
Optimal divergence diversity for superresolution-based
nonnegative matrix factorization ∗

◎Daichi Kitamura, Hiroshi Saruwatari, Satoshi Nakamura (Nara Institute of Science and Technology)
Kazunobu Kondo, Yu Takahashi (Yamaha Corporation), Hirokazu Kameoka (The University of Tokyo)

1 Introduction
In recent years, music and acoustic signal separa-

tion based on nonnegative matrix factorization (NMF)
[1] has been a very active area of signal-processing re-
search. NMF of acoustic signals decomposes an input
spectrogram into the product of a spectral basis matrix
and its activation matrix. In particular, supervised NMF
(SNMF) [2], which includes a priori training with some
sample sounds of a target instrument, can extract the tar-
get signal to some extent. However, in the case of a mix-
ture consisting of many sources, the source extraction
performance is markedly degraded when only single-
channel observation is available.

Multichannel NMF, which is a natural extension of
NMF to a multichannel signal, has been proposed as an
unsupervised method [3]. However, such an unsuper-
vised separation is a difficult problem because the de-
composition is underspecified. Hence, algorithms used
for multichannel NMF have strong dependence on ini-
tial values and lack robustness.

As another means of addressing multichannel sig-
nal separation, a hybrid method, which concatenates
superresolution-based SNMF after directional cluster-
ing, has been proposed by the authors [4, 5]. This
method uses index information generated by binary
masking of directional clustering so that spectral chasms
can be regarded as unseen observations, and finally re-
constructs the target source components via spectro-
gram extrapolation using the supervised bases as a dic-
tionary. Also, we have proposed some update algo-
rithms for the superresolution-based SNMF based on β-
divergence, which includes Itakura-Saito divergence (IS-
divergence), generalized Kullback-Leibler divergence,
(KL-divergence) and Euclidean distance (EUC-distance)
[5]. In general SNMF-based music signal separation,
KL-divergence is often used as a cost function because
the spectrogram of the music signals tends to become
sparse, and KL-divergence-based SNMF fits to repre-
sent such sparse signals [6]. However, it has been ex-
perimentally confirmed that the optimal divergence for
superresolution-based SNMF is EUC-distance [5]. This
difference of performance between EUC-distance and
KL-divergence is due to the difference of a spatial con-
dition in each source, and the optimal divergence tempo-
rally fluctuates because the spatial condition is not con-
sistent in the general music signal. Therefore, these di-
vergence should be changed in each time frame automat-
ically. To solve this problem, in this paper, we propose a
new scheme for frame-wise divergence diversity to sep-
arate the target signal using optimal divergence.

2 Conventional Method
2.1 SNMF

In SNMF, a priori spectral patterns (bases) should be
trained in advance as a basis dictionary. The following
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equation represents the decomposition in SNMF;

Y ≃ FG +HU , (1)

where Y (∈ RΩ×T
≥ 0 ) is an observed spectrogram,

F (∈ RΩ×K
≥ 0 ) is a supervised basis matrix trained in

advance, which includes spectral patterns of the target
signal as column vectors, G(∈ RK×T

≥ 0 ) is the activation
matrix that corresponds to F , H(∈ RΩ×L

≥ 0 ) represents the
residual spectral patterns that cannot be expressed by
FG, and U (∈ RL×T

≥ 0 ) is the activation matrix that corre-
sponds to H . Moreover, Ω is the number of frequency
bins, T is the number of frames of the observed signal,
K is the number of bases of F , and L is the number
of bases of H . In SNMF, the matrices G, H , and
U are optimized under the condition that F is known
in advance. The matrix F can be trained by solving
Ŷ = FĜ, where Ŷ is a training data spectrogram and
Ĝ is the corresponding activation matrix. Hence, FG
ideally represents the target instrumental components
and HU represents other components different from
the target sounds after the decomposition.

SNMF can extract the target signal, particularly in the
case of a small number of sources. However, in the case
of a mixture consisting of many sources, the source ex-
traction performance is markedly degraded because of
the existence of similar-timbre instruments.

