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Nonnegative Matrix Factorization for Binaural Recording
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Abstract: In this paper, we propose a new stereo signal separation scheme based on multi-divergence supervised
nonnegative matrix factorization (SNMF). In previous studies, a hybrid method, which concatenates superresolution-
based SNMF after directional clustering, has been proposed for multichannel signal separation. However, the optimal
divergence in SNMF temporally fluctuates because the separation and extrapolation abilities depend on spatial condi-
tions of sources in music tunes. To solve this problem, we propose a new scheme for multi-divergence, where optimal
divergence can be automatically changed in each time frame according to the local spatial conditions. Experimental
results show the proposed method efficacy.

1. Introduction
In recent years, music and acoustic signal separation based on

nonnegative matrix factorization (NMF) [1] has been a very ac-
tive area of signal-processing research [2], [3], [4], [5]. NMF of
acoustic signals decomposes an input spectrogram into the prod-
uct of a spectral basis matrix and its activation matrix. In partic-
ular, supervised NMF (SNMF) [6], [7], [8], [9], which includes
a priori training with some sample sounds of a target instrument,
can extract the target signal to some extent. However, in the case
of a mixture consisting of many sources, the source extraction
performance is markedly degraded when only single-channel ob-
servation is available.

Multichannel NMF, which is a natural extension of NMF to
a multichannel signal, has been proposed as an unsupervised
method [10], [11]. However, such an unsupervised separation
is a difficult problem because the decomposition is underspeci-
fied. Hence, algorithms used for multichannel NMF have strong
dependence on initial values and lack robustness.

As another means of addressing multichannel signal sepa-
ration, a hybrid method, which concatenates superresolution-
based SNMF after directional clustering, has been proposed by
the authors [12]. This method uses index information gener-
ated by binary masking of directional clustering so that spec-
tral chasms can be regarded as unseen observations, and finally
reconstructs the target source components via spectrogram ex-
trapolation using the supervised bases as a dictionary. Also, we
have proposed some update algorithms for superresolution-based
SNMF based on generalized Kullback-Leibler divergence (KL-
divergence) and Euclidean distance (EUC-distance) [12]. In gen-
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eral SNMF-based music signal separation, KL-divergence is of-
ten used as a cost function because the spectrogram of music sig-
nals tends to become sparse, and KL-divergence-based SNMF is
suitable for representing such sparse signals [13]. However, it
has been experimentally confirmed that the optimal divergence
for superresolution-based SNMF is EUC-distance [12]. This per-
formance difference between EUC-distance and KL-divergence is
due to the different spatial condition of sources, and the optimal
divergence temporally fluctuates because the spatial condition is
not consistent in general music tunes.

To solve this problem, we propose a new scheme for multi-
divergence, where optimal divergence can be automatically
changed in each time frame according to the local spatial con-
ditions. This method can achieve the highest separation accuracy
in various types of stereo signals. Experimental results in artifi-
cial and real-recorded signals confirm that the proposed method
outperforms the single-divergence methods.

2. Conventional Method
2.1 SNMF

In SNMF, a priori spectral patterns (bases) should be trained in
advance as a basis dictionary. The following equation represents
the decomposition in SNMF:

Y ≃ FG +HU , (1)

where Y (∈ RΩ×T
≥ 0 ) is an observed spectrogram, F (∈ RΩ×K

≥ 0 ) is a su-
pervised basis matrix trained in advance, which includes spectral
patterns of the target signal as column vectors, G(∈ RK×T

≥ 0 ) is the
activation matrix that corresponds to F , H(∈ RΩ×L

≥ 0 ) represents
the residual spectral patterns that cannot be expressed by FG,
and U (∈ RL×T

≥ 0 ) is the activation matrix that corresponds to H .
Moreover, Ω is the number of frequency bins, T is the number
of frames of the observed signal, K is the number of bases of F ,
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and L is the number of bases of H . In SNMF, the matrices G,
H , and U are optimized under the condition that F is known
in advance. The matrix F can be trained by solving Ŷ = FĜ,
where Ŷ is a training data spectrogram and Ĝ is the correspond-
ing activation matrix. Hence, FG ideally represents the target
instrumental components and HU represents other components
different from the target sounds after the decomposition.

