
domain VC. For this problem, StarGAN-VC [27] provides a
promising solution by extending CycleGAN-VC to a condi-
tional setting and incorporating domain codes. Through this ex-
tension, StarGAN-VC makes it possible to achieve non-parallel
multi-domain VC by only using a single generator while main-
taining the advantage of CycleGAN-VC. The subjective evalu-
ation [27] demonstrates that StarGAN-VC outperforms another
state-of-the-art method, i.e., VAE/GAN-VC [17].

However, even using StarGAN-VC, there is still an in-
surmountable gap between real and converted speech. To
bridge this gap, we rethink conditional methods of StarGAN-
VC, which are key components for solving non-parallel multi-
domain VC using a single generator, and propose an improved
variant called StarGAN-VC2. In particular, we rethink condi-
tional methods in two aspects: training objectives and network
architectures. For the former, we propose a source-and-target
conditional adversarial loss, which encourages all source do-
main data to be converted into the target data. For the lat-
ter, we introduce a modulation-based conditional method that
can transform the modulation of acoustic features in a domain-
dependent manner. We examined the performance of the pro-
posed methods on the multi-speaker VC task using the Voice
Conversion Challenge 2018 (VCC 2018) dataset [28]. An ob-
jective evaluation demonstrates that the proposed methods ef-
fectively bring the converted acoustic feature sequence close to
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Figure 1: Comparison of conditional methods in training objec-
tives. “A” and “B” denote the domain codes and “A → B”
represents the data converted from “A” to “B.” Circle and tri-
angle markers denote real and fake data, respectively. (a) In
the classification loss, G prefers to generate classifiable (i.e.,
far from the decision boundary) data. (b) In the target condi-
tional adversarial loss, D needs to simultaneously handle hard
negative samples (e.g., conversion between the same speaker
A → A) and easy negative samples (e.g., conversion between
completely different speakers B → A). (c) The proposed
source-and-target conditional adversarial loss can bring all the
converted data close to the target data in both source-wise and
target-wise manners.

the target one in terms of both global and local structure mea-
sures. A subjective evaluation shows that StarGAN-VC2 out-
performs StarGAN-VC in terms of both naturalness and speaker
similarity.

In Section 2, we review the conventional StarGAN-VC. In
Section 3, we describe the proposed StarGAN-VC2. In Sec-
tion 4, we report the experimental results. We conclude in Sec-
tion 5 with a brief summary and mention of future work.

2. Conventional StarGAN-VC
2.1. Training objectives

The aim of StarGAN-VC is to obtain a single generator G that
learns mappings among multiple domains (e.g., multiple speak-
ers). To achieve this, StarGAN-VC extends CycleGAN-VC to
a conditional setting with a domain code (e.g., a speaker iden-
tifier). More precisely, StarGAN-VC learns a generator G that
converts an input acoustic feature x into an output feature x′

conditioned on the target domain code c′, i.e., G(x, c′) → x′.
Here, let x ∈ RQ×T be an acoustic feature sequence where Q
is the feature dimension and T is the sequence length, and let
c ∈ {1, . . . , N} be the corresponding domain code where N is
the number of domains. Inspired by StarGAN [29], which was
originally proposed in computer vision for multi-domain image-
to-image translation, StarGAN-VC solves this problem by us-
ing an adversarial loss [30], classification loss [31], and cycle-
consistency loss [32]. Additionally, inspired by CycleGAN-
VC [19], StarGAN-VC also uses an identity-mapping loss [26]
to preserve linguistic composition.

Adversarial loss: The adversarial loss is used to render the
converted feature indistinguishable from the real target feature:

Lt-adv = E(x,c)∼P (x,c)[logD(x, c)]

+ Ex∼P (x),c′∼P (c′)[log(1−D(G(x, c′), c′))], (1)

where D is a target conditional discriminator [33]. By maxi-
mizing this loss, D attempts to learn the best decision boundary
between the converted and real acoustic features conditioned on
the target domain codes (c and c′). In contrast, G attempts to
render the converted feature indistinguishable from real acous-
tic features conditioned on c′ by minimizing this loss.
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Figure 2: Comparison of conditional methods in generator net-
works. We consider the case when convolutional networks are
used. Such networks are commonly used in state-of-the-art VC
models (e.g., CycleGAN-VC [19]and StarGAN-VC [27]).