2.2 Directional Clustering and Its Hybrid Method
with Superresolution-Based SNMF

Decomposition methods employing directional infor-
mation for the multichannel signal have also been pro-
posed as unsupervised techniques [7]. These methods
quantize the direction via time-frequency binary mask-
ing. Such directional clustering works well, even in an
underdetermined situation. However, there is an inherent
problem that the sources located in the same direction
cannot be separated only using directional information.
Furthermore, the separated signal is likely to be distorted
because the signal has many spectral chasms resulting
from the binary-masking procedure as shown in Fig. 1.

To solve this problem, a hybrid method that con-
catenates superresolution-based SNMF after directional
clustering has been proposed [4]. This SNMF algorithm
explicitly utilizes index information determined by time-
frequency binary masking in directional clustering. For
example, if the target instrument is localized in the cen-
ter cluster along with the interference, superresolution-
based SNMF is only applied to the existing center com-
ponents using index information (see Fig. 1). Therefore,
the spectrogram of the target instrument is reconstructed
using more matched bases because spectral chasms are
treated as unseen, and these chasms have no impact on
the cost function in SNMF. In addition, the components
of the target instrument lost after directional clustering
can be extrapolated using the supervised bases. In other
words, the resolution of the target spectrogram is recov-
ered with the superresolution by the supervised basis ex-
trapolation. Furthermore, a regularization term is added
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Fig. 1 Signal flow of conventional hybrid method.

in the cost function to avoid a basis extrapolation error
[8].

2.3 Cost Function for Superresolution-Based
SNMF

Here, the index matrix I(∈ RΩ×T
{0, 1} ) is obtained from

the binary masking preceding the directional clustering.
This index matrix has specific entries of unity or zero,
which indicate whether or not each grid of the spectro-
gram belongs to the target directional cluster. The cost
function in superresolution-based SNMF is defined us-
ing the index matrix I as [5]

J = ∑ω,tiω,tDβNMF

(
yω,t∥
∑

k fω,kgk,t +
∑

lhω,lul,t
)

+ λ
∑
ω,tiω,tDβreg (0∥∑k fω,kgk,t) + µ∥F TH∥2Fr, (2)

where iω,t, yω,t, fω,k, gk,t, hω,l, and ul,t are the nonnegative
entries of matrices I , Y , F , G, H , and U , respectively,
λ and µ are the weighting parameters for each penalty
term, · represents the binary complement of each entry in
the index matrix, and ◦ indicates the Hadamard product
of matrices. In addition, Dβ(·∥·) is β-divergence, which
is defined as [9]

Dβ(y∥x) =


yβ

β (β − 1)
+

xβ

β
−

yxβ−1

(β − 1)
(β∈R\ {0, 1})

y
(
log y − log x

)
+ x − y (β=1)

y
x
− log

y
x
− 1 (β=0)

. (3)

This generalized divergence is a family of cost func-
tions parameterized by a single shape parameter β that
takes IS-divergence, KL-divergence, and EUC-distance
in special cases (β = 0, 1, and 2, respectively).

3 Poposed Method
3.1 Divergence Dependency on Local Chasm Con-

dition
In general SNMF-based music signal separation, KL-

divergence is often used as a cost function because KL-
divergence-based SNMF decomposes the observed spec-
trogram into the mixture of more sparser bases com-
pared with EUC-distance-based SNMF. The spectro-
gram of the music signals tends to become sparse, and
KL-divergence-based SNMF fits to represent such sparse
signals [6]. However, it has been experimentally con-
firmed that the optimal divergence for superresolution-
based SNMF is EUC-distance [5]. This discrepancy in
the divergence is due to the fact that superresolution-
based SNMF has two tasks, namely, signal separation
and basis extrapolation. The sparseness is not suitable
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Fig. 2 Trade-off between separation and extrapolation
abilities.

for the basis extrapolation because it is difficult to ex-
trapolate sparse bases only from the observable data.
Figure 2 shows the dependency of the sparseness and
separation performance of superresolution-based SNMF.
The sparse criterion, such as KL-divergence (βNMF = 1),
is not suitable for superresolution-based SNMF.