SNMF can extract the target signal, particularly in the case of
a small number of sources. However, in the case of a mixture
consisting of many sources, the source extraction performance
is markedly degraded because of the existence of similar-timbre
instruments.

2.2 Directional Clustering and Its Hybrid Method Using
Superresolution-Based SNMF

Decomposition methods employing directional information for
the multichannel signal have also been proposed as unsuper-
vised techniques [14], [15]. These methods quantize the direc-
tion via time-frequency binary masking. Such directional cluster-
ing works well, even in an underdetermined situation. However,
there is an inherent problem that the sources located in the same
direction cannot be separated only using directional information.
Furthermore, the separated signal is likely to be distorted because
the signal has many spectral chasms resulting from the binary-
masking procedure as shown in Fig. 1.

To solve this problem, a hybrid method that concatenates
superresolution-based SNMF after directional clustering has been
proposed [12]. This SNMF algorithm explicitly utilizes index in-
formation determined by time-frequency binary masking in direc-
tional clustering. For example, if the target instrument is localized
in the center cluster along with the interference, superresolution-
based SNMF is only applied to the existing center components us-
ing index information (see Fig. 1). Therefore, the spectrogram of
the target instrument is reconstructed using better matched bases
because spectral chasms are treated as unseen, and these chasms
have no impact on the cost function in SNMF. In addition, the
components of the target instrument lost after directional clus-
tering can be extrapolated using the supervised bases. In other
words, the resolution of the target spectrogram is recovered with
the superresolution by the supervised basis extrapolation. Fur-
thermore, a regularization term is added in the cost function to
avoid a basis extrapolation error [16].

2.3 Cost Function for Superresolution-Based SNMF
Here, the index matrix I(∈ RΩ×T

{0, 1} ) is obtained from the binary
masking preceding the directional clustering. This index matrix
has specific entries of unity or zero, which indicate whether or
not each grid of the spectrogram belongs to the target directional
cluster. The cost function in superresolution-based SNMF is de-
fined using the index matrix I as [12]

J =
∑
ω,t

iω,tDβNMF

yω,t∥∑
k

fω,kgk,t +
∑

l

hω,lul,t


+ λ
∑
ω,t

iω,tDβreg

0∥∑
k

fω,kgk,t

 + µ∥F TH∥2Fr, (2)
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Fig. 1 Signal flow of conventional hybrid method.

where iω,t, yω,t, fω,k, gk,t, hω,l, and ul,t are the nonnegative entries
of matrices I , Y , F , G, H , and U , respectively, λ and µ are
the weighting parameters for each penalty term, · represents the
binary complement of each entry in the index matrix, and ◦ in-
dicates the Hadamard product of matrices. In addition, Dβ(·∥·) is
β-divergence, which is defined as [17]

Dβ(y∥x) =



yβ

β (β − 1)
+

xβ

β
−
yxβ−1

(β − 1)
(β∈R\ {0, 1})

y
(
log y − log x

)
+ x − y (β=1)

y

x
− log

y

x
− 1 (β=0)

. (3)

This generalized divergence is a family of cost functions param-
eterized by a single shape parameter β that takes Itakura-Saito
divergence, KL-divergence, and EUC-distance in special cases
(β = 0, 1, and 2, respectively).

The update rules of superresolution-based SNMF based on
KL-divergence are given by [12]

gk,t ←
gk,t
∑
ω iω,tyω,t fω,k s−1

ω,t∑
ω iω,t fω,k + λ

∑
ω iω,t fω,k

∑
k′ fω,k′gk′,t

, (4)

hω,l ←
hω,l
∑

t iω,tyω,tul,t s−1
ω,t∑

t iω,tul,t + µ
∑

k fω,k
∑
ω′ fω′,khω′,l

, (5)

ul,t ←
ul,t
∑
ω iω,tyω,thω,ls−1

ω,t∑
ω iω,thω,l

, (6)

where

sω,t =
∑

k′
fω,k′gk′,t +

∑
l′

hω,l′ul′,t. (7)