Classification loss: The aim of StarGAN-VC is to synthe-
size the acoustic feature that belongs to the target domain. To
achieve this, the classification loss is used. First, the classifier
C is trained for real acoustic features:

Lr
cls = E(x,c)∼P (x,c)[− logC(c|x)], (2)

where C attempts to classify a real acoustic feature x to the
corresponding domain c by minimizing this loss. Subsequently,
G is optimized for C:

Lf
cls = Ex∼P (x),c′∼P (c′)[− logC(c′|G(x, c′))], (3)

where G attempts to generate an acoustic feature that is classi-
fied to the target domain c′ by minimizing this loss.

Cycle-consistency loss: Although the adversarial loss and
classification loss encourage a converted acoustic feature to be-
come realistic and classifiable, respectively, they do not guar-
antee that the converted feature will preserve the input compo-
sition. To mitigate this problem, the cycle-consistency loss is
used:

Lcyc = E(x,c)∼P (x,c),c′∼P (c′)[‖x−G(G(x, c′), c)‖1]. (4)

This cyclic constraint encourages G to find out an optimal
source and target pair that does not compromise the composi-
tion.

Identity-mapping loss: To impose a further constraint on
the input preservation, the identity-mapping loss is used:

Lid = E(x,c)∼P (x,c)[‖G(x, c)− x‖]. (5)

Full objective: The full objective is written as

LD = − Lt-adv, (6)
LC = λclsLr

cls, (7)

LG = Lt-adv + λclsLf
cls + λcycLcyc + λidLid, (8)

where D, C, and G are optimized by minimizing LD , LC , and
LG, respectively.

2.2. Network architectures

Regarding the network architectures, this study focuses on the
conditional method in the generator. Hence, here we review
the StarGAN-VC generator network architecture. As shown in
Figure 2(a), StarGAN-VC incorporates conditional information
into the generator in a channel-wise manner, i.e., first creates
the one-hot vector indicating the domain code, subsequently
expands the one-hot vector to the feature map size, and finally
concatenates it to the feature map. Concatenated features are
convoluted together and propagated to the next layer.
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3. StarGAN-VC2
3.1. Rethinking conditional method in training objectives

We first rethink a conditional method in training objectives. As
described in Section 2.1, StarGAN-VC uses two conditional
methods to make the converted feature belonging to the target
domain: the classification loss (Equations 2 and 3) and the tar-
get conditional adversarial loss (Equation 1). We illustrate their
training strategies in Figure 1(a) and (b), respectively.

In the classification loss (Figure 1(a)), via Equation 2, the
decision boundary (black line) is learned among real-data do-
mains (e.g., between “Real A” and “Real B” in Figure 1(a)).
For this decision boundary, G attempts to generate easily “clas-
sifiable” data via Equation 3. This means that G prefers to gen-
erate data that are far from the decision boundary even when the
real data exist around the decision boundary. As discussed else-
where [31, 34, 35], this preventsG from covering the whole real
data distribution. In VC, this may result in a partial conversion.

Meanwhile, the target conditional adversarial loss (Fig-
ure 1(b)) encourages the generated data close to the real data
conditioned on the target domain code. As discussed in the pre-
vious study [34], this objective preventsG from leaning towards
generating only classifiable data. However, a possible difficulty
is that this loss needs to simultaneously handle diverse data,
including hard negative samples (e.g., conversion between the
same speakerA→ A in Figure 1(b)) and easy negative samples
(e.g, conversion between completely different speakersB → A
in Figure 1(b)). This unfair condition makes it difficult to bring
all the converted data close to real target data.

To solve this problem, we develop a source-and-target con-
ditional adversarial loss defined as

Lst-adv = E(x,c)∼P (x,c),c′∼P (c′)[logD(x, c′, c)]

+ E(x,c)∼P (x,c),c′∼P (c′)[logD(G(x, c, c′), c, c′)], (9)

where c′ ∼ P (c′) is randomly sampled independently of real
data. Differently from Equation 1, both G and D are condi-
tioned on the source code c′ in addition to the target code c.
We call such G and D a source-and-target conditional genera-
tor and discriminator, respectively. As shown in Figure 1(c), by
using both source and target domain codes as conditional infor-
mation, this loss encourages all the converted data to be close
to real data in both source-wise and target-wise manners. This
resolves the unfair training condition in the target conditional
adversarial loss (Figure 1(b)) and allows all the source domain
data to be converted into the target domain data.