The optimal divergence for superresolution-based
SNMF depends on the rate of spectral chasms in each
time frame of the spectrogram obtained by directional
clustering because of the trade-off between separa-
tion and extrapolation abilities. If there are many
chasms in a frame of the binary-masked spectrogram,
superresolution-based SNMF is preferred to have high
extrapolation ability. In contrast, if the rate of chasms
is low value, the separation ability is required rather
than the extrapolation. Therefore, it is expected that
EUC-distance should be used in the frames that have
many chasms, and KL-divergence should be used in the
other frames. To improve separation performance of
superresolution-based SNMF for any types of input sig-
nals, we propose a new frame-wise divergence switching
method as described below.

3.2 Cost Function
Considering the above-mentioned divergence depen-

dency on the local chasm condition, we propose to
switch the divergence in each frame of the spectrogram
according to the rate of chasms in each frame, rt, and a
threshold value τ (0 ≤ τ ≤ 1), where the rate of chasms
rt can be calculated from the index matrix I . Figure 3
depicts an algorithm of the frame-wise divergence diver-
sity. This divergence switching method is implemented
by switching the cost function in each frame, as

J = ∑t Jt, (4)

Jt =



∑
ω iω,tDβ=2(yω,t∥s(EUC)

ω,t )
+ λ
∑
ω iω,tDβreg (0∥∑k f (EUC)

ω,k gk,t)
+ µ∥F (EUC)TH∥2Fr (rt ≥ τ)∑
ω iω,tDβ=1(yω,t∥s(KL)

ω,t )
+ λ
∑
ω iω,tDβreg (0∥∑k f (KL)

ω,k gk,t)
+ µ∥F (KL)TH∥2Fr (rt < τ)

, (5)

s(∗)
ω,t =

∑
k f (∗)
ω,kgk,t +

∑
nhω,nun,t, (6)

rt = (
∑
ωiω,t)/Ω, (7)

where F (KL)(∈ RΩ×K
≥ 0 ) and F (EUC)(∈ RΩ×K

≥ 0 ) are the su-
pervised basis matrices trained in advance using KL-
divergence and EUC-distance, respectively. Also, f (KL)

ω,k

and f (EUC)
ω,k are the entries of F (KL) and F (EUC), respec-

tively, and ∗= {KL,EUC}. The divergence is determined
depending on rt and τ in each frame. Therefore, this
method can be considered as a frame-wise diversity of
the divergence to achieve both of optimal separation and
extrapolation.

- 728 -日本音響学会講演論文集 2014年3月



Time

Calculation of rate of chasms

Yes No

F
re

q
u

e
n

c
y

Binary-masked
spectrogram

KL-divergence-
based cost function

EUC-distance-
based cost function

Superresolution-based SNMF

(EUC) (KL)

Fig. 3 Divergence diversity algorithm of proposed
method.

3.3 Auxiliary Function and Update Rules
The update rules based on (4) is obtained by the auxil-

iary function approach. Similarly to [4, 5], we can design
the upper bound function J+ using auxiliary variables
α(∗)

k,l,ω ≥ 0, γ(∗)
ω,t,k ≥ 0, δω,t,l ≥ 0, ε1 ≥ 0, ε2 ≥ 0, and ζ(∗)

ω,t ≥ 0
that satisfy

∑
ω α

(∗)
k,l,ω = 1,

∑
k γω,t,k = 1,

∑
l δω,t,l = 1, and

ε1+ε2 = 1, as

J ≤ J+= ∑t J+t , (8)

Jt≤J+t =



∑
ω iω,t

(
y2
ω,t+vω,t+2wω,t

)
+λ
∑
ω iω,tR(EUC)

βreg

+µ
∑

k,l,ω

(
f (EUC)
ω,k

2h2
ω,l

)
/α(EUC)

k,l,ω (rt ≥ τ)∑
ω iω,t

(
−yω,t

∑
k,l γ

(KL)
ω,t,kδω,t,lQ+C

)
+λ
∑
ω iω,tR(KL)