Also, the update rules of superresolution-based SNMF based on
EUC-distance are given by [12]

gk,t ←
gk,t
∑
ω iω,tyω,t fω,k∑

ω iω,t fω,k sω,t + λ
∑
ω iω,t fω,k

∑
k′ fω,k′gk′,t

, (8)

hω,l ←
hω,l
∑

t iω,tyω,tul,t∑
t iω,tul,t sω,t + µ

∑
k fω,k

∑
ω′ fω′,khω′,l

, (9)

ul,t ←
ul,t
∑
ω iω,tyω,thω,l∑
ω iω,thω,lsω,t

. (10)
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3. Proposed Method
3.1 Divergence Dependence on Local Chasm Condition

In general SNMF-based music signal separation, KL-diver-
gence is often used as a cost function because KL-divergence-
based SNMF decomposes the observed spectrogram into the
mixture of sparser bases than EUC-distance-based SNMF. The
spectrogram of music signals tends to become sparse, and KL-
divergence-based SNMF is suitable for representing such sparse
signals [7], [13]. However, it has been experimentally confirmed
that the optimal divergence for superresolution-based SNMF is
EUC-distance [12]. This discrepancy in the divergence is due to
the fact that superresolution-based SNMF has two tasks, namely,
signal separation and basis extrapolation. The sparseness is not
suitable for basis extrapolation because it is difficult to extrapo-
late sparse bases only from observable data. Figure 2 shows the
trade-off between of the sparseness and separation performance
of superresolution-based SNMF. A sparse criterion, such as KL-
divergence (βNMF = 1), is not suitable for superresolution-based
SNMF.

The optimal divergence for superresolution-based SNMF de-
pends on the rate of spectral chasms in each time frame of the
spectrogram obtained by directional clustering because of the
trade-off between the separation and extrapolation abilities. If
there are many chasms in a frame of a binary-masked spectro-
gram, high extrapolation ability is preferable for superresolution-
based SNMF. In contrast, if the rate of chasms is low, separa-

tion ability is required rather than extrapolation ability. There-
fore, it is expected that EUC-distance should be used in frames
that have many chasms and KL-divergence should be used in
the other frames. To improve the separation performance of
superresolution-based SNMF for all types of input signals, we
propose a new multi-divergence method as described below.

3.2 Cost Function Based on Multi-Divergence
Considering the above-mentioned divergence dependence on

the local chasm condition, we propose to adapt the divergence
in each frame of the spectrogram to the optimal one according
to the rate of chasms in each frame rt and a threshold value τ
(0 ≤ τ ≤ 1), where the rate of chasms rt can be calculated from
the index matrix I . Straightforward but naive extension to this
purpose is to apply independent SNMF to the short time-period
data with switching the divergence in an online manner (hereafter
referred to as online hybrid method). In this method, however, the
size of each input matrix becomes small and the dimensionality
is reduced. This degrades the separation performance because the
trained bases F can represent any small-dimension matrix and no
component is pushed into the interference HU .

To cope with the problem and maintain the sufficient dimen-
sionality of the matrix, we propose a new batch SNMF with a
multi-divergence-based cost function covered onto the whole in-
put matrix (see Fig. 3). The proposed cost function is defined
as

J =
∑

t

Jt, (11)

Jt =



∑
ω iω,tDβ=2(yω,t∥s(EUC)

ω,t )

+ λ
∑
ω iω,tDβreg (0∥∑k f (EUC)

ω,k gk,t)

+ µ∥F (EUC)TH∥2Fr (rt ≥ τ)∑
ω iω,tDβ=1(yω,t∥s(KL)

ω,t )

+ λ
∑
ω iω,tDβreg (0∥∑k f (KL)

ω,k gk,t)

+ µ∥F (KL)TH∥2Fr (rt < τ)

, (12)

s(∗)
ω,t =

∑
k

f (∗)
ω,kgk,t +

∑
n

hω,nun,t, (13)

rt =

∑
ω iω,t
Ω
, (14)

where F (KL)(∈ RΩ×K
≥ 0 ) and F (EUC)(∈ RΩ×K

≥ 0 ) are the supervised ba-
sis matrices trained in advance using KL-divergence and EUC-
distance, respectively. Also, f (KL)

ω,k and f (EUC)
ω,k are the entries of

F (KL) and F (EUC), respectively, and ∗ = {KL,EUC}. The diver-
gence is determined from rt and τ in each frame. Therefore, this
method can be considered as multi-divergence-based SNMF to
achieve both optimal separation and extrapolation.