One possible disadvantage of the source-and-target condi-
tional generator is that this requires the availability of the source
code in inference, which is not required in the conventional
StarGAN-VC. However, note that speaker recognition has been
actively studied, and this problem can be alleviated by using it
as a pre-process.

3.2. Rethinking conditional method in networks

As indicated by previous studies on VC postfilters (e.g., global
variance [2] and modulation spectrum [36] postfilters), accu-
rate modulation translation is important to achieve high-quality
VC. Particularly, to achieve multi-domain VC only using a sin-
gle generator, a framework must be incorporated that can con-
duct diverse domain-specific modulations effectively. For this
challenge, a channel-wise conditional method (Figure 2(a)) is
not effective because the concatenated conditional information
can be additively used in a convolutional procedure but cannot
be multicatively used to modulate features. To alleviate this

problem, we introduce a modulation-based conditional method,
which can directly modulate features in a domain-dependent
manner. In particular, we introduce a conditional instance nor-
malization (CIN) [37], which was originally proposed in com-
puter vision for style transfer. As shown in Figure 2(b), given
the feature f , CIN conducts the following procedure:

CIN(f ; c′) = γc′

(
f − µ(f)
σ(f)

)
+ βc′ , (10)

where µ(f) and σ(f) are the average and standard deviation
of f that are calculated over for each instance. γc′ and βc′ are
domain-specific scale and bias parameters that allow the mod-
ulation to be transformed in a domain-specific manner. These
parameters are learnable and optimized through training.

In the above, we explain the case when the generator is con-
ditioned on the target domain code c′. When using a source-
and-target conditional generator introduced in Equation 9, we
replace γc′ and βc′ with γc,c′ and βc,c′ , respectively, which are
selected depending on both the source c and target c′.

4. Experiments
4.1. Experimental conditions

Dataset: We evaluated our method on the multi-speaker VC
task using VCC 2018 [28], which contains recordings of profes-
sional US English speakers. Following the StarGAN-VC study
[27], we selected a subset of speakers as covering all inter- and
intra-gender conversions: VCC2SF1, VCC2SF2, VCC2SM1,
and VCC2SM2, where F and M indicate female and male
speakers, respectively. Thus, the number of domains N is set
to 4. Our goal is to learn 4 × 3 = 12 different source-and-
target mappings in a single model. Each speaker has sets of 81
and 35 sentences for training and evaluation, respectively. The
recordings were downsampled to 22.05 kHz for this challenge.
We extracted 34 Mel-cepstral coefficients (MCEPs), logarith-
mic fundamental frequency (logF0), and aperiodicities (APs)
every 5 ms by using the WORLD analyzer [41].

Conversion process: In these experiments, we focused on
analyzing the performance in MCEP conversion. Hence, we ap-
plied the proposed method only to MCEP conversion, and for
the other parts, we used typical methods, i.e., converted logF0

using logarithm Gaussian normalized transformation [42], di-
rectly used APs, and synthesized speech using the WORLD
vocoder [41]. To examine the pure effect of the proposed meth-
ods, we did not use any postfilter [43, 44, 45] or powerful
vocoder such as the WaveNet vocoder [46, 47]. Incorporating
them remains possible future work.

Implementation details: We designed the network archi-
tectures on the basis of CycleGAN-VC2 [21], i.e., we used a
2-1-2D CNN in G and a 2D CNN in D. We formulate D us-
ing the projection discriminator [34]. In the pre-experiment, we
found that skip connections in residual blocks [48] result in par-
tial conversion. Thus, we removed them inG. The details of the
network architectures are given in Figure 3. For a GAN objec-
tive, we used a least squares GAN [49]. We conducted speaker-
wise normalization for a pre-process. We trained the networks
using the Adam optimizer [50] with a batch size of 8, in which
we used a randomly cropped segment (128 frames) as one in-
stance. The number of iterations was set to 3 × 105, learning
rates for G and D were set to 0.0002 and 0.0001, respectively,
and the momentum term was set to 0.5. We set λcyc = 10,
λid = 5, and λcls = 1. We used Lid only for the first 104

iterations to stabilize the training at the beginning.
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Figure 3: Generator and discriminator architectures. In each layer, h, w, c, k, and s denote height, width, number of channels, kernel
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Table 1: Comparison of MCD and MSD among models using
different conditional methods in training objectives. We fix the
conditional method in G network as modulation-based.

