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Abstract—Canonical correlation analysis (CCA) is a powerful
tool for analyzing multi-dimensional paired data. However, CCA
tends to perform poorly when the number of paired samples is
limited, which is often the case in practice. To cope with this
problem, we propose a semi-supervised variant of CCA named
“SemiCCA” that allows us to incorporate additional unpaired
samples for mitigating overfittng. The proposed method smoothly
bridges the eigenvalue problems of CCA and principal component
analysis (PCA), and thus its solution can be computed efficiently
just by solving a single (generalized) eigenvalue problem as the
original CCA. Preliminary experiments with artificially generated
samples and PASCAL VOC data sets demonstrate the effective-
ness of the proposed method.

Index Terms—Canonical correlation analysis, semi-supervised
learning, generalized eigenproblem, automatic image annotation

I. INTRODUCTION

Analyzing high-dimensional co-occurring data (x, y) is an
important challenge in machine learning and pattern recog-
nition communities, e.g., in the context of automatic audio
tagging [1] and image annotation retrieval1 [2]. Canonical
correlation analysis (CCA) [3] is a classical but still powerful
method for analyzing multivariate paired samples. CCA finds
projection directions wx and wy so that correlation between
projected samples w�

x x and w�
y y is maximized.

However, the performance of CCA tends to be degraded
when the number of paired samples (x, y) is limited, where
we often encounter in various real-world applications. Even
in such cases, a large number of additional unpaired samples
(i.e., x-only samples and y-only samples) are often available.
To utilize such additional unpaired samples, several semi-
supervised [4] extensions of (mainly kernelized) CCA have
been proposed, e.g., based on Tikhonov regularization [5] and
graph-Laplacian regularization [6].

In this paper, we propose a yet another semi-supervised
variant of CCA called SemiCCA. SemiCCA utilizes additional
unpaired samples by smoothly bridging CCA and principal
component analysis (PCA). More specifically, the eigenvalue
problems of CCA and PCA are combined using a trade-off
parameter. Thus the solution of SemiCCA can still be obtained
just by solving the combined eigenvalue problem, which is
the same computational complexity as the original CCA.

1In such cases, x corresponds to an audio/image feature, and y corresponds
to a feature derived from the associated text information.

SemiCCA is a generalized (and intuitively comprehensible)
variant of semi-supervised CCA with Tikhonov regularization.

II. CANONICAL CORRELATION ANALYSIS (CCA)

Consider a set of paired samples of size N , X(L) =
{xn}N

n=1 and Y (L) = {yn}N
n=1, where each sample xn (resp.

yn) is represented as a vector with dimension dx (resp. dy).
Without loss of generality, we assume that X(L) and Y (L) are
both centered, which can always be achieved by subtracting
the sample means from each sample. CCA is a method of
finding bases wx and wy for X(L) and Y (L) such that their
correlation is maximized as

max
(wx,wy)

w�
x S(L)

xy wy√
w�

x S(L)
xx wx

√
w�

y S(L)
yy wy

, (1)

where S(L)
xx = 1/N

∑N
n=1 xnx�

n , and S(L)
yy , S(L)

xy and S(L)
yx

are defined similarly. The solution (wx, wy) is given as the
solution of the following generalized eigenvalue problem:(

0 S(L)
xy

S(L)
yx 0

) (
wx

wy

)
= λ

(
S(L)

xx 0
0 S(L)

yy

) (
wx

wy

)
. (2)

Taking the top dz ≤ min(dx, dy) generalized eigenvectors as
row vectors, we obtain dz-dimensional mappings (W x, W y).

III. THE PROPOSED METHOD: SEMICCA

A. Concept

When the number of paired samples is small, CCA tends
to overfit the given paired samples. Here, let us consider
the situation where unpaired samples X(U) = {xn}Nx

n=N+1

and Y (U) = {yn}Ny

n=N+1 are additionally provided2, where
X(U) and Y (U) might be independently generated. Since
the original CCA cannot directly incorporate such unpaired
samples, we propose a novel method named SemiCCA that can
avoid overfitting by utilizing the additional unpaired samples.

