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ABSTRACT

In recent text-to-speech synthesis and voice conversion sys-
tems, a mel-spectrogram is commonly applied as an interme-
diate representation, and the necessity for a mel-spectrogram
vocoder is increasing. A mel-spectrogram vocoder must
solve three inverse problems: recovery of the original-scale
magnitude spectrogram, phase reconstruction, and frequency-
to-time conversion. A typical convolutional mel-spectrogram
vocoder solves these problems jointly and implicitly using
a convolutional neural network, including temporal upsam-
pling layers, when directly calculating a raw waveform. Such
an approach allows skipping redundant processes during
waveform synthesis (e.g., the direct reconstruction of high-
dimensional original-scale spectrograms). By contrast, the
approach solves all problems in a black box and cannot ef-
fectively employ the time-frequency structures existing in a
mel-spectrogram. We thus propose iSTFTNet, which replaces
some output-side layers of the mel-spectrogram vocoder with
the inverse short-time Fourier transform (iSTFT) after suffi-
ciently reducing the frequency dimension using upsampling
layers, reducing the computational cost from black-box mod-
eling and avoiding redundant estimations of high-dimensional
spectrograms. During our experiments, we applied our ideas
to three HiFi-GAN variants and made the models faster and
more lightweight with a reasonable speech quality.1

Index Terms— Waveform synthesis, mel-spectrogram
vocoder, convolutional neural network, inverse short-time
Fourier transform, generative adversarial networks

1. INTRODUCTION

Speech is a frequently used modality in communication, and
text-to-speech (TTS) synthesis and voice conversion (VC)
have been studied to eliminate human-human and human-
machine boundaries. In both TTS and VC, typical methods
use a two-stage approach: (1) The first model predicts the
target intermediate representation from the text or source in-
termediate representations. (2) The second step generates a
raw waveform from the predicted intermediate representation.
A mel-spectrogram is widely used as an intermediate repre-
sentation in recent TTS [1, 2, 3, 4, 5] and VC [6, 7, 8] systems
owing to its compactness and expressiveness. Consequently,
the demand for a mel-spectrogram vocoder is increasing.

1Audio samples are available at https://www.kecl.ntt.co.jp/
people/kaneko.takuhiro/projects/istftnet/.
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Fig. 1. Comparison of a standard convolutional mel-
spectrogram vocoder and iSTFTNet (ours). We propose re-
placing the output-side layers of the standard vocoder (a) with
iSTFT (b) when the number of frequency dimensions is suf-
ficiently small (e.g., herein, the FFT size is 16) compared to
the number of dimensions of the input mel-spectrogram (80).

A mel-spectrogram vocoder must solve the following
three inverse problems: recovery of the original-scale mag-
nitude spectrogram, phase reconstruction, and frequency-to-
time conversion. A typical convolutional mel-spectrogram
vocoder (e.g., a generative adversarial network (GAN [9])
based model [10, 11, 12]) solves these problems jointly and
implicitly using a convolutional neural network (CNN), in-
cluding temporal upsampling layers, when directly calculat-
ing a raw waveform from a mel-spectrogram. Such an ap-
proach allows omitting redundant processes during waveform
synthesis, e.g., the direct reconstruction of high-dimensional
original-scale spectrograms. However, this approach solves
all problems in a black box and cannot efficiently employ
time-frequency structures that exist in a mel-spectrogram.

We thus propose iSTFTNet, which replaces some output-
side layers of the convolutional mel-spectrogram vocoder
(Fig. 1(a)) with well-established signal processing, par-
ticularly an inverse short-time Fourier transform (iSTFT)
(Fig. 1(b)) when the number of frequency dimensions (FFT
size of 16, Fig. 1) is sufficiently small compared to the number
of dimensions of the input mel-spectrogram (80, Fig. 1). This
reduces the computational cost from black-box modeling
while avoiding redundant estimations of high-dimensional
original-scale spectrograms (FFT size of 1024, Fig. 1). Dur-
ing our experiments, we applied our ideas to three HiFi-
GAN variants [12] and made the models faster and more
lightweight with a reasonable speech quality.

The rest of this paper is organized as follows. In Section 2,
we discuss related studies. In Section 3, we review a typical
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convolutional mel-spectrogram vocoder and introduce iSTFT-
Net, which is a fast and lightweight variant. In Section 4, we
present the experiment results. In Section 5, we provide some
concluding remarks and areas of future research.

