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ABSTRACT

In this paper, we propose a new method of blind source separation
(BSS) for music signals. Our method has the following characteris-
tics: 1) the method is a combination of the sparseness-based model
of source signals and the factorized basis model in nonnegative ma-
trix factorization (NMF), 2) it is assumed that only one basis which
structure source signals is active at each time-frequency bin of the
observed signals, in order to degrade the degree of freedom, 3) pa-
rameter estimation algorithm is based on the EM algorithm regard-
ing the index of the only one active basis as the hidden variable. We
develop the formulation at a different point from NMF and show
source separation performance in some simulation experiments.

Index Terms— Blind source separation, nonnegative matrix
factorization, EM algorithm, sparseness of source signals, time-
frequency masking

1. INTRODUCTION

Blind source separation (BSS) for music signals has been investi-
gated as the basic technique of automatic music transcription, mu-
sic equalizer and music information retrieval (MIR) [1]. In such
case that music performance is recorded using few microphones or
remixed to cut a CD, mixing process of sources is unknown. Then
the aim of BSS is to separate the mixed music signals into each
source.

There are roughly two approaches for BSS. One approach is
to use the spatial information of sources. In overdetermined case,
where there are more sensors than sources, we can separate ob-
served signals into each source signal using independent component
analysis (ICA). However music signals are often stereo recordings
and there are more sources than sensors in real environments, there-
fore we must take into account the source separation in underdeter-
mined case. There are many methods of BSS in underdetermined
case based on the sparseness of sources, which have been discussed
[2, 3, 9]. The other approach is to use the spectral information of
sources. Nonnegative matrix factorization (NMF) is one of the meth-
ods to use it, and has been investigated as a separation method of
monaural audio signal [6]. In the framework of NMF, it is assumed
that acoustic signals in amplitude (or power) domain are composed
of just so many components (music signals often satisfy this assump-
tion.), and target signal can be factorized into the spectral patterns
which structure the signal and their activations at nonnegative do-
main. Various extensions of NMF have been researched [5, 7, 8].

In this paper, we propose a new method of BSS for music sig-
nal. We have a new assumption that only one basis which structure

0 1 2 3 4 5
0

2000

4000

6000

8000

times [s]

fr
eq

ue
nc

y 
[H

z]
Fig. 1. Spectrogram of mixed signal which includes three sources
(red, green, blue).

sources is active at each time-frequency bin, and develop a formula-
tion in combination of the sparseness-based model of source signals
and the factorized basis model in NMF to improve separation per-
formance by using the spatial and spectral information of sources.

2. EXISTING APPROACH OF SPARSENESS-BASED BSS

The most typical method of sparseness-based BSS is time-frequency
masking. Each source signal has the sparse energy in time-frequency
domain as Fig. 1 shows, and it is often assumed only one of them is
active on each time-frequency component. Now we consider ob-
served signal Yω,t (ω = 1, . . . ,Ω is a frequency bin index, and
t = 1, . . . , T is a time frame index) as mixed L source signals S

(l)
ω,t

(l = 1, . . . , L is a source index) in time-frequency domain by the
Short-Time Fourier Transform (STFT). The maskΦ(l)

ω,t to extract the
source signal l can be written as

Φ
(l)
ω,t =

(
1 (iω,t = l)

0 (iω,t �= l)
, (1)

where iω,t is the index of the active source in (ω, t), and estimated
source signal l can be written as

Ŝ
(l)
ω,t = Φ

(l)
ω,tYω,t. (2)

The parameter iω,t can be determined by clustering the power ratios
and time delays between left and right channel of observed signals
at each time-frequency bin [2], or by fitting some distribution using
the EM algorithm in the feature domain [3].

There is a little different approach based on the EM algorithm
[9]. Let Yω,t = (Y

(L)
ω,t , Y

(R)
ω,t )

T be observed signals recorded by
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two microphones in time-frequency domain. Yω,t can be written as

Yω,t =

„
1

e
jδiω,t

ω

«
S

(iω,t)
ω,t +Nω,t, (3)

where δl is the time delay of the source signal l between two mi-
crophones and Nω,t = (N

(L)
ω,t , N

(R)
ω,t )

T is the observation error. If
Nω,t follows some distribution, each parameter can be determined
by applying the EM algorithm regarding the active source index iω,t

as the hidden variable. This algorithm gives the probability that
each source is active in each time-frequency bin, and the probability
presents the partition function and works as a soft mask for separa-
tion.