Let us explain the idea of SemiCCA using an illustrative
two-dimensional data set depicted in Fig. 1, where paired
(resp. unpaired) samples are plotted with white (resp. red
and blue). When only the paired samples (X(L), Y (L)) are

2In the context of automatic image annotation, X(U) only exists, whereas
Y (U) is empty. However, the proposed method SemiCCA can be plausible
even in the case of the presence of X(U) and/or Y (U)
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Fig. 1. Effects of unpaired samples in SemiCCA

used, poor projection directions may be obtained by CCA due
to overfittng. In contrast, unpaired samples reveal the global
structure of whole the samples in each domain. Note once a
basis in one sample space is rectified, the corresponding bases
in the other sample space is also rectified so that correlations
between two bases are maximized.

B. Definition

Motivated by the above illustration, we propose to combine
CCA with principal component analysis (PCA) for utilizing
unpaired samples. There are various possibilities to combine
CCA and PCA. Here, we combine the eigenvalue problems
of CCA and PCA since this allows us to compute the com-
bined solution efficiently3. More specifically, the solution of
SemiCCA is given by the leading generalized eigenvectors of
the following generalized eigenvalue problem:

B

(
wx

wy

)
= λC

(
wx

wy

)
, (3)

B = βB

(
0 S(L)

xy

S(L)
yx 0

)
+ (1 − βB)

(
Sxx 0
0 Syy

)
,

C = βC

(
S(L)

xx 0
0 S(L)

yy

)
+ (1 − βC)

(
IDx

0
0 IDy

)
,

Sxx =
∑Nx

n=1 xnx�
n /Nx,

Syy =
∑Ny

n=1 yny�
n /Ny,

Id is the d × d identity matrix, and βB and βC are constants
named trade-off parameters taking a value in [0, 1]. From now
on, we focus on using the single shared trade-off parameter
β instead of the individual parameters βB and βC since the
individual parameters makes the parameter choice laborious.

3This idea is motivated by [7], which combines a variant of Fisher
discriminant analysis with PCA by blending the eigenvalue problems.

The trade-off parameters control the trade-off between CCA
and PCA. Namely, when β = 1, Eq. (3) is reduced to the
CCA eigenvalue problem Eq. (2), while when β = 0, Eq. (3)
is reduced to the PCA eigenvalue problem, under the assump-
tion that X = (X(L), X(U)) and Y = (Y (L), Y (U)) are
uncorrelated. In general, SemiCCA with a trade-off parameter
0 < β < 1 inherits the properties of both CCA and PCA so
that the global structure in each domain and the co-occurrence
information of paired samples are smoothly controlled.

We focused on the case where two sets of samples are given,
but SemiCCA can be easily extended to multiple data sets
by considering correlations over all pairs of samples [6], [8].
Also, the proposed method can be easily extended to non-
linear or non-vectorial domains by introducing the kernel trick
[6]. From the formulation of kernelized SemiCCA, we can
prove that semi-supervised CCA with Tikhonov regularization
presented in [6] is a special case of SemiCCA, where some
elements of kernel matrices are forced to be 0. We omit the
details for this issue due to the limited space.

IV. EXPERIMENT WITH ARTIFICIAL DATA

We first evaluated the performance of the proposed method
using the artificial data set created as follows: We considered a
Gaussian pLSA model, where the latent random variable (cor-
responding to a canonical variable in the framework of CCA)
is denoted by Z and observations are denoted by X and Y . We
drew samples {zi}Nz

i=1 from N (0, Idz ) of dimension dz = 10
and number of samples Nz = 10000, where N (x, ΣX) is a
Gaussian probability density function (PDF) with mean x and
covariance matrix ΣX . The means and covariance matrices
of the conditional (Gaussian) densities p(X|Z) and p(Y |Z)
were determined randomly for each trial. More specifically,
we randomly generated each component of transformation
matrices T x and T y and means x and y following N (0, 1).
Then complete paired samples {(xi, yi)}Nz

i=1 were created as

xi = T xzi + x + δx,i, δx,i ∼ N (0,ΣX|Z),
yi = T yzi + y + δy,i, δy,i ∼ N (0,ΣY |Z),

where each component of ΣX|Z and ΣY |Z was generated
from the folded standard normal distribution. The dimensions
of the samples are set to dx = 15 and dy = 20.

We removed several samples from {yi}Nz
i=1 by a simple

linear discrimination. As a discriminant function, we used
f(y) =

∑dy

d=1 ad(yd − yd) − θ, where a = (a1, . . . , ady )�

is a coefficient vector satisfying ‖a‖ = 1, and θ is the
discrimination threshold such that the larger θ we set, the
more samples removed. A sample (xi, yi) was kept paired if
f(yi) > 0, and yi was removed otherwise.

