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Spectrogram consistency and its application
to phase reconstruction

Jonathan Le Roux,†1 Hirokazu Kameoka,†1

Nobutaka Ono†2 and Shigeki Sagayama†2

In this article, we derive the constraints which a set of complex numbers must
verify to be a consistent STFT spectrogram, i.e., to be the STFT spectrogram
of an actual real-valued signal, and describe how they lead to an objective func-
tion measuring the consistency of a set of complex numbers as a spectrogram.
We then present a flexible phase reconstruction algorithm based on a local ap-
proximation of the consistency constraints and derive a real-time time-scale
modification algorithm.

1. Introduction

Many acoustical signal processing techniques, developed for a wide range of
applications such as source separation [7, 11–13], noise canceling [2], time-scale
and pitch-scale modifications or more generally audio modification [6], involve
a processing of the time-frequency representation of a signal obtained by the
short-time Fourier transform (STFT).

However, as the STFT representation is usually obtained from overlapping
frames of a waveform, it is redundant and characterized by a particular struc-
ture. Starting from a set of complex numbers in the complex time-frequency
domain, it is thus not guaranteed whether there exists a signal in the time do-
main whose STFT is equal to that set of complex numbers. Therefore, to avoid
irrealistic solutions, any processing performed on STFT spectrograms should en-
sure that its outputs are “consistent spectrograms”, i.e., that they all are the
STFT of some time-domain signal, or, when dealing with magnitude or power
spectrograms, that there exist phases which can be coupled with the ouput mag-
nitude spectrograms to give consistent spectrograms. If consistency cannot be
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exactly ensured, one should at least look for outputs which are “as consistent as
possible”. This is in particular the case when trying to resynthesize a signal from
a modified magnitude STFT spectrogram, for which there is in general no phase
such that their combination is consistent. Carefully studying the structure of
complex STFT spectrograms and quantifying the consistency of a set of complex
numbers is thus a crucial issue.

In this article, we derive explicit consistency constraints for STFT spectrograms
as the kernel of a simple linear operator in the complex time-frequency domain
with coefficients depending on the window length, the frame shift and the analysis
and synthesis windows used to build the spectrogram or which the spectrogram is
assumed to have been obtained from. The norm of the image of a set of complex
numbers by this linear operator defines a numerical consistency criterion, which
can for example be used as a prior distribution on complex spectrograms when
performing separation tasks in the complex time-frequency domain, or, as we shall
investigate here, as an objective function on the phase when trying to recover
the most coherent phase for a given magnitude spectrogram.

We will first derive consistency constraints for STFT spectrograms, then ex-
plain how to define a numerical consistency criterion based on them, and finally
introduce an algorithm for phase reconstruction based on the optimization of an
objective function derived from the consistency criterion and show how it can be
used to develop a flexible real-time time-scale modification algorithm.

2. Characterization of consistent STFT spectrograms

2.1 Perfect reconstruction constraints on the window functions
Let (x(t))t∈Z be a digital signal. We review here the conditions for perfect

reconstruction of the signal through STFT and inverse STFT [1, 4]. Let N be
the window length, R the window shift, w the analysis window function and s the
synthesis window function. We suppose that w and s are zero outside the interval
0 ≤ t ≤ N − 1. We assume that the window length N is an integer multiple of
the shift R, and we note Q = N/R. We shall denote by θ = (w, s, N, R) the set
of all parameters related to analysis and synthesis.

It can be shown [4] that there is perfect reconstruction through the inverse
STFT under the following necessary conditions:

1 =
Q−1∑
q=0

w(t− qR)s(t− qR), ∀t. (1)
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2.2 Consistency operator
Let (Hm,n)0≤m≤M−1,0≤n≤N−1 be a set of complex numbers, where m will cor-

respond to the frame index and n to the frequency band index, and w and s be
analysis and synthesis windows verifying the perfect reconstruction conditions (1)
for a frame shift R. STFTw will denote the STFT with analysis window w, and
iSTFTs the inverse STFT with synthesis window s. When not indicated, we will
assume that we use w and s respectively.