3.3 Auxiliary Function and Update Rules
The update rules based on (11) are obtained by an auxiliary

function approach. Similarly to in [12], we can design an upper
bound function J+ using auxiliary variables α(∗)

k,l,ω ≥ 0, γ(∗)
ω,t,k ≥ 0,

δω,t,l ≥ 0, ε1 ≥ 0, ε2 ≥ 0, and ζ(∗)
ω,t ≥ 0 that satisfy

∑
ω α

(∗)
k,l,ω = 1,∑

k γω,t,k=1,
∑

l δω,t,l=1, and ε1+ε2 = 1 as
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J ≤ J+=
∑

t

J+t , (15)

Jt≤J+t =



∑
ω iω,t

(
y2
ω,t+vω,t+2wω,t

)
+λ
∑
ω iω,tR(EUC)

βreg

+µ
∑

k,l,ω

(
f (EUC)
ω,k

2h2
ω,l

)
/α(EUC)

k,l,ω (rt ≥ τ)∑
ω iω,t

(
−yω,t

∑
k,l γ

(KL)
ω,t,kδω,t,lQ+C

)
+λ
∑
ω iω,tR(KL)

βreg

+µ
∑

k,l,ω

(
f (KL)
ω,k

2h2
ω,l

)
/α(KL)

k,l,ω (rt < τ)

, (16)

where

vω,t =
∑

k

f (EUC)
ω,k

2g2
k,t

γ(EUC)
ω,t,k

+
∑

l

hω,lul,t

δω,t,l
, (17)

wω,t =

∑
k

f (EUC)
ω,k gk,t

 ∑
l

hω,lul,t

 ,
− yω,t

∑
k

f (EUC)
ω,k gk,t − yω,t

∑
l

hω,lul,t, (18)

R(∗)
βreg
=



ζ(∗)
ω,t
βreg−1

(∑
k f (∗)
ω,kgk,t − ζ(∗)

ω,t

)
+
ζ(∗)
ω,t
βreg

βreg

(βreg < 1)

1

βreg

∑
k γω,t,k

 f (∗)
ω,kgk,t

γ(∗)
ω,t,k


βreg

(1 ≤ βreg)

, (19)

Q = ε1 logΦ + ε2 logΨ, (20)

C = − yω,t
∑
k,l

γ(KL)
ω,t,kδω,t,l

·
(
log γ(KL)

ω,t,kδω,t,l + ϵ1 log ϵ1 + ϵ2 log ϵ2
)

(21)

Φ = δω,t,l f (KL)
ω,k gk,t, (22)

Ψ = γ(KL)
ω,t,k hω,lul,t. (23)

The equality in (16) holds if and only if the auxiliary variables
are set as follows:

α(∗)
k,l,ω =

f (∗)
ω,khω,l∑
ω′ f (∗)
ω′,khω′,l

, (24)

γ(∗)
ω,t,k =

f (∗)
ω,kgk,t∑

k′ f (∗)
ω,k′gk′,t

, (25)

δω,t,l =
hω,lul,t∑
l′ hω,l′ul′,t

, (26)

ε1 =
Φ

Φ + Ψ
, (27)

ε2 =
Ψ

Φ + Ψ
, (28)

ζ(∗)
ω,t =

∑
k

f (∗)
ω,kgk,t. (29)

The update rules are obtained from the derivative of the upper
bound function (15) w.r.t. each objective variable and substitution
of the equality conditions as