βreg

+µ
∑

k,l,ω

(
f (KL)
ω,k

2h2
ω,l

)
/α(KL)

k,l,ω (rt < τ)

,

(9)

where

vω,t =
∑

k( f (EUC)
ω,k

2g2
k,t)/γ

(EUC)
ω,t,k +

∑
l(hω,lul,t )/δω,t,l, (10)

wω,t = (
∑

k f (EUC)
ω,k gk,t)(

∑
lhω,lul,t),

− yω,t
∑

k f (EUC)
ω,k gk,t − yω,t

∑
lhω,lul,t, (11)

R(∗)
βreg
=


ζ(∗)
ω,t
βreg−1(

∑
k f (∗)
ω,kgk,t − ζ(∗)

ω,t) + ζ
(∗)
ω,t
βreg/βreg

(βreg < 1)∑
k γω,t,k( f (∗)

ω,kgk,t/γ
(∗)
ω,t,k)βreg/βreg

(1 ≤ βreg)

, (12)

Q = ε1 logΦ + ε2 logΨ, (13)

Φ = δω,t,l f (KL)
ω,k gk,t, (14)

Ψ = γ(KL)
ω,t,k hω,lul,t. (15)

The equality in (9) holds if and only if the auxiliary vari-
ables are set as follows:

α(∗)
k,l,ω = ( f (∗)

ω,khω,l)/(
∑
ω′ f

(∗)
ω′,khω′,l), (16)

γ(∗)
ω,t,k = ( f (∗)

ω,kgk,t)/(
∑

k′ f
(∗)
ω,k′gk′,t), (17)

δω,t,l = (hω,lul,t)/(
∑

l′hω,l′ul′,t), (18)
ε1 = Φ/(Φ + Ψ), (19)
ε2 = Ψ/(Φ + Ψ), (20)

ζ(∗)
ω,t =

∑
k f (∗)
ω,kgk,t. (21)

The update rules are obtained from the derivative of
the upper bound function (8) w.r.t. each objective vari-
able and substitution of the equality condition (16)–(21),

Table 1 Compositions of musical instruments
Composition Melody 1 Melody 2 Midrange Bass

C1 Oboe Flute Piano Trombone
C2 Trumpet Violin Harpsichord Fagotto
C3 Clarinet Horn Piano Cello

Table 2 Spatial conditions of each dataset
Spatial Measure
pattern 1st 2nd 3rd 4th

SP1 θ=45◦ θ=0◦ θ=0◦ θ=0◦
SP2 θ=45◦ θ=45◦ θ=0◦ θ=0◦
SP3 θ=45◦ θ=45◦ θ=45◦ θ=0◦
SP4 θ=45◦ θ=45◦ θ=45◦ θ=45◦

as

gk,t←



gk,t ·
∑
ω iω,tyω,t f (EUC)

ω,k∑
ω iω,t f (EUC)

ω,k s(EUC)
ω,t +λ

∑
ω iω,t f (EUC)

ω,k

(∑
k′ f (EUC)
ω,k′ gk′,t

)βreg

(rt ≥ τ)
gk,t ·

∑
ω iω,tyω,t f (KL)

ω,k s(KL)
ω,t

−1∑
ω iω,t f (KL)

ω,k +λ
∑
ω iω,t f (KL)

ω,k

(∑
k′ f (KL)
ω,k′ gk′,t

)βreg

(rt < τ)

,

(22)

hω,l ← hω,l ·
∑

t iω,tyω,tul,tNω,t∑
t iω,tul,tDω,t + µPω,l

, (23)

ul,t←

ul,t ·
∑
ω iω,tyω,thω,l∑
ω iω,thω,l s

(EUC)
ω,t

(rt ≥ τ)

ul,t ·
∑
ω iω,tyω,thω,l s

(EUC)
ω,t

−1∑
ω iω,thω,l

(rt < τ)
, (24)

where Nω,t, Dω,t, and Pω,l are given by

Nω,t =
{

1 (rt ≥ τ)
s(KL)
ω,t

−1 (rt < τ)
, (25)

Dω,t =
{

s(EUC)
ω,t (rt ≥ τ)

1 (rt < τ)
, (26)

Pω,l =


∑

k f (EUC)
ω,k

∑
ω′ f (EUC)
ω′,k hω′,l (rt ≥ τ)∑

k f (KL)
ω,k
∑
ω′ f (KL)
ω′,k hω′,l (rt < τ)

. (27)

In total, the update rules of superresolution-based SNMF
with frame-wise divergence diversity are defined as
(22)–(24).