As we are interested here in spectrograms corresponding to real-valued signals,
we shall assume in the following that N = 2P and that all the sets of complex
numbers considered are “conjugate symmetric”, i.e., ∀n ∈ [[1;P − 1]], H(m,P +
n) = H(m, P − n) and the elements at frequency band indices 0 and P are real-
valued. These sets form an R-vector subspace of CM×N , denoted by S . STFT
spectrograms obtained from real-valued signals are examples of such sets, but
the point to be made in this paper is that not all such sets can be obtained
as STFT spectrograms of real-valued signals. For the set H to be a consistent
STFT spectrogram, it needs to be the STFT spectrogram of a signal x(t), which
by perfect reconstruction can be none other than the result of the inverse STFT
of the set (Hm,n). A necessary and sufficient condition for H to be a consistent
spectrogram is thus for it to be equal to the STFT of its inverse STFT. The point
here is that, for a given window length N and a given frame shift R, the operation
iSTFTs◦STFTw from the space of real-valued signals of length T = (M−1)R+N
to itself is the identity, while STFTw ◦ iSTFTs from S to itself is not.

Altogether, the set of consistent spectrograms can be described as the kernel
of the R-linear operator from S to itself defined by

Fw,s(H) = (STFTw ◦ iSTFTs − IMN )(H), (2)
where IL denotes the L×L identity matrix. We shall refer to this operator as the
“consistency operator”, and write F instead of Fw,s when there is no ambiguity.

2.3 Derivation of explicit consistency constraints
We can derive consistency constraints for STFT spectrograms in the time-

frequency domain by explicitly stating that a consistent spectrogram H must be
in the kernel of F . A simple computation leads to the following expression for
the image of H by F :

F(H)m,n =
1
N

∑
k

w(k)e−j2πk n
N

Q−1∑
q=−(Q−1)

s(k + qR)
N−1∑
n′=0

Hm−q,n′ej2πn′ k+qR
N −Hm,n.

(3)

By introducing the coefficients

α(θ)
q,p =

1
N

∑
k

w(k)s(k + qR)e−j2πp k+qR
N − δpδq, (4)

where −(N − 1) ≤ p ≤ N − 1 and δi is the Kronecker delta (δ0 = 1 and δi = 0
for i ̸= 0), and stating that F(H)m,n must be equal to 0 for all m and n, we
can obtain the consistency constraints we are looking for, summarized in the
following
Proposition. For analysis and synthesis windows w and s verifying the perfect
reconstruction conditions (1) for a frame shift R, a set of complex numbers H ∈
S is a consistent spectrogram if and only if, ∀m ∈ [[0,M − 1]], ∀n ∈ [[0, N − 1]],

F(H)m,n =
N−1∑
n′=0

Q−1∑
q=−(Q−1)

ej2π qR
N nα

(θ)
q,n−n′Hm−q,n′ = 0, (5)

where the coefficients α(θ) are defined by (4).
The interesting point in the above relation is that we characterized the consis-

tency of a set of complex numbers directly in the time-frequency domain, without
having to make apparent the connection with a certain time domain signal.

3. Numerical consistency criterion

3.1 Relaxing the constraints
Equation (5) represents the relation between a set of complex numbers and

the STFT of its inverse STFT, as its left member is F(H). Instead of enforcing
consistency through the “hard” constraints (5), which may be difficult to handle,
these can be relaxed by introducing any vector norm of F(H): this indeed leads
to a numerical criterion which can be used to quantify how far a set of complex
numbers is from being consistent. We can for example consider in particular the
L2 norm of F(H), as we will show later on that this special choice leads to a
criterion which is related to that used by Griffin and Lim to derive their iterative
STFT algorithm [4]. This defines a consistency criterion I(H) = ||F(H)||2 as
follows:

I(H) =
∑
m,n

∣∣F(H)m,n

∣∣2. (6)

3.2 Consistency as a penalty function
We can think of using numeral consistency criterions such as (6) as penalty

functions, for example when working on source separation or spectrogram mod-
ification algorithms in the complex time-frequency domain. In such situations
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where one attempts to estimate complex spectrograms following certain proper-
ties from an input signal, ensuring that the estimated sets of complex numbers
are consistent spectrograms is both likely to lead to better, because more consis-
tent and thus more meaningful, results, and to ease the optimization process by
reducing the dimension of the problem, as it will tend to discard solutions which
are not coherent.

We shall however leave these issues to forthcoming papers and investigate here
the use of the consistency criterion introduced above to define an objective func-
tion on phase when the magnitude is fixed, as described in the next section.

4. Phase reconstruction for a modified STFT spectrogram

We consider here the application of the consistency criterion (6) to develop an
algorithm for reconstructing the most consistent phase given a modified magni-
tude STFT spectrogram. The iterative STFT algorithm introduced by Griffin
and Lim [4] is the reference for such algorithms. Its principle is to find the consis-
tent STFT spectrogram with magnitude closest to a given modified magnitude
spectrogram. On the other hand, the algorithm we propose looks for a phase
such that the spectrogram obtained by associating it with that magnitude spec-
trogram is as consistent as possible. Although conceptually close to the iterative
algorithm, a crucial difference is that it operates directly in the time-frequency
domain.