Table 1 Compositions of musical instruments

Composition Melody 1 Melody 2 Midrange Bass
C1 Oboe Flute Piano Trombone
C2 Trumpet Violin Harpsichord Fagotto
C3 Clarinet Horn Piano Cello

Table 2 Spatial conditions of each dataset

Spatial Measure
pattern 1st 2nd 3rd 4th

SP1 θ=45◦ θ=0◦ θ=0◦ θ=0◦

SP2 θ=45◦ θ=45◦ θ=0◦ θ=0◦

SP3 θ=45◦ θ=45◦ θ=45◦ θ=0◦

SP4 θ=45◦ θ=45◦ θ=45◦ θ=45◦

gk,t←



gk,t
∑
ω iω,tyω,t f (EUC)

ω,k∑
ω iω,t f (EUC)

ω,k s(EUC)
ω,t +λ

∑
ω iω,t f (EUC)

ω,k

(∑
k′ f (EUC)
ω,k′ gk′,t

)βreg

(rt ≥ τ)
gk,t
∑
ω iω,tyω,t f (KL)

ω,k s(KL)
ω,t

−1∑
ω iω,t f (KL)

ω,k +λ
∑
ω iω,t f (KL)

ω,k

(∑
k′ f (KL)
ω,k′ gk′,t

)βreg

(rt < τ)

,

(30)

hω,l ←
hω,l
∑

t iω,tyω,tul,tNω,t∑
t iω,tul,tDω,t + µPω,l

, (31)

ul,t←


ul,t
∑
ω iω,tyω,thω,l∑

ω iω,thω,ls
(EUC)
ω,t

(rt ≥ τ)

ul,t
∑
ω iω,tyω,thω,ls

(EUC)
ω,t

−1∑
ω iω,thω,l

(rt < τ)

, (32)

where Nω,t, Dω,t, and Pω,l are given by

Nω,t =

1 (rt ≥ τ)
s(KL)
ω,t

−1 (rt < τ)
, (33)

Dω,t =

s(EUC)
ω,t (rt ≥ τ)

1 (rt < τ)
, (34)

Pω,l =


∑

k f (EUC)
ω,k

∑
ω′ f (EUC)
ω′,k hω′,l (rt ≥ τ)∑

k f (KL)
ω,k
∑
ω′ f (KL)
ω′,k hω′,l (rt < τ)

. (35)

In total, the update rules of superresolution-based SNMF based
on multi-divergence are defined as (30)–(32).

4. Experiments
4.1 Experimental Conditions

To confirm the effectiveness of the proposed algorithm, we
compared six methods, namely, simple directional clustering
[15], multichannel NMF [11], penalized SNMF (PSNMF) based
on KL-divergence and EUC-distance [7], the conventional hy-
brid method based on KL-divergence and EUC-distance, the on-
line hybrid method described in Sect. 3.2, and the proposed hy-
brid method that uses multi-divergence. In this experiment, we
conducted two experiments to consider artificial signal and real-
recorded signal cases. We used stereo signals containing four
melody parts (depicted in Fig. 4) with three compositions (C1–
C3) of instruments shown in Table 1. These signals were artifi-
cially generated by a MIDI synthesizer. In particular, these stereo
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Fig. 4 Scores of each part consisting of four measures.

1

Center
Right

4

2 3

Left

θ

Fig. 5 Panning of four sources, where numbered black circles represent lo-
cations of instruments.

signals were mixed down to a monaural format only when we
evaluated the separation accuracy of PSNMF because PSNMF is
a separation method for a monaural input signal. In the artifi-
cial signal case, the observed signals were produced by mixing
four sources with the same power. The sources were mixed as
shown in Fig. 5, where the target source was always located in
the center direction with another interfering source. In addition,
we used the same MIDI sounds of the target instruments as super-
vision for a priori training. The training sounds contained notes
over two octaves that covered all the notes of the target signal
in the observed signal. The sampling frequency of all signals
was 44.1 kHz. The spectrograms were computed using a 92-ms-
long rectangular window with a 46-ms overlap shift. The number
of iterations used for training and separation was 500, and the
threshold value τ was set to 20%. The number of clusters used in
directional clustering was 3, the number of a priori bases was 100,
and the number of bases for matrix H was 30. The parameters λ
and µ were empirically determined.