2. RELATED WORK

Neural vocoders have been studied in speech signal pro-
cessing and machine learning. The first breakthrough was
achieved using autoregressive models, including WaveNet [13]
and WaveRNN [14], which achieved an impressive quality but
slow inference speed owing to a sample-by-sample estima-
tion. Parallelizable non-autoregressive models have therefore
gained attention. For example, Parallel WaveNet [15] and
ClariNet [16] distill an autoregressive teacher model into a
non-autoregressive convolutional student model. WaveG-
low [17] eliminates the requirement for a teacher model by
incorporating Glow [18], composed of affine coupling layers
and a 1 × 1 invertible convolution. WaveGrad [19] and Dif-
fWave [20], based on diffusion probabilistic models [21, 22],
apply non-autoregressive CNNs for parallel computations.
A GAN [9]-based model [10, 11, 12, 23, 24, 25] achieves
parallelizable training and inference through noncausal con-
volutions. As described, CNNs with temporal upsampling
layers, shown in Fig. 1(a), have been commonly used in
recent mel-spectrogram vocoders. Thus, beyond the HiFi-
GANs [12] used in our experiments, our ideas are general
and can be applied to other models.

The use of iSTFT for neural speech synthesis was pre-
viously introduced [26, 27, 28] (including our own early at-
tempts [26]). As the main difference between the previous
models and iSTFTNet, the former requires a high-capacity
or high-computational model (e.g., 12 residual blocks with
2048 channels [28] and 2D CNNs [26, 27]) because they aim
to reconstruct the original-scale spectrograms without chang-
ing the time scale. By contrast, iSTFTNet employs a hybrid
approach in which iSTFT is applied after some upsampling
processes (Fig. 1(b)). This allows a reasonable performance
using a low-capacity model (e.g., 1D CNNs, commonly used
in typical GAN vocoders [10, 11, 12, 23, 24, 25]).

3. METHOD

3.1. Convolutional mel-spectrogram vocoder

As shown in Fig. 2, the mel-spectrogram is extracted from the
raw waveform as follows: (1) The magnitude and phase spec-
trograms are extracted from the raw waveform using a short-
time Fourier transform (STFT). (2) The phase spectrogram is
dropped. (3) The magnitude spectrogram is converted into a
mel-scale. Because a mel-spectrogram vocoder is aimed at an
inverse process, three inverse problems must be solved: (3’)
recovery of the original-scale magnitude spectrogram; (2’)
phase reconstruction; and (1’) frequency-to-time conversion.

A typical convolutional mel-spectrogram vocoder solves
these problems jointly and implicitly using a CNN, includ-
ing temporal upsampling layers, while directly calculating a
raw waveform from a mel-spectrogram. This approach al-
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Fig. 2. Processing flows of mel-spectrogram extraction (light
blue) and mel-spectrogram vocoder (pink)

lows redundant processes (e.g., the direct reconstruction of
high-dimensional original-scale magnitude and phase spec-
trograms) to be skipped during waveform synthesis. This al-
lows a convolutional mel-spectrogram vocoder to solve the
aforementioned problems with a low-capacity model. For ex-
ample, HiFi-GAN V2 [12] achieves a good performance us-
ing only 1D convolutions of channels smaller than 128, de-
spite being smaller than the original-scale spectrogram di-
mensions (i.e., 513, Fig. 2).

3.2. iSTFTNet: Fast and lightweight vocoder with iSTFT

Black-box modeling is useful for discovering potential short-
cuts. However, we cannot effectively employ the time-
frequency structures existing in the mel-spectrogram despite
providing a hint for solving inverse problems.