3. PROPOSED METHOD

3.1. Observation based on a sparse component model

Let Yω,t = (Y
(L)

ω,t , Y
(R)

ω,t )
T be observed signals recorded by two

microphones in time-frequency domain. Approximately Yω,t can
be written as

Yω,t =

LX
l=1

„
1

ejδlω

«
S

(l)
ω,t +Nω,t, (4)

where S
(l)
ω,t is the source signal l, δl is the time delay of the source

signal l between two microphones, and Nω,t = (N
(L)
ω,t , N

(R)
ω,t )

T is
the observation error which includes reverberation and background
noise. And Nω,t is assumed to follow that

Nω,t ∼ NC

`
0, σ2I

´
, (5)

where NC(—,Σ) is the complex Gaussian distribution such as

x ∼ NC(—,Σ) =
1

π|Σ|e
−(x−—)HΣ−1(x−—). (6)

Now we introduce factorized basis model of NMF to this mixture
model in order to utilize the spectral information of source signals.
Acoustic signals are assumed to be composed of just so many com-
ponents which have their own spectral patterns in amplitude domain,
and source signal S

(l)
ω,t can be factorized as

S
(l)
ω,t =

X
k∈Kl

c
(k)
ω,t =

X
k∈Kl

Hω,kUt,kejφω,t,k , (7)

where c
(k)
ω,t is a component which structures acoustic signals, Hω,k

is a static magnitude spectral pattern called a basis, Ut,k is a time-
varying activation, and φω,t,k is a phase spectrum. Kl is the class
of bases which structure S

(l)
ω,t and k (k = 1, . . . , K) is the index of

bases. And we assume X
ω

Hω,k = 1 (8)

in order to avoid an indeterminacy in the scaling. Some of the au-
thors proposed this factorized model and its parameter estimation
algorithm in the framework called complex NMF [7].

Here, it is assumed that the component c
(k)
ω,t composed of each

basis has sparse energy in time-frequency domain and that only one
basis is active in (ω, t) of observed signals. Then Yω,t can be writ-
ten as

Yω,t =

„
1

ejδl′ω

«
Hω,k′Ut,k′ejφω,t,k′ +Nω,t, (9)

where k′
ω,t is the index of the active basis in (ω, t), and l′ω,t is the

index of the source signal which is composed of the basis, k′
ω,t ∈

Kl′ω,t
. And for simplicity we abbreviate the frequency and time in-

dex of k′
ω,t, l

′
ω,t. In this paper we call this model a sparse compo-

nent model, and this framework is a different approach from NMF.
Thanks to the assumption, the degree of freedom of observation
model can be degraded, and the parameters Hω,k, Ut,k can be deter-
mined uniquely.

3.2. Applying the EM algorithm to parameter estimation

We can decide these parameters in the framework of Maximum
A Posteriori (MAP) estimation. For simplicity, it is defined as
H ≡ (Hω,k)Ω×T , U ≡ (Ut,k)T×K , ffi ≡ (φω,t,k)Ω×T×K ,
Ψ ≡ {H,U, ffi}, ‹ ≡ {δ1, · · · δL}. By Bayes’ theorem, the poste-
rior distribution of observed signals Yω,t can be written as

p(Ψ, ‹, σ2|Y) ∝ p(Y|Ψ, ‹, σ2)p(Ψ, ‹, σ2), (10)

where p(Y|Ψ, ‹, σ2) and p(Ψ, ‹, σ2) are the likelihood and prior
distribution of the parameters Ψ. For convenience, we assume that
the prior distribution of H, U, ffi, σ2 and ‹ are independent, that
p(H), p(ffi), p(σ2) and p(‹) are uniform, and that U follows a gen-
eralized Gaussian distribution given by

p(U) =
Y
t,k

1

2Γ(1 + p−1)b
e−

|Ut,k|p
bp , (11)

where p (0 < p ≤ 2) and b (> 0) are the parameters that decide
the shape of the distribution. The distribution promotes sparsity of
U so that source signals can be composed of as few bases as possi-
ble. Then our goal is to obtain the parameter θ ≡ {Ψ, ‹, σ2} that
maximizes

Ξ(θ) ≡ log p(Y|Ψ, ‹, σ2) + log p(U). (12)

