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Abstract
Neural vocoders have recently become popular in text-to-
speech synthesis and voice conversion, increasing the demand
for efficient neural vocoders. One successful approach is HiFi-
GAN, which archives high-fidelity audio synthesis using a rel-
atively small model. This characteristic is obtained using a
generator incorporating multi-receptive field fusion (MRF) with
multiple branches of residual blocks, allowing the expansion of
the description capacity with few-channel convolutions. How-
ever, MRF requires the model size to increase with the number
of branches. Alternatively, we propose a network called MISR-
Net, which incorporates a novel module called multi-input sin-
gle shared residual block (MISR). MISR enlarges the descrip-
tion capacity by enriching the input variation using lightweight
convolutions with a kernel size of 1 and, alternatively, reduces
the variation of residual blocks from multiple to single. Because
the model size of the input convolutions is significantly smaller
than that of the residual blocks, MISR reduces the model size
compared with that of MRF. Furthermore, we introduce an im-
plementation technique for MISR, where we accelerate the pro-
cessing speed by adopting tensor reshaping. We experimen-
tally applied our ideas to lightweight variants of HiFi-GAN and
iSTFTNet, making the models more lightweight with compara-
ble speech quality and without compromising speed.1

Index Terms: waveform synthesis, neural vocoder,
lightweight, weight sharing, generative adversarial networks

1. Introduction
Speech is essential for human-human and human-machine in-
teractions. Text-to-speech (TTS) synthesis and voice conver-
sion (VC) have been investigated to eliminate these boundaries.
In typical TTS [1, 2, 3, 4] and VC [5, 6, 7, 8] systems, a two-
stage approach is used. (1) The first model predicts the target in-
termediate representation (e.g., mel spectrogram) from the text
or source intermediate representation. (2) The second model
synthesizes a waveform from a predicted intermediate repre-
sentation. Neural vocoders handle the second step. To widen
their applications, there is an increasing demand for efficient
neural vocoders that can be incorporated into various devices
and conditions.

The first breakthrough in neural vocoder studies was
brought about by autoregressive models (e.g., WaveNet [9]
and WaveRNN [10]), which achieve high-quality audio syn-
thesis but slow inference because of their frame-by-frame es-
timation. To improve inference speed, parallelizable non-
autoregressive models have been considered. For instance, Par-
allel WaveNet [11] and ClariNet [12] distill an autoregressive
teacher model into a non-autoregressive student model. To ex-

1Audio samples are available at https://www.kecl.ntt.co.
jp/people/kaneko.takuhiro/projects/misrnet/.
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Figure 1: Comparison between multi-receptive field fusion
(MRF) [22] and the proposed multi-input single shared residual
block (MISR).

clude the requirement for a teacher model, WaveGlow [13] in-
corporates Glow [14], which includes affine coupling layers and
1×1 invertible convolutions. WaveGrad [15] and DiffWave [16]
adopt diffusion probabilistic models [17, 18] in which a wave-
form is created from white noise iteratively using a gradient-
based sampler.

Another common approach is the generative adversarial
network (GAN [19])-based model, which can train a non-
autoregressive model without a teacher model. This approach
has architectural flexibility and various variants (e.g., [20, 21,
22, 23, 24, 25, 26]) have been proposed. One successful ap-
proach is HiFi-GAN [22], which achieves high-fidelity speech
synthesis using a relatively small model. Specifically, HiFi-
GAN V2 (a lightweight variant) with approximately 0.9M pa-
rameters has better speech quality than MelGAN [20] with
4.3M parameters and WaveNet [9, 11] with 24.7M parameters.
This advantage can be attributed to the incorporation of multi-
receptive field fusion (MRF) into the generator. As shown in
Figure 1(a), MRF has multiple branches of residual blocks [27],
which allows the expansion of the description capacity with
few-channel convolutions. However, in exchange for an in-
crease in descriptive power, MRF requires the model size to
increase with the number of branches.

As an alternative, we propose a network called MISRNet,
which incorporates a novel module called multi-input single
shared residual block (MISR). As shown in Figure 1(b), MISR
increases the description capacity by enriching the input varia-
tion using lightweight convolutions with a kernel size of 1 and,
alternatively, reduces the variation of residual blocks from mul-
tiple to single. Because the model size of the input convolutions
is significantly smaller than that of the residual blocks, MISR
reduces the model size compared with that of MRF.

When implementing MISR naively, its processing speed is
slower than that of MRF because input and output convolutions
are additionally used, whereas the number of branches of the
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residual blocks applied in the process remains the same. To
improve inference speed, we apply tensor reshaping before ap-
plying residual blocks and arrange each branch of the resid-
ual blocks in a batch dimension. Then, we can simultaneously
adopt residual blocks with a typical fast batchwise operation.