Thus, we propose iSTFTNet, which employs time and fre-
quency structures explicitly using iSTFT after sufficiently re-
ducing the frequency dimension using some upsampling lay-
ers, as shown in Fig. 3(b)–(d). Here, we utilize the character-
istics of STFT, that is, the trade-off between the time and fre-
quency resolution. More precisely, when the iSTFT required
after s× upsampling is represented as iSTFT(fs, hs, ws),
where fs, hs, and ws indicate the FFT size, hop length,
and window length, respectively; iSTFT(fs, hs, ws) can be
calculated using the parameters of iSTFT required for the
original-scale spectrogram, iSTFT(f1, h1, w1):

iSTFT(fs, hs, ws) = iSTFT
(
f1
s
,
h1
s
,
w1

s

)
, (1)

where we utilize the aforementioned STFT characteristic, that
is, f1 ·1 = fs ·s = constant. This equation means that we can
reduce the frequency dimensions by increasing s. As shown
in Fig. 3, we can simplify the structure in the frequency direc-
tion by increasing the number of upsamples. In Section 4.2,
we empirically found that simplification through more than
two upsamples (Fig. 3(c) or (d)) is essential for a faster and
more lightweight model to achieve a reasonable quality.

3.3. Implementation

iSTFTNets (Fig. 3(b)–(d)) have the mostly same network ar-
chitecture as the baseline (Fig. 3(e)). Hence, when a reliable
convolutional mel-spectrogram vocoder is obtained, it is easy
to incorporate the concept of iSTFTNet. However, three mi-
nor but essential modifications are required: (i) The output
channels of the final convolutional layer should be changed
from 1 to (fs/2 + 1) × 2 to generate magnitude and phase
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Fig. 3. Architectures of iSTFTNets (b)–(d) and a standard convolutional mel-spectrogram vocoder (e). The model is denoted
as Cx. . .(I), where Cx indicates the use of a residual block (ResBlock) [29] with an ×x upsampling layer and I indicates the
use of iSTFT. Here, the input 80-dimensional mel-spectrogram was extracted from a 22.05-kHz waveform using STFT with an
FFT size of 1024, hop length of 256, and window length of 1024.

spectrograms instead of a raw waveform. (ii) Exponential and
sine activation functions should be applied to the output of
(i) when calculating the magnitude and phase spectrograms,
respectively. (iii) A raw waveform should be generated from
the magnitude and phase spectrograms using iSTFT (Eq. (1)).
For (ii), we use an exponential activation function because the
required magnitude spectrogram uses a linear scale, whereas
the input mel-spectrogram uses a log scale, and we apply a
sine activation function to represent the periodic characteris-
tics of the phase spectrogram.

4. EXPERIMENTS

4.1. Experiment setup

Dataset. We used the LJSpeech dataset [30], consisting of
13,100 audio clips (24 h) of a female speaker. Here, 12,600,
250, and 250 utterances were used for the training, validation,
and evaluation, respectively. The audio clips were sampled at
22.05 kHz, and 80-dimensional log-mel spectrograms were
extracted with an FFT size of 1024, hop length of 256, and
window length of 1024.
Network architectures. We applied our ideas to three HiFi-
GAN variants [12] (high-quality (V1), light (V2), and care-
fully tuned (V3) variants). We implemented them based on an
open-source code2 for fair comparison with the various syn-
thesis speeches provided. As mentioned in Section 3.3, with
the exception of the three modifications described above, we
used the same architectures as the baselines.
Training settings. We trained the models using the HiFi-
GAN configuration provided in the open-source code2, the
parameters of which were tuned for stable training across var-
ious datasets. We trained the model for 2.5M iterations us-
ing the Adam optimizer [31] with an initial learning rate of
0.0002, and momentum terms β1 and β2 of 0.5 and 0.9, re-
spectively. For the loss function, we used a combination of
least squares GAN [32], mel-spectrogram [12], and feature
matching [33, 10] losses.

2https://github.com/kan-bayashi/ParallelWaveGAN

4.2. Evaluation

We conducted a mean opinion score (MOS) test to evalu-
ate the perceptual quality, randomly selecting 20 utterances
from the evaluation set and using the ground truth mel-
spectrograms of the utterances as the vocoder input. This test
was conducted online with 16 listeners. Audio samples are
available from the link1 presented on the first page. As an
objective metric, we used the conditional Fréchet wav2vec
distance (cFW2VD), which measures the distance between
real and generative distributions in a wav2vec 2.0 [34] feature
space conditioned on text information. This is conceptu-
ally similar to the Fréchet inception distance (FID) [35]
and Fréchet DeepSpeech distance (FDSD) [36], which mea-
sure the perceptual quality of images and speeches, respec-
tively. We used cFW2VD instead of conditional FDSD
(cFDSD) [36] to evaluate the raw waveform directly with-
out converting it into a power spectrogram, as required in
cFDSD. We found that MOS has a higher correlation with
cFW2VD than with cFDSD (Spearman’s rank correlation of
-0.93 and -0.83, respectively). In cFW2VD, the smaller the
value is, the better the perceptual quality. Table 1 shows the
results, along with the inference speed and model size. We
examined the approach from three perspectives.