We compare the proposed SemiCCA with the original CCA.
We evaluated the performance of (Semi)CCA by the weighted
sum of cosine distances defined as follows:

C(W x, W ∗
x, Λ∗) =

r∑
i=1

λ∗
i

w�
x,iw

∗
x,i

‖wx,i‖ · ‖w∗
x,i‖

,
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Fig. 2. Average evaluation score for artificial data

Fig. 3. Average trade-off parameter taking the highest score.

where W ∗
x = (w∗

x,1, w
∗
x,2, . . . ,w

∗
x,dz

)� and Λ∗ =
diag(λ∗

1, λ
∗
2, . . . , λ

∗
dz

) are the “true” eigenvectors and eigen-
values. We took an oracle setting for selecting the trade-off
parameter β. Namely, we adopted the trade-off parameter β
marking the highest score for each trial.

Figure 2 shows the evaluation scores averaged over 10000
independent trials for several discrimination thresholds θ and
also shows the average number of paired samples for each
discrimination threshold. The results indicate that SemiCCA
tends to outperform the ordinary CCA; it is note worthy that
even when the number of unpaired samples is not so large,
SemiCCA performs better than the original CCA.

Figure 3 shows the trade-off parameter taking the highest
score averaged over all the trials, and Figure 4 depicts the
histogram of the best trade-off parameters. The results imply
that the best trade-off parameters have a concave profile with
respect to the number of paired samples. Since standard errors
of the best trade-off parameters were relatively small, we
expect to obtain similar results not only for oracle settings but
also for cross validation scenarios. The results also indicate
that the best trade-off parameters were usually close to 1, i.e.,
the effect of PCA is only mildly incorporated. Nevertheless,
the performance is much improved, as shown in Figure 2.

Fig. 4. Histogram of trade-off parameters taking the highest score.

V. APPLICATIONS TO AUTOMATIC IMAGE ANNOTATION

A. Method

We describe the method of automatic image annotation
based on the one by Nakayama et al. [9], [10] with the help
of SemiCCA.

First of all, feature vectors are extracted from images and
associated text labels. Each text label is composed of text
words selected from a word set given in advance. We utilize
Bag of Features (BoF) as image features X = {xn}Nx

n=1,
where SURF [11] is used for key-point detection and de-
scriptor extraction, and binary word vectors Y = {yn}N

n=1

as text features. Note that {xn}N
n=1 are labeled images, while

{xn}Nx

n=N+1 are unlabeled.
Next, a topic model is constructed from feature vectors

(X, Y ) with the help of SemiCCA. The first step is to
generate latent variables Z = {zn}N

n=1 with SemiCCA. More
specifically, a function fx : Rdx → Rdz is derived from X as
training samples with SemiCCA as fx(x) = Λ1/2W xx, and
latent variables Z are generated from X with fx. The second
step is to set up a topic model. The topic model is described
by the following equation:

p(x,y) =
∑N

n=1 p(x|zn)p(y|zn)/N,

p(x|zn) ∝ exp(−‖fx(x) − zn‖/2γ2),

p(y|zn) =
∏dy

d=1 p(yd|zn),
p(yd = 1|zn) = μδ(1 − yn,d) + (1 − μ)Nd/N,

p(yd = 0|zn) = 1 − p(yd = 0|zn),

where yn,d is the d-th element of yn, Nd is the number of
the images containing the d-th word in labeled samples, δ(·)
is Dirac delta, an operator ∝ stands for proportion, and γ and
μ are constants.

Once the model estimation has been finished, we can
execute automatic image annotation through maximum a pos-
teriori (MAP) estimation. More specifically, the text feature ŷ
of the most probable text label ŵ can be derived by using an
image feature x(g) extracted from a given image, as follows:

ŷ = argmax
y∈[0,1]dy

p(y|x(g)) (4)
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Fig. 5. Example images in PASCAL VOC data set

Fig. 6. Experiment results for automatic image annotation

= argmax
y∈[0,1]dy

∑N
n=1 p(x(g)|zn)p(y|zn)∑N

n=1 p(x(g)|zn)
. (5)

B. Experiments

We next evaluated the effectiveness of SemiCCA under
the task of automatic image annotation with PASCAL Visual
Object Challenge (VOC) 2008/2009 data sets [2]. This data set
is composed of images including objects from 20 visual object
classes related to people, animals, vehicles and furniture.
Multiple objects from multiple classes may be present in a
single image. Example images are put on Fig. 5. As you can
see, each image has a bounding box and object class label for
each object presented in the image. However, we removed all
the bounding boxes and only utilized class labels to simulate
“weak labeling” settings [12], where images are weakly related
to multiple words without region information.