4.1 Objective function for phase reconstruction problems
In the problem of phase reconstruction, we are given a set of real non-negative

numbers Am,n which are supposedly the amplitude part of an STFT spectrogram,
for example obtained through modifications of the power spectrum of a sound.
The goal is to estimate the phase ϕm,n to adjoin to A such that Am,nejϕm,n

is as close as possible to be a consistent STFT spectrogram. This amounts to
minimizing the consistency criterion I w.r.t. the phase ϕ, with the amplitude A
given, defining the following objective function:

Ĩ(ϕ) =
∑
m,n

∣∣∣ ∑
p,q s.t. |n−p|∈[[0,N−1]]

ej2π qR
N nα(θ)

q,pAm−q,n−pe
jϕm−q,n−p

∣∣∣2, (7)

In [4], Griffin and Lim presented the iterative STFT algorithm, which consists
in iteratively updating the phase ϕ

(k)
m,n at step k by replacing it with the phase

of the STFT of its inverse STFT while keeping the magnitude A. The algorithm
is illustrated in Fig. 1, where x(k+1) denotes the inverse STFT of Am,nejϕ(k)

m,n ,

|H| = A

Aejφ(k)

x̂(k+1)

Aejφ(k+1)

Ĩ(φ(k))

x̂(k)

d(x(k+1), A)

Fig. 1 Illustration of the iterative STFT algorithm and the relation between the objective
function Ĩ and the squared distance d(x, A).

x̂(k+1) the STFT of x(k+1), and ϕ
(k+1)
m,n the phase of x̂(k+1), ϕ

(k+1)
m,n = ∠x̂(k+1).

They showed that this procedure estimates a real-valued signal x which mini-
mizes (at least locally) the squared distance

d(x, A) =
∑
m,n

∣∣∣|x̂|m,n −Am,n

∣∣∣2, (8)

i.e., the squared error between the magnitude of the STFT x̂ of x, and the
magnitude spectrogram A. As can be seen in Fig. 1, we shall note that the
objective function Ĩ measures a slightly different quantity from the squared dis-
tance (8), but that the iterative STFT algorithm also converges to a minimum
of (7). Indeed, both quantities become equivalent near convergence, as one can
show that d(x(k+1), A) ≤ Ĩ(ϕ(k)) ≤ d(x(k), A) [4]. However, the objective func-
tion Ĩ we introduced has the advantages to be explicit and defined directly in the
time-frequency domain, and in its general version (6) not to be limited to phase
reconstruction problems with fixed magnitude.

4.2 Direct optimization of Ĩ
The iterative STFT algorithm, as mentioned above, can be used to minimize
Ĩ. However, this can be considered as an indirect minimization, and it is worth
looking at a direct minimization of Ĩ through classical optimization methods.

3 c⃝ 2009 Information Processing Society of Japan

Vol.2009-MUS-81 No.8
2009/7/30



IPSJ SIG Technical Report

This will indeed provide us with the freedom to modify/approximate the objective
function on one hand, and to select how each bin will be dealt with on the other.
One could for example decide not to update the phase for certain bins which
are considered reliable. Further in this direction, one could try to reconstruct
bins which have been discarded by a binary mask from the bins which have been
determined as reliable by minimizing the consistency criterion (6) with respect to
both the magnitude and phase of those bins while keeping others fixed. Finally,
one could also imagine introducing weights depending on frequency to emphasize
stronger consistency in certain frequency regions based on perceptual criteria, or
on magnitude to give more importance to the reduction of inconsistency around
bins with large magnitude. The bin selection presented in Section 4.4 is a discrete
version of this last idea.

4.3 Approximate objective function and phase coherence
Here, we will make the following two approximations. We will first neglect

the influence of ϕm,n in all the terms F(H)m′,n′ other than F(H)m,n, which
is the one where it is multiplied by α

(θ)
0,0. The motivation behind this first ap-

proximation is that the coefficient α
(θ)
0,0 dominates over the other coefficients. By

assuming the other phase terms fixed, we will then update each bin’s phase ϕm,n

so that α
(θ)
0,0Am,nejϕm,n is in opposite direction with the terms coming from the

neighboring bins, while keeping its amplitude Am,n fixed. This corresponds to
performing a coordinate descent [14]. More precisely, as α

(θ)
0,0 = 1/Q− 1 < 0, the

update for bin (m,n) is

ϕm,n ← ∠
( ∑

(p,q) ̸=(0,0) s.t. |n−p|∈[[0,N−1]]

ej2π qR
N nα(θ)

q,pHm−q,n−p

)
. (9)