Objective MCD [dB] MSD [dB]
Lcls 7.73 ± .07 1.96 ± .03
Lt-adv 7.21 ± .16 2.87 ± .51
Lt-adv + Lcls (StarGAN-VC) 7.11 ± .10 2.41 ± .13
Lst-adv (StarGAN-VC2) 6.90 ± .07 1.89 ± .03

Table 2: Comparison of MCD and MSD among models using
different conditional methods in G networks. We fix the condi-
tional method in the training objective as Lst-adv .

G network MCD [dB] MSD [dB]
Channel-wise (StarGAN-VC) 6.90 ± .08 2.55 ± .20
Modulation-based (StarGAN-VC2) 6.90 ± .07 1.89 ± .03

4.2. Objective evaluation
We conducted an objective evaluation to validate the advan-
tages of the proposed conditional methods over other condi-
tional methods. The same as the previous study [21], we used
two evaluation metrics for comprehensive analysis: the Mel-
cepstral distortion (MCD), which measures the global structural
differences by calculating the distance between the target and
converted MCEPs, and the modulation spectra distance (MSD),
which measures the local structural differences by computing
the distance between the target and converted logarithmic mod-
ulation spectra of MCEPs. For both metrics, a smaller value
indicates that the target and converted features are more similar.

We conducted comparative studies in two aspects: training
objectives and network architectures, which are listed in Tables
1 and 2, respectively. We have calculated the scores averaged
over three models trained with different initializations to elimi-
nate the effect of initialization. In Table 1, the proposed source-
and-target conditional loss Lst-adv outperforms the other losses
in terms of both the MCD and MSD. This indicates that the pro-
posed loss is useful for improving the feature quality in terms of
both the global and local structure measures. In Table 2, the pro-
posed modulation-based conditional method outperforms the
conventional channel-wise conditional method in terms of the
MSD. This indicates that the proposed architecture is particu-
larly useful for improving the local structure. Through these
experiments, we empirically confirm that the proposed condi-
tional methods in objectives and networks effectively bring the
converted acoustic feature sequence close to the target one.

4.3. Subjective evaluation
We conducted listening tests to analyze the performance com-
pared with StarGAN-VC [27], which is a state-of-the-art multi-
domain non-parallel VC. To measure naturalness, we conducted
a mean opinion score (MOS) test (5: excellent to 1: bad), in
which we included the analysis-synthesized speech (which is
the upper limit of the converted speech) as a reference (MOS:
4.2). For each model, we generated 36 sentences (4× 3 source-
target combinations × 3 sentences). We conducted an XAB
test to measure speaker similarity. Here, “X” was target speech
and “A” and “B” were speech converted by StarGAN-VC and
StarGAN-VC2, respectively. For each model, we generated 24

StarGAN-VC2

StarGAN-VC

All Intra-gender Inter-gender

M
O
S

Figure 4: MOS for naturalness with 95% confidence intervals

All

Intra-gender

Inter-gender

StarGAN-VC2

StarGAN-VC
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Figure 5: Average preference scores (%) on speaker similarity

sentences (4×3 source-target combinations× 2 sentences). To
eliminate bias in the order of stimuli, we presented all pairs in
both orders (AB and BA). For each sentence pair, the listeners
were asked to select their preferred one (“A” or “B”) or “Fair.”
12 well-educated English speakers participated in the tests.

Figures 4 and 5 show the MOS for naturalness and the pref-
erence scores for speaker similarity, respectively. We summa-
rized the results on the basis of three categories: all conversion,
inter-gender conversion, and intra-gender conversion. These re-
sults empirically demonstrate that StarGAN-VC2 outperforms
StarGAN-VC in terms of both naturalness and speaker similar-
ity for every category.

5. Conclusions
To advance the research on multi-domain non-parallel VC, we
have rethought conditional methods in StarGAN-VC in two as-
pects: training objectives and network architectures. We de-
veloped a source-and-target conditional adversarial loss for the
former and a modulation-based conditional method for the latter
and have proposed StarGAN-VC2 incorporating them. The em-
pirical studies on non-parallel multi-speaker VC demonstrate
that StarGAN-VC2 outperforms StarGAN-VC in both objec-
tive and subjective measures. StarGAN-VC2 is a general model
for multi-domain VC and is not limited to multi-speaker VC.
Adapting it to other tasks (e.g., multi-emotion VC and multi-
pronunciation VC) remains a promising future direction.
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