We utilized all of the 5096 images in VOC2008 training
data set, and separated them into 500 labeled images for
training, 500 unlabeled images for evaluation and the rest
(4096 images) as unlabeled images for training. Also, 9647
images in VOC2009 training/test data set were added to
unlabeled images for training. In total, 13743 unlabeled images
for training were utilized. We adopted the precision rate PR
and recall rate RE as the evaluation measures.

Fig. 6 shows the experimental results for the automatic
annotation task. Since SemiCCA includes CCA as a special

case of β = 1.0, annotation with topic models learned by
SemiCCA would achieve at least as the same accuracy as the
one by the original CCA. Fig. 6 indicates that a topic model
build with the help of SemiCCA outperformed that of the
original CCA. The total performance seemed to be poor for
VOC participants, however, it should be noted again that we
removed all the bounding boxes and only utilized class labels.

VI. CONCLUDING REMARKS

In this paper, we proposed a new semi-supervised vari-
ant of CCA that we named SemiCCA. Unlike the previous
semi-supervised CCA, our formulation is quite simple and
also intuitively comprehensive. Namely, SemiCCA smoothly
bridges CCA with paired samples and PCA with paired and
unpaired samples by a trade-off parameter. We evaluated
its performance by using artificially generated samples and
PASCAL VOC data set, and revealed the effectiveness of
SemiCCA against the original CCA.

Our future work includes some comparison of SemiCCA
with other semi-supervised variants of CCA, especially based
on Tikhonov regulirization [5], [6], mutually complemen-
tary integration of SemiCCA into some methods of semi-
supervised learning based on graph Laplacian reguralization,
and applications to various challenging real-world problems
e.g. automatic music/image/video annotation and retrieval,
and multi-model event correlation analysis for audio-video
synchronization and audio-visual speech recognition.

REFERENCES

[1] J. S. Downie, “The music information retrieval evaluation exchange
(2005–2007): A window into music information retrieval research,”
Acoustical Science and Technology, vol. 29, no. 4, pp. 247–255, 2008.

[2] M. Everingham et al., “The PASCAL Visual Object Classes Challenge
2009 (VOC2009) Results,” http://www.pascal-network.org/challenges/
VOC/voc2009/workshop/index.html.

[3] H. Hotelling, “Analysis of a complex of statistical variables into
principal components,” J. Educ. Psych., vol. 24, 1933.

[4] O. Chapelle et al. Semi-Supervised Learning, MIT Press, 2006.
[5] D. R. Hardoon et al. “Canonical correlation analysis: An overview

with application to learning methods,” Neural Computation, vol. 16,
no. 12, pp. 2639–2664, 2004.

[6] M. B. Blaschko et al. “Semi-supervised laplacian regularization of
kernel canonical correlation analysis,” in Proc. ECML PKDD ’08,
Berlin, Heidelberg, 2008, pp. 133–145.

[7] M. Sugiyama et al. “Semi-supervised local Fisher discriminant analysis
for dimensionality reduction,” Machine Learning, vol. 78, no. 1–2, pp.
35–61, 2010.

[8] H. Yanai and S. Puntanen, “Partial canonical correlation associated with
the inverse and some generalized inverse of a partitioned dispersion
matrix,” in Proc. the third Pacific Area Statistical Conference on
Statistical Sciences and Data Analysis, pp. 253–264, 1993.

[9] H. Nayayama et al. “High-performance image annotation and retrieval
for weakly labeled images,” in Proc. PCM, pp. 601–610. 2008,

[10] T. Harada et al. “Image annotation retrieval based on efficient learning
of contextual latent space,” in Proc. ICME, 2009.

[11] H. Bay et al. “Speeded-up robust features (surf),” CVIU, vol. 110, no.
3, pp.346–359, 2008.

[12] G. Carneiro et al. “Supervised learning of semantic classes for image
annotation and retrieval,” IEEE Trans PAMI, vol. 29, no. 3, pp. 394–
410, 2007.

[13] M. Wang et al. “Semi-supervised kernel density estimation for video
annotation,” CVIU, vol. 113, no. 3, pp.384–396, 2009.

29282940293629362936