We experimentally applied our concepts to lightweight vari-
ants of HiFi-GAN [22] and iSTFTNet [26], making them lighter
with comparable speech quality and without compromising
speed. We also show that MISRNets achieve better speech qual-
ity than networks with other lightweight modules (i.e., depth-
wise separable convolution (DSC) [28, 29, 30, 31]).

The rest of this paper is organized as follows. In Section 2,
we first review the previous MRF and introduce the proposed
MISR. Subsequently, we present an implementation technique
for accelerating MISR. In Section 3, we present the experimen-
tal results. In Section 4, we present our concluding remarks and
areas for future research.

2. Method
2.1. Previous: Multi-receptive field fusion

First, we explain MRF [22], a state-of-the-art efficient mod-
ule used in HiFi-GAN. MRF has multiple branches of residual
blocks, each using different kernel sizes to represent various re-
ceptive field patterns. After the branches of the residual blocks
are processed in parallel, their outputs are integrated via sum-
mation. This parallel representation using multiple branches is a
crucial factor in high-fidelity speech synthesis with few-channel
convolutions. Specifically, HiFi-GAN V2 (a lightweight vari-
ant) achieves high speech quality with 128 channels in the first
block, which is significantly smaller than that of other models
with a similar upsampling scheme (e.g., 512 in MelGAN [20]).

As an example, we present the detailed MRF network ar-
chitecture in Figure 2(a). In this network, the kernel sizes were
set to 3, 7, and 11 in the left, center, and right branches, respec-
tively. The dilation rates were set to 1, 3, and 5 in the first layer
of the first, second, and third blocks, respectively. The number
of parameters2 is calculated as follows: Cin × Cout × k ×D =
C×C×(3+7+11)×6 = 126C2, whereCin,Cout, k, andD de-
note the number of input channels, number of output channels,
kernel size, and number of layers, respectively. Specifically, C
was set to 128 in HiFi-GAN V2.

2.2. Proposal: Multi-input single shared residual block

MRF enlarges the description capacity by increasing the num-
ber of branches of the residual blocks. However, this increases
the model size. Therefore, as an alternative, we developed
MISR, which is lighter than MRF. MISR expands the descrip-
tion capacity by increasing the input variation using lightweight
convolutions with a kernel size of 1. Alternatively, MISR re-
duces the variation in residual blocks from multiple to single
and uses shared-weight residual blocks among the branches.
To compensate for this simplification, the outputs of the resid-
ual blocks are integrated by applying lightweight convolutions
with a kernel size of 1 as opposed to summation. We discuss
the effects of this replacement in Section 3.2. Because the
model sizes of the input and output convolutions are signifi-
cantly smaller than those of the residual blocks, MISR reduces
the model size compared with that of MRF.

As an example, we provide the detailed network architec-
ture of MISR in Figure 2(b). To ensure that the maximum size

2For simplicity, we ignore the parameters for the bias term.
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Figure 2: Network architectures of MRF and MISR. For sim-
plicity, we only present convolution layers with “kx, dy,” where
x and y indicate the kernel size and dilation rate, respectively.

of the receptive field is the same as that of MRF, MISR uses
convolutions with a kernel size of 11, which are the same as
those in the right branch of MRF. The number of parameters2

is calculated as C × 3C × 1 × 1 + C × C × 11 × 6 + 3C ×
C × 1 × 1 = 72C2, where the first, second, and third terms
represent the numbers of parameters in the input convolutions,
residual blocks, and output convolutions, respectively. As dis-
cussed in Section 2.1, the number of MRF parameters is 126C2;
therefore, MISR can reduce the model size by 43%.

2.3. Implementation technique for accelerating MISR

Naive implementation (Algorithm 1). When implementing
MISR naively, its processing speed is slower than that of MRF
because input and output convolutions are additionally used,
whereas the number of branches of the residual blocks applied
in the process remains the same (e.g., three in Figure 2). We
provide the pseudocode for the naive implementation of MISR
in Algorithm 1. Here, the shape of the tensor (e.g., (N,C,L))
is presented following the triangular mark (.), where N , C,
L, and b indicate the batch size, number of channels, sequence
length, and number of branches, respectively. As described in
line 4, the residual blocks are applied b times using the for loop
in the naive implementation. This increased computation is a
defect in the naive implementation of MISR.