(1) How many layers should be replaced with iSTFT? The
vocoder is improved by replacing its output-side layers with
a faster and more lightweight iSTFT. To determine the num-
ber of layers to be replaced, we investigated the performance
differences between the models shown in Fig. 3. The cor-
responding results are listed in Table 1 (Nos. 2–5, 7–10, and
12–14).3 As expected, the inference speeds up, and the model
size decreases with more replaced layers. For the MOS, we
found that C8I performs worse than the original in all cases;
however, C8C8I and C8C8C2I for V1 and V2 were compa-
rable to the original. For V3 only, the performance decreases
when C8C8I is used. This is because V3 is carefully tuned
to reduce the number of layers and loses its generality. How-

3C8C8C2I was not used for V3 because the network of V3 is C8C8C4
and does not have a fourth upsampling layer, differently from V1 and V2.
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Table 1. Comparison of MOS with 95% confidence intervals,
cFW2VD, inference speed, and model size. The inference
speed (relative speed compared to real time) using a GPU was
calculated on a single NVIDIA V100 GPU, and the speed us-
ing a CPU was computed on a MacBook Pro laptop (2.7-GHz
Intel Core i7). We report the average score over the utterances
in the evaluation set. The model identifier (e.g., C8C8I) is
shown in Fig. 3. The numbers in () indicate the rates (%)
compared with the baselines (V1, V2, or V3). The underlined
models are iSTFTNets (fast and lightweight models).

No. Model MOS↑ cFW2VD↓ Speed↑ Speed↑ # Param↓
(GPU) (CPU) (M)

1 Ground truth 4.46 ±0.14 – – – –

2 V1 (original) [12] 4.22 ±0.17 0.020 ×143.59 (100) ×1.34 (100) 13.94 (100)
3 V1-C8C8C2I 4.22 ±0.17 0.018 ×179.42 (125) ×1.63 (122) 13.80 ( 99)
4 V1-C8C8I 4.26 ±0.17 0.020 ×245.68 (171) ×2.33 (174) 13.26 ( 95)
5 V1-C8I 3.32 ±0.22 0.073 ×609.43 (424) ×7.57 (565) 10.89 ( 78)
6 V1-C8C1I 3.82 ±0.17 0.033 ×326.39 (227) ×3.97 (296) 19.15 (137)

7 V2 (original) [12] 3.91 ±0.17 0.046 ×624.47 (100) ×10.39 (100) 0.93 (100)
8 V2-C8C8C2I 3.98 ±0.17 0.038 ×732.96 (117) ×13.34 (128) 0.92 ( 99)
9 V2-C8C8I 3.95 ±0.16 0.042 ×1025.46 (164) ×20.37 (196) 0.89 ( 96)

10 V2-C8I 3.21 ±0.20 0.096 ×1720.91 (276) ×68.05 (655) 0.78 ( 84)
11 V2-C8C1I 3.44 ±0.20 0.071 ×1081.37 (173) ×39.14 (377) 1.30 (140)

12 V3 (original) [12] 3.78 ±0.16 0.052 ×933.06 (100) ×10.40 (100) 1.46 (100)
13 V3-C8C8I 3.41 ±0.19 0.055 ×1517.70 (163) ×21.48 (206) 1.42 ( 97)
14 V3-C8I 2.89 ±0.17 0.156 ×2481.87 (266) ×66.83 (642) 1.28 ( 87)
15 V3-C8C1I 2.82 ±0.21 0.116 ×1925.15 (206) ×41.16 (396) 1.77 (121)