It is very difficult to maximize Ξ(θ) directly because the loga-
rithmic posteriori distribution has hidden variable k′ in eq. (9), how-
ever the parameter θ can be determined applying the EM algorithm
as same way as Izumi et al [9]. For parameter estimation includ-
ing missing data, the EM algorithm introduces an auxiliary function
called the Q function defined using a tentative parameter. On the
assumption that only one basis is dominant at each time-frequency
bin, the likelihood p(Yω,t|θ) can be written as

p(Yω,t|θ) = p(Yω,t, k
′
ω,t|θ)

p(k′
ω,t|Yω,t, θ)

=
p(Yω,t|Ψk′ , δl′ , σ

2)

p(k′
ω,t|Yω,t, θ)

, (13)

where k′
ω,t represents the index of the dominant basis in (ω, t) and

l′ω,t satisfies k′
ω,t ∈ Kl′ω,t

. p(Yω,t|Ψk, δl, σ
2) represents the like-

lihood of the observation Yω,t when the basis k is in the direction
δl(k ∈ Kl), and can be written as

log p(Yω,t|Ψk, δl, σ
2) = − log(πσ4)−
1

σ2

˛̨̨
Yω,t − a(l)

ω Hω,kUt,kejφω,t,k

˛̨̨2
, (14)

where a
(l)
ω = (1, exp(jδlω))

T . From eqs. (11) - (14), the Q func-
tion can be written as

Q(θ, θ(n)) =
X
k,ω,t

m
(n)
k,ω,t log p(Yω,t|Ψk, δl, σ

2)−
X
t,k

Up
t,k

bp
,

(15)
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where

m
(n)
k,ω,t = p(k|Ψ(n), δ(n), σ2(n)

,Yω,t) (16)

=
p(Yω,t|Ψ(n)

k , δ
(n)
l , σ2(n)

)P
k′ p(Yω,t|Ψ(n)

k′ , δ
(n)

l′ , σ2(n))
. (17)

The parameter θ is estimated by sequential iteration of two steps:

• E-step: calculate Q(θ, θ(n)) (update m
(n)
ω,t,k by eq.(17))

• M-step: update θ(n) by θ(n+1) = argmax
θ

Q(θ, θ(n)).

And we are led to get the update rules of θ by differentiating the Q
function with respect to each parameter. Update rules of the param-
eters except m

(n)
ω,t,k are summarized as follows:

H
(n+1)
ω,k =

P
t m

(n)
k,ω,tU

(n)
t,k

˛̨̨
YH

ω,t(a
(l)
ω )

(n)
˛̨̨

2
P

t m
(n)
k,ω,t(U

(n)
t,k )

2
, (18)

U
(n+1)
t,k =

P
ω m

(n)
k,ω,tH

(n)
ω,k

˛̨̨
YH

ω,t(a
(l)
ω )

(n)
˛̨̨

2
P

ω m
(n)
k,ω,t(H

(n)
ω,k)

2 + λpσ2(U
(n)
t,k )

p−2
, (19)

φ
(n+1)
ω,t,k = arg

“
YH

ω,t(a
(l)
ω )

(n)
”H

, (20)

δl = argmax
δl

Q(θ, θ(n)), (21)

`
σ2´(n+1)

=
X
k,ω,t

m
(n)
k,ω,t

2ΩT

˛̨̨
‰
(n)
ω,t,k

˛̨̨2
, (22)

where λ = b−p, ‰
(n)
ω,t,k = Yω,t − (a(l)

ω )
(n)H

(n)
ω,kU

(n)
t,k e

jφ
(n)
ω,t,k . The

update of δl is done by calculating the Q function for all the discrete
δl and selecting the maximum because update rule cannot be solved
analytically. In addition, after every update of H, it is standardized
as satisfies eq. (8). And from these update rule, the non-negativity of
H and U is preserved if we start with nonnegative initial conditions
for them.

3.3. Mask design based on Wiener filter for separation

There are several methods to extract source signals from observed
signals using the estimated parameter θ. Here we design a mask
based on Wiener filter for separation in order to utilize the informa-
tion of power spectra that source signals have. Now the expectation
of power spectrum of source signal l can be calculated as

E
h
|S(l)

ω,t|2
i

=
X

k∈Kl

p(k)|c(k)
ω,t|2 +

X
k′ /∈Kl

p(k′) · 0 (23)

=
X

k∈Kl

mk,ω,t(Hω,kUt,k)
2, (24)

so source signal S
(l)
ω,t can be written as

Ŝ
(l)
ω,t =

E
h
|S(l)

ω,t|2
i

P
l E

h
|S(l)

ω,t|2
i · (a

(l)
ω )

HYω,t

2
, (25)

=

P
k∈Kl

mk,ω,t(Hω,tUt,k)
2P

k mk,ω,t(Hω,tUt,k)2
· (a

(l)
ω )

HYω,t

2
. (26)

Fig. 2. alignment of sources and sensors.