4 Experiments
4.1 Experimental Conditions

To confirm the effectiveness of the proposed al-
gorithm, we compared five methods, namely, penal-
ized SNMF (PSNMF) [2] based on KL-divergence,
PSNMF based on EUC-distance, the conventional hy-
brid method using only EUC-distance, the conventional
hybrid method using only KL-divergence, and the pro-
posed hybrid method that switches the divergence to the
optimal one framewisely. In this experiment, we used
stereo signals containing four melody parts (depicted in
Fig. 4) with three compositions (C1–C3) of instruments
shown in Table 1. These signals were artificially gen-
erated by a MIDI synthesizer, and the observed signals
Y were produced by mixing four sources with the same
power. The sources were mixed as Fig. 5, where the
target source was always located in the center direction
with another interfering source. However, these stereo
signals were mixed down to a monaural format only
when we evaluate the separation accuracy of PSNMF
because PSNMF is a separation method for a monaural
input signal.
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Fig. 4 Scores of each part. The observed signal con-
sists of four measures.
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Fig. 5 Panning of four sources, where numbered black
circles represent locations of instruments.

We prepared four spatially different dataset patterns of
the observed signals, SP1–SP4, as shown in Table 2. In
the hybrid method, many chasms were produced by di-
rectional clustering in the measures where θ= 45◦ com-
pared with those of θ=0◦. Therefore, we can expect that
EUC-distance-based hybrid method is suitable for SP4
rather than the dataset of SP1.

In addition, we used the same MIDI sounds of the tar-
get instruments as supervision for a priori training. The
training sounds contained two octave notes that cover all
notes of the target signal in the observed signal. The
sampling frequency of all signals was 44.1 kHz. The
spectrograms were computed using a 92-ms-long rectan-
gular window with a 46-ms overlap shift. The number of
iterations for training and separation were 500, and the
threshold value τ was set to 20%. Moreover, the number
of clusters used in directional clustering was 3, the num-
ber of a priori bases was 100, and the number of bases
for matrix H was 30. The weighting parameters λ and µ
were empirically determined.

4.2 Experimental Results
We used the signal-to-distortion ratio (SDR) defined

in [10] as the evaluation scores. SDR indicates the qual-
ity of the separated target sound, which includes the de-
gree of separation between the target and other sounds
and the absence of artificial distortion.

Figure 6 shows the average SDR scores for each
method and each dataset pattern, where four instruments
are shuffled with 12 combinations in each of composi-
tions C1–C3. Therefore, these results are the averages of
36 input signals. From this result, KL-divergence-based
hybrid method achieves high separation accuracy for the
dataset of spatial patterns SP1, SP2, and SP3 because
these signals do not have much spectral chasms. On
the other hand, EUC-divergence-based hybrid method
achieves high separation accuracy for SP 4. This dataset
has many spectral chasms because the signals are al-
ways mixed with a wide panning (θ=45◦), which yields
many chasms, and the extrapolation ability is highly re-
quired. In addition, the proposed hybrid method with
frame-wise divergence diversity can always achieve bet-
ter separation for any datasets regardless of the condition
whether many chasms exist or not. This is because the
proposed method provides the appropriate diversity of
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Fig. 6 Average SDR scores of each method and each
spatial condition.

the divergence and can automatically apply the optimal
divergence to each time frame.

5 Conclusion
In this paper, we propose a new divergence selection

method to separate the target signal using optimal diver-
gence. The proposed method switches the optimal di-
vergence in each time frame using a threshold value for
the rate of the chasms to separate and extrapolate the tar-
get signal with high accuracy. Experimental results show
that our proposed method can always achieve high sepa-
ration performance under any spatial conditions.
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