Fast implementation (Algorithm 2). In MISR, the type of
residual blocks is unified into a single type. In this case, the
processing speed can be improved by applying a typical fast
batchwise operation after arranging each branch in a batch di-
mension. The pseudocode for the fast implementation of MISR
is provided in Algorithm 2. We perform tensor reshaping be-
fore applying the residual blocks and move the element regard-
ing the branches (b) from the channel (second) dimension to the
batch (first) dimension (line 2). By conducting this process, we
can simultaneously apply residual blocks to all branches using
a typical fast batchwise operation (line 3).

The difference in inference speed between the naive and
fast implementations of MISR is listed in Table 1. Herein,
we report the results of incorporating MISR into HiFi-GAN
V2 [22] and iSTFTNet V2-C8C8I [26]. The results indicate
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Algorithm 1 Naive implementation of MISR

Input: fin . (N,C,L)

Output: fout . (N,C,L)

1: f1 ← Convin(fin) . (N, bC, L) // Channel expansion
2: [f1

2 , . . . , f
b
2 ]← Split(f1) . (N,C,L) // Channel split

3: for i = 1 to b do
4: f i

3 ← ResBlocks(f i
2) . (N,C,L) // Used b times

5: end for
6: f4←Concat([f1

3 , . . . , f
b
3 ]) . (N, bC, L) // Channel concatenation

7: fout ← Convout(f4) . (N,C,L) // Channel reduction

Algorithm 2 Fast implementation of MISR

Input: fin . (N,C,L)

Output: fout . (N,C,L)

1: f1 ← Convin(fin) . (N, bC, L) // Channel expansion
2: f2 ← Reshape(f1) . (Nb,C, L) // Channel to batch
3: f3 ← ResBlocks(f2) . (Nb,C, L) // Used once
4: f4 ← Reshape(f3) . (N, bC, L) // Batch to channel
5: fout ← Convout(f4) . (N,C,L) // Channel reduction

that the fast implementation technique is valuable for acceler-
ating MISR. Based on these results, we report the results with
a fast implementation in subsequent experiments. The experi-
mental setup is described in detail in the following section.

3. Experiments
3.1. Experiment setup

Dataset. To investigate the effectiveness of MISRNets, we con-
ducted experiments using the LJSpeech dataset [32], which in-
cludes 13,100 audio clips (24 h) of an English female speaker,
and 12,600, 250, and 250 audio clips were used for the train-
ing, validation, and evaluation, respectively. The audio clips
were sampled at 22.05 kHz, and 80-dimensional log-mel spec-
trograms were extracted from the audio clips with an FFT size
of 1024, hop length of 256, and window length of 1024.
Network architectures. We applied our ideas to two
lightweight neural vocoders: HiFi-GAN V2 [22] and iSTFT-
Net V2-C8C8I [26]. iSTFTNet V2-C8C8I is a faster and
more lightweight variant of HiFi-GAN V2, in which the two
output-side residual blocks of the HiFi-GAN V2 generator are
replaced with the inverse short-time Fourier transform (iSTFT).
We implemented MISRNets by replacing the MRF (Figure 2(a))
in HiFi-GAN V2 and iSTFTNet V2-C8C8I with MISR (Fig-
ure 2(b)). For simplicity, we hereafter denote HiFi-GAN V2
and iSTFTNet V2-C8C8I as HiFi and iSTFT, and their MISR-
Net variants as HiFi-MISR and iSTFT-MISR, respectively. All
models were implemented based on open-source code3 for easy
comparison with the various synthesis speeches provided.
Training settings. We trained the models using the HiFi-GAN
configurations provided in the open-source code,3 where the
hyperparameters were tuned for stable training across various
datasets. Specifically, we trained the models for 2.5M iterations
using the Adam optimizer [33] with a batch size of 16, initial
learning rate of 0.0002, and momentum terms β1 and β2 of 0.5
and 0.9, respectively. For the loss function, we combined least-
squares GAN [34], mel-spectrogram [22], and feature-matching
[35, 20] losses.

3https://github.com/kan-bayashi/
ParallelWaveGAN

Table 1: Comparison of inference speed between naive and fast
implementations of MISR when incorporated into HiFi-GAN V2
and iSTFTNet V2-C8C8I. We report the relative speed com-
pared to the real-time audio playing speed when a 1 s audio is
processed. The larger the value, the higher the speed.