16 MB-MelGAN [24] 3.54 ±0.21 0.078 ×1070.95 ×17.95 2.54
17 PWG [11] 3.47 ±0.21 0.066 ×79.71 ×0.70 1.35

ever, note that despite the performance decrease, V3-C8C8I
is still comparable with Parallel WaveGAN (PWG) [11] (Ta-
ble 1 (No. 17)), while improving the inference speed.
(2) Necessity of combining upsampling and iSTFT. The
numbers of both the upsampling layers and residual blocks
differ between C8I and C8C8I, as shown in Fig. 3(b) and
(c). To solve this problem, we examined the performance of
C8C1I4 which applies one upsampling but uses two residual
blocks, similar to C8C8I. The corresponding results are pre-
sented in Table 1 (Nos. 6, 11, and 15). We found that C8C1I
is still worse than C8C8I, indicating that reducing the fre-
quency dimension using upsampling is essential for obtaining
a reasonable quality when applying iSTFT without significant
changes to the network architecture.5

(3) Comparison with fastest baseline. One of the fastest
GAN vocoders is multi-band (MB) MelGAN [24], which in-
creases the speed of MelGAN [10] by changing the synthesis
target from a full-band signal to lower-resolution sub-band
signals [37]. To examine the validity of this speed, we com-
pared our models with MB-MelGAN. The corresponding
results are presented in Table 1 (No. 16). Here, V2-C8C8I
outperformed MB-MelGAN for MOS, reducing the model
size and achieving a comparable speed. Note that the multi-
band formulation and iSTFT are orthogonal and compatible,
and iSTFT can be incorporated into MB-MelGAN using

4The model size of C8C1I is larger than that of C8C8I because in the
latter, the channels are halved in the second ResBlock after upsampling,
whereas in the former, this is not conducted owing to the absence of up-
sampling.

5We also examined non-upsampling models (particularly, C1I (Fig. 3(a))
and C1C1I). Finding that they suffer from training difficulties with a signif-
icantly lower speech quality, we omitted them from the experiments.

Table 2. Comparison of MOS with 95% confidence intervals
and cFW2VD for TTS synthesis

No. Model MOS↑ cFW2VD↓
1 Ground truth 4.32 ±0.10 –

2 Conformer-FS2 + V1 4.09 ±0.12 0.216
3 Conformer-FS2 + V1-C8C8I 4.25 ±0.11 0.214

4 Conformer-FS2 [38] 3.66 ±0.15 0.242

iSTFT
(

f1
sb ,

h1

sb ,
w1

sb

)
, where b is the number of sub-bands.

This approach remains for future research.6

4.3. Application to text-to-speech synthesis

Next, we examine the effectiveness of our approach when
applied to TTS synthesis, focusing on the difference in
performance between V1 and V1-C8C8I when combined
with Conformer-FS2 [38] (a combination of Conformer [39]
and FastSpeech 2 (FS2) [5]). Following [12], which shows
the utility of fine-tuning on HiFi-GAN, we fine-tuned the
combined models for 300k iterations in an end-to-end man-
ner after training each model. We applied an open-source
code [40]7 for fair comparison with other speech samples
provided. We conducted a MOS test to evaluate the percep-
tual quality by randomly selecting 20 utterances from the
evaluation set. This test was conducted online with 12 listen-
ers. Audio samples are available from the link1 presented on
the first page.

Table 2 summarizes the results. We found that V1-C8C8I
not only achieves a comparable or better performance than V1
and Conformer-FS2, but also is comparable with the ground
truth. These results indicate that iSTFTNet does not compro-
mise the speech quality, even for TTS synthesis.

5. CONCLUSION

To employ time-frequency structures in a mel-spectrogram
while avoiding redundant estimations of high-dimensional
original-scale spectrograms, we propose iSTFTNet, replacing
the output-side layers of a convolutional mel-spectrogram
vocoder with iSTFT after reducing the frequency dimension
using upsampling layers. The experiment results demonstrate
that we can make the models faster and more lightweight
using iSTFT, and that upsampling processes are essential for
obtaining a reasonable quality. As discussed in Section 2,
CNNs with upsampling layers are used by various vocoders
beyond GAN-based versions. Hence, applying our idea to
such vocoders will be interesting. We also concurrently in-
vestigate the utility of the inverse fast Fourier transform for a
recurrent neural vocoder, and plan to examine the difference
in performance in future studies to further validate the utility
of the inverse Fourier transform.
Acknowledgements. This work was partially supported by
JST CREST Grant Number JPMJCR19A3, Japan.

6As another difference between iSTFTNet and MB-MelGAN, MB-
MelGAN requires an additional sub-band STFT loss for stable training,
whereas iSTFTNet does not.

7https://github.com/espnet/espnet
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