In the real-recorded signal case, we recorded each instrumen-
tal solo signal and the supervision sound, which are the same
as those in the artificial signal case, using binaural microphone
NEUMANN KU-100 in an experimental room whose reverbera-
tion time was 200 ms. The levels of background noise and the
sound source measured at the microphone were 37 dB(A) and
60 dB(A). In the center direction, there were two loudspeakers
located at a distance of 1.5 m and 2.5 m from the microphone.
Also, in each of left- and right-hand sides at ±θ, the loudspeaker
was located 1.5 m apart from the microphone. The observed sig-
nals were produced by mixing these signals as the same power.
Other conditions were the same as those of the artificial signal
case.

We prepared four spatially different dataset patterns of the ob-
served signals, SP1–SP4, as shown in Table 2. In the hybrid
method, many chasms were produced by directional clustering in
the measures for θ = 45◦ compared with those for θ = 0◦. There-

fore, we can expect that the EUC-distance-based hybrid method
is suitable for SP4 rather than for the dataset of SP1.

4.2 Experimental Results
We used the signal-to-distortion ratio (SDR), source-to-

interference ratio (SIR), and sources-to-artifacts ratio (SAR) de-
fined in [18] as the evaluation score. Here, the estimated signal
ŝ (t) is defined as

ŝ (t) = starget (t) + sinterf (t) + sartif (t) , (36)

where starget (t) is the allowable deformation of the target source,
sinterf (t) is the allowable deformation of the sources that account
for the interferences of the undesired sources, and sartif (t) is an
artifact term that may correspond to the artifacts of the sepa-
ration algorithm, such as musical noise, or simply undesirable
deformation induced by the nonlinear property of the separation
algorithm. The formulae for SDR, SIR, and SAR are defined as

SDR = 10 log10

∑
t starget(t)2∑

t {einterf(t) + eartif(t)}2
, (37)

SIR = 10 log10

∑
t starget(t)2∑
t einterf(t)2 , (38)

SAR = 10 log10

∑
t

{
starget(t) + einterf(t)

}2∑
t eartif(t)2 . (39)

SDR indicates the quality of the separated target sound, which in-
cludes the degree of separation (SIR) and the absence of artificial
distortion (SAR).

Figures 6 and 7 show the average scores for each method and
each dataset pattern, where four instruments are shuffled with 12
combinations of each of the compositions C1–C3. Therefore,
these results are the averages of 36 input signals. In addition, the
scores of PSNMF are the same for any datasets because the input
signals for PSNMF are mixed down to a monaural format. From
these results, the methods except the hybrid method cannot ob-
tain enough separation performance. The KL-divergence-based
hybrid method achieves high separation accuracy for the dataset
of spatial patterns SP1 and SP2 because these signals do not have
many spectral chasms. On the other hand, the EUC-divergence-
based hybrid method achieves high separation accuracy for SP4.
This dataset has many spectral chasms because the signals are
always mixed with a wide panning angle (θ= 45◦), which yields
many chasms, and high extrapolation ability is required. The pro-
posed hybrid method with multi-divergence can always achieve
better separation for any dataset regardless of whether or not
many chasms exist. This is because the proposed method selects
the appropriate divergence and can automatically apply the opti-
mal divergence to each time frame.

5. Conclusion
We propose a new multi-divergence method to separate the tar-

get signal using the optimal divergence. The proposed method
adapts the divergence in each frame to the optimal one using a
threshold value for the rate of chasms to separate and extrapolate
the target signal with high accuracy. Experimental results show
that our proposed method can always achieve high separation ac-
curacy under all spatial conditions.
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Fig. 6 Average scores of each method and each spatial condition in artificial signal case: (a) shows SDR,
(b) shows SIR, and (c) shows SAR.
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Fig. 7 Average scores of each method and each spatial condition in real-recorded signal case: (a) shows
SDR, (b) shows SIR, and (c) shows SAR.
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