Model Speed↑ (GPU) Speed↑ (CPU)

HiFi-GAN w/ naive MISR ×116.06 ×22.15
HiFi-GAN w/ fast MISR ×220.63 ×24.87

iSTFTNet w/ naive MISR ×190.64 ×37.56
iSTFTNet w/ fast MISR ×358.28 ×44.09

Evaluation metrics. We conducted a mean opinion score
(MOS) test to evaluate perceptual quality. We randomly se-
lected 20 utterances from the evaluation set and used the mel
spectrograms extracted from them as vocoder input. The test
was conducted online, and 14 listeners participated. The listen-
ers were asked to judge speech quality using five options: 1 =
bad, 2 = poor, 3 = fair, 4 = good, and 5 = excellent. Audio sam-
ples are available from the link presented on the first page.1 As
an objective metric for perceptual quality, we used the condi-
tional Fréchet wav2vec distance (cFW2VD) [26], which calcu-
lates the distance between real and generative distributions in a
wav2vec 2.0 [36] feature space conditioned on text. This metric
is conceptually similar to Fréchet inception distance (FID) [37]
and Fréchet DeepSpeech distance (FDSD) [38], which assess
the perceptual quality of images and speech, respectively. We
used cFW2VD because it is highly correlated with MOS (Spear-
man’s rank correlation of −0.93) [26]. The smaller the value,
the better was the perceptual quality. For the inference speed,
we measured the relative speed compared to the real-time audio
playing speed when a 1 s audio was processed. The speed on
the GPU was computed on a single NVIDIA P100 GPU, and
that on the CPU was measured on a MacBook Pro with a 2.7
GHz Intel Core i7. The larger the value, the higher was the
speed. For model size, we report the number of parameters.
The smaller the value, the more lightweight was the model.

3.2. Results

We examined the proposed model from four perspectives.

(1) Comparison between MRF and MISR. First, we exam-
ined the effect of replacing MRF with MISR. Table 2 summa-
rizes the results. We found that HiFi-MISR/iSTFT-MISR was
comparable to the original HiFi/iSTFT in terms of speech qual-
ity (MOS and cFW2VD), whereas the former significantly re-
duced the model size compared with the latter. For inference
speed, HiFi-MISR/iSTFT-MISR was comparable to HiFi/iSTFT
on the CPU, whereas the former outperformed the latter on
the GPU. The GPU inference speed of HiFi-MISR/iSTFT-MISR
with a naive implementation (Table 1) was comparable to that
of HiFi/iSTFT (Table 2). These results indicate that GPU infer-
ence speed was improved by the fast implementation of MISR
(Algorithm 2).

(2) Importance of multi-input. In a study of MRF [22], it was
shown that MRF outperformed a single-receptive field model.
To confirm the validity of this result for MISR, we investigated
the difference in performance between MISR and a single-input
single residual block (SISR), where the three branches in MISR
(Figure 2(b)) are reduced to a single branch. The results are
listed in Table 3. We found that HiFi-SISR/iSTFT-SISR can im-
prove the inference speed by reducing the number of branches;
however, the speech quality deteriorated in terms of MOS and
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Table 2: Comparison of MOS with 95% confidence intervals,
cFW2VD, inference speed, and number of parameters between
HiFiGAN/iSTFTNet with MRF and that with MISR. The under-
lined models are MISRNets (lightweight models).

Model MOS↑ cFW2VD↓ Speed↑ Speed↑ # Param↓
(GPU) (CPU) (M)

Ground truth 4.76 ±0.06 – – – –

HiFi 4.09 ±0.10 0.046 ×125.27 ×26.31 0.93
HiFi-MISR 4.07 ±0.10 0.047 ×220.63 ×24.87 0.63

iSTFT 4.17 ±0.09 0.042 ×192.56 ×45.92 0.89
iSTFT-MISR 4.16 ±0.09 0.046 ×358.28 ×44.09 0.61

cFW2VD. The results indicate that MISR is more appropriate
than SISR for obtaining a lightweight model while retaining the
speech quality.

Table 3: Comparison of MOS with 95% confidence intervals,
cFW2VD, inference speed, and number of parameters between
multi-input (MISR) and single-input (SISR) models.

Model MOS↑ cFW2VD↓ Speed↑ Speed↑ # Param↓
(GPU) (CPU) (M)

HiFi-MISR 4.07 ±0.10 0.047 ×220.63 ×24.87 0.63
HiFi-SISR 3.91 ±0.11 0.069 ×262.19 ×59.05 0.61

iSTFT-MISR 4.16 ±0.09 0.046 ×358.28 ×44.09 0.61
iSTFT-SISR 3.73 ±0.11 0.071 ×368.91 ×90.22 0.59

(3) Importance of output convolutions. As discussed in Sec-
tion 2.2, MISR integrates the outputs of the residual blocks us-
ing convolutions instead of summation to compensate for the
simplification of the variation in the residual blocks. To confirm
the importance of this replacement, we examined the difference
in performance between MISR and MISR without output con-
volutions (summation was alternatively used). We denote this
model as MISR†. Table 4 summarizes the results. We found that
the improvement in inference speed and model size by replacing
MISR with MISR† was subtle because the output convolutions
with a kernel size of 1 are lightweight and fast. For speech qual-
ity (MOS and cFW2VD), HiFi-MISR†/iSTFT-MISR† performed
more poorly than HiFi-MISR/iSTFT-MISR. These results verify
the importance of using output convolutions in MISR.