And our framework can estimate not only source signals but also
each component. In the same way as eq. (26), a component c

(k)
ω,t of

source l can be written as

ĉ
(k)
ω,t =

mk,ω,t(Hω,tUt,k)
2P

k mk,ω,t(Hω,tUt,k)2
· (a

(l)
ω )

HYω,t

2
. (27)

4. EXPERIMENT

We evaluated the separation performance of proposed method in
reverberant environments through simulations. There were three
sources and two microphones in a simulated room illustrated Fig. 2.
The observed signals were calculated by mirror method. We syn-
thesized the source signals of RWC database using MIDI (Musical
Instrument Digital Interface). The instruments of sources are Tenor
Sax, Bass, and Piano. STFT was calculated using Hanning window
that was 64ms long with a 32ms overlap at a sampling rate of 16kHz.
The algorithm was run for 40 iterations. The parameters were set up
at p = 2, λ = 0.01, K = 30. How to give the initial values of H
and U is as following:

1. Initialize H and U by applying NMF to the observed signals,
2. Reconstruct components at left and right channels of each

factorized basis using the phase spectrum of the observed sig-
nals,

3. Classify K components into source signals by comparing sig-
nals of left and right channel using cross-correlation.

As a comparison, we used the DUET by Yilmaz et al. [2] and
the soft masking method using the EM algorithm by Izumi et al.
[9]. We used the improvement of SNR and SIR as measures of
source separation performance. In this paper, SIR and SNR were
calculated by SIRi = | < si, ŝi > |/ P

j �=i | < sj , ŝi > | and
SNRi = |s′i|/|ŝi − s′i|, where si represents a vector of the true
ith source signal in the time domain, ŝi is the estimated one and
s′i = si· < si, ŝi > /|ŝi|2. Table 1 ,2 and Fig 3 show results. While
in case that TR = 66.7 ms Izumi’s method and proposed method
show better performance for source separation, in case of long rever-
beration time, proposed method has best performance among these
methods.

Fig. 4 shows the spectrogram of source signal S
(l)
ω,t, estimated

source Ŝ
(l)
ω,t and a component of the source c

(k)
ω,t. We can see a spec-

tral pattern on the spectrogram of c
(k)
ω,t. Then it is indicated that our

method can not only separate the observed signals into sources but
also factorize the bases which structure the observed signals.
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Table 1. Source separation results (SNR[dB])
Condition Method s1 s2 s3 Avg.

DUET 15.0 5.9 10.0 10.3
TR = 66.7[ms] Izumi 13.3 9.9 16.1 13.1

proposed 11.7 4.7 9.4 8.6
DUET 12.7 -3.1 3.4 4.3

TR = 273[ms] Izumi 8.1 5.9 13.3 9.1
proposed 10.1 8.5 14.6 11.0

Table 2. Source separation results (SIR[dB])
Condition Method s1 s2 s3 Avg.

DUET 31.4 19.4 20.4 23.7
TR = 66.7[ms] Izumi 31.3 19.8 30.2 27.1

proposed 24.4 25.1 19.6 23.0
DUET 32.0 12.3 6.1 16.8

TR = 273[ms] Izumi 32.9 11.1 28.8 24.2
proposed 28.5 18.8 33.2 26.8

Fig. 3. Average SNR improvement under various conditions.

5. CONCLUSION

In this paper, we proposed a new method of source separation for
music signals based on the assumption that only one basis which
structures source signals is active at each time-frequency bin, and
developed a parameter estimation method based on the EM algo-
rithm in the same way as [9]. The hidden variable corresponds to
the active basis index in our formulation. Our approach is to use the
spatial and spectral information, and we confirmed that our method
has better performance to separate the observations in long reverber-
ant environments through a simulation experiment, and that bases
which structure sources can be learned in our framework. We plan
to introduce a noise model appropriate for reverberation and extend
the bases to 2-dimensional components with temporal structure like
[5].
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