Second, noticing that most of the weight in the coefficients α
(θ)
q,p is actually

concentrated near (0, 0), as can be seen in Fig. 2 for a window length N = 512
and a frame shift R = 256, with a Hanning analysis window and a rectangular
synthesis window, we can further approximate the update equations (9) by using
only (2l + 1) × (2Q − 1) central coefficients instead of the total N × (2Q − 1),
where l≪ N . This approximation is motivated by the importance of local phase
coherences, in particular the so-called “horizontal” and “vertical” coherences, to
obtain a perceptually good reconstructed signal, and can be considered close to
phase-locking techniques [5, 6, 10].

This approximation enables us to compute directly the update of each bin
through the summation of a few terms, instead of the whole convolution which

q

p

−1 0 1

8

4

0

−4

−8

Fig. 2 Magnitude of the central coefficients α
(θ)
q,p for N = 512, R = 256, a Hanning analysis

window and a rectangular synthesis window.

would be involved if using all the terms. The update becomes:

ϕm,n ← ∠
( ∑

(p,q)̸=(0,0) s.t. |p|≤l

ej2π qR
N nα(θ)

q,pHm−q,n−p

)
, (10)

where frequency indices are understood modulo N . For l = 2 and a 50 % overlap,
for example, we only consider 5× 3 coefficients.

4.4 Taking advantage of sparseness
As evoked above, using a direct optimization of the objective function Ĩ enables

us to select which bins to update. This can be the key to deal with problems
where only a part of the spectrogram has to have its phase reconstructed, but
it can also in general be used to lower the computational cost. Indeed, we can
use the sparseness of the acoustic signal to limit the updates to bins with a
significant amplitude, or progressively decrease the amplitude threshold above
which the bins are updated, starting with the most significant bins and refining
afterwards. This idea can be related to the peak picking techniques in [5, 6].

4.5 Exact optimization through an auxiliary function method
We note that the objective function (7) can be minimized based on an auxiliary

function method. Let (Gm,n
m′,n′) be the matrix representation of F . We then have

F(H)m,n =
∑

m′,n′ Gm,n
m′,n′Hm′,n′ . If we introduce auxiliary variables Z

m,n

m′,n′ such
that ∀m,n,

∑
m′,n′ Z

m,n

m′,n′ = 0, then for any such Z and for any δm,n
m′,n′ > 0 such

that for all m, n,
∑

m′,n′ δm,n
m′,n′ = 1, we can show that

||F(H)||2 ≤
∑

m,n,m′,n′

1
δm,n
m′,n′

∣∣∣Zm,n

m′,n′ −Gm,n
m′,n′Am′,n′ejϕm′,n′

∣∣∣2. (11)

Minimizing the auxiliary function in the right-hand term first w.r.t. Z then w.r.t.
ϕ leads to the following update equation for ϕ:

ϕm,n ← Arg
(
am,nHm,n − (FHF(H))m,n

)
, (12)
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where am,n =
∑

m′,n′ |Gm′,n′

m,n |2/δm′,n′

m,n depends on the choice of δ. As δ is of
very large dimension, it is preferable to set it in such a way that a can be
computed directly without explicitely computing δ. If we consider δm,n

m′,n′ =
|Gm,n

m′,n′ |q/
∑

m′,n′ |Gm,n
m′,n′ |q, where q > 0 is a tunable exponent, we get

am,n =
∑

m′,n′

|α(θ)
m′,n′ |2−q

∑
m′,n′

|α(θ)
m′,n′ |q = a. (13)

Intuitively, a acts as a learning weight in Eq. (12): the larger a, the slower ϕ will
move from its current value. As convergence is guaranteed anyway, we should
thus look for a as small as possible, which is the case for q = 1, where we have
a = (

∑
|α|)2. We then have

ϕ← Arg
(
aH −FHF(H)

)
. (14)

It is interesting to note the link with Griffin and Lim’s update, which can be
written with our notations as

ϕ← Arg
(
H + F(H)

)
, (15)

In the special case where the windows w and s are equal (for example with the
sine window), then FH = F and one can see that FHF(H) = −F(H). The only
difference is then the a factor. We haven’t been able so far to find a setting for
δ which would lead to a equal to or close to 1, and noticed through experiments
that, due to that factor, Griffin and Lim’s update was faster than the auxiliary
approach one in terms of the decrease of inconsistency per iteration. We plan to
investigate this issue in the future as well.