Table 4: Comparison of MOS with 95% confidence intervals,
cFW2VD, inference speed, and number of parameters between
MISR and MISR without output convolutions (MISR†).

Model MOS↑ cFW2VD↓ Speed↑ Speed↑ # Param↓
(GPU) (CPU) (M)

HiFi-MISR 4.07 ±0.10 0.047 ×220.63 ×24.87 0.63
HiFi-MISR† 3.97 ±0.10 0.064 ×233.10 ×25.08 0.62

iSTFT-MISR 4.16 ±0.09 0.046 ×358.28 ×44.09 0.61
iSTFT-MISR† 4.07 ±0.10 0.062 ×371.07 ×44.73 0.60

(4) Comparison with other lightweight modules. We must
determine whether MISR is reasonable for reducing model size.
Thus, we investigated the difference in performance between
MISR and depthwise separable convolution (DSC) [28, 29, 30,
31], which is a commonly used module for model size reduc-
tion. For a fair comparison, we adjusted the parameters of DSC
(more concretely, the depth multiplier) such that its model size
was comparable to that of MISR. Table 5 presents the results.
We found that HiFi-DSC/iSTFT-DSC can reduce the model

size, similar to HiFi-MISR/iSTFT-MISR, but cannot improve the
GPU inference speed compared with HiFi/iSTFT (Table 2), in
contrast to HiFi-MISR/iSTFT-MISR. Note that we implemented
the models in PyTorch [39], and there is scope for improvement
by applying further optimization. Regarding speech quality
(MOS and cFW2VD), HiFi-DSC/iSTFT-DSC performed more
poorly than HiFi-MISR/iSTFT-MISR. Therefore, MISR is more
appropriate for reducing the model size while retaining speech
quality. Notably, MISR and DSC are compatible and can be
used together for further model size reduction, which will be
the subject of future research.

Table 5: Comparison of MOS with 95% confidence intervals,
cFW2VD, inference speed, and number of parameters between
lightweight modules (i.e., MISR and DSC).

Model MOS↑ cFW2VD↓ Speed↑ Speed↑ # Param↓
(GPU) (CPU) (M)

HiFi-MISR 4.07 ±0.10 0.047 ×220.63 ×24.87 0.63
HiFi-DSC 3.52 ±0.12 0.061 ×95.29 ×24.58 0.59

iSTFT-MISR 4.16 ±0.09 0.046 ×358.28 ×44.09 0.61
iSTFT-DSC 3.86 ±0.11 0.061 ×179.54 ×45.54 0.56

3.3. Application to multi-speaker and Japanese datasets

To examine the generality of MISRNet, we examined its per-
formance when applied to multi-speaker and Japanese datasets.
As a multi-speaker dataset, we used the VCTK dataset [40],
with 44,200 audio clips (44 h) of 109 English speakers. For
the Japanese dataset, we used the JSUT dataset [41], which in-
cludes 7,696 audio clips (10 h) from a Japanese female speaker.
We implemented the models based on open-source code.3 We
provide cFW2VD in Table 6. We found that HiFi-MISR/iSTFT-
MISR was comparable to HiFi/iSTFT in terms of cFW2VD
on these datasets. The results do not contradict those in Sec-
tion 3.2. We have provided audio samples on the website pre-
sented on the first page.1

Table 6: Comparison of cFW2VD between HiFiGAN/iSTFTNet
with MRF and that with MISR on the VCTK and JSUT datasets.

Model cFW2VD↓ on VCTK cFW2VD↓ on JSUT

HiFi 0.065 0.065
HiFi-MISR 0.070 0.065

iSTFT 0.067 0.070
iSTFT-MISR 0.070 0.069

4. Conclusion
We developed MISRNet to make two lightweight neural
vocoders (i.e., HiFi-GAN and iSTFTNet) further lightweight
while retaining speech quality. Furthermore, we introduced a
fast implementation of MISR to accelerate inference speed. The
experimental results demonstrated that the presented techniques
are essential and sufficient for achieving these objectives. Al-
though this study focused on HiFi-GAN, MISR is a general con-
cept that can be applied to various models beyond HiFi-GAN;
this remains the subject of future research.
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