4.6 Time-scale modification
4.6.1 Need for an efficient frequency-domain algorithm
Many methods for time-scale and pitch-scale modification of acoustic signals

have been proposed, and the interest on this subject intensified in recent years
with the increase in the commercial application of such techniques. So far, most
commercial implementations rely on time-domain methods, usually variations
on Synchronous Overlap and Add (SOLA) or Pitch Synchronous Overlap and
Add (PSOLA) techniques [8]. Their advantages are a low computational cost
and good quality results for small modification factors (smaller than ±20 %
or ±30 %) and monophonic sounds. For larger factors, polyphonic sounds or
non-pitched signals, however, the quality of the results drops severely. On the
other hand, frequency-domain methods, such as the phase vocoder [3], are not
limited to such constraints, but they involve a much higher computational cost

and introduce artifacts of their own [6]. These artifacts have been shown to be
mainly connected to phase incoherences, and special care must thus be taken
when estimating the phases in the modified signal’s STFT spectrogram. The
iterative STFT algorithm of Griffin and Lim has been proposed as a way to correct
such phase incoherences, although the computational cost and the slow speed
of convergence have been obstacles to its adoption in commercial applications.
The algorithm we introduced is a flexible alternative to iterative STFT, and by
an active use of sparseness and the reduction of the number of multiplications
involved at each step, should lead to a lower computational cost.

4.6.2 Sliding-block analysis for real-time processing
Inspired by an idea in [9], we derive a real-time optimization scheme for the

objective function introduced above based on a sliding-block analysis. The spec-
trogram is not processed all at once, but progressively from left to right, making
it possible to change the parameters while sound is being played. The waveform
to be time-scaled is read N samples at a time and with an average frame shift of
fR where f is the time-scale multiplication factor. The phase updates described
above are performed only on a sliding block of b frames. Frames exiting the
sliding block are then used to resynthesize the output signal, with a frame shift
R, leading to a signal whose length is 1/f times the length of the original signal.

This way of building intermediate frames of the spectrogram is arguably more
reliable than interpolating neighboring spectrogram frames and leads to an initial
estimate of the phase which can be used as a starting point for both the iterative
STFT and the proposed method.

4.6.3 Experimental evaluation
We implemented the proposed method and the iterative STFT algorithm and

compared their convergence speed on the time-scale modification of the first 23 s
of Chopin’s Nocturne No. 2. The time-scale modification factor was set to 0.7, the
frame length to 1024 and the frame shift to 512, for a final length of approximately
32 s. We used a 5 × 3 approximation of the coefficients α

(θ)
q,p for our algorithm.

We ran our algorithm in two different experimental conditions, one where all the
bins are updated at each iteration, and the other relying on sparseness, where at
iteration k, only bins whose amplitude is larger than Ae−Bk are updated. Here,
we used A = 1 and B = 0.005, which were determined experimentally. The
objective function I(H) is used as a measure of convergence, and represented in
decibels, with the initial value as a reference.

A comparison of the speed of convergence in terms of the decrease of I(H) w.r.t.
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Fig. 3 Comparison of the evolution of the inconsistency measure I(H) w.r.t. the number of
iterations for the iterative STFT algorithm and the proposed method.

Table 1 Computation time (s) required to reach a certain decrease of the inconsistency
measure I

Time to reach -10dB -13dB -15dB

Iterative STFT (G&L) 3.9s 10.9s 23.8s
Proposed method 0.6s 2.4s 7.6s
Proposed method (sparse) 0.2s 0.8s 1.6s

the number of iterations (or, equivalently, the block size) is shown in Fig. 3. One
can see that, although our algorithm is based on an approximation of the original
objective function I(H), it outperforms the iterative STFT algorithm in terms
of speed of convergence as the number of iterations required to reach a given
decrease of inconsistency. We also compared the computation times of the three
methods, measuring only the time required by the phase reconstruction part of
the algorithm as the other parts are identical. With our implementations, for
200 iterations, the iterative STFT algorithm took 29.1 s, our method with full
updates 24.2 s, and our method using sparseness 2.1 s. Looking at the amount
of time required to reach a certain decrease in inconsistency illustrates how our
method, by combining speed of convergence and lower computational cost, leads
to a much shorter computational time than iterative STFT, as illustrated in
Table 1 for the experimental conditions described above.

In terms of flexibility, speed of convergence and computation time, our algo-
rithm thus outperforms the iterative STFT algorithm.

5. Conclusion

We introduced a general framework to assess for the consistency of complex

STFT spectrograms, and explained how it could be used to introduce penalty
functions in the complex time-frequency domain and to define an objective func-
tion on phase when working in the time-frequency magnitude or power domain.
We developed a flexible phase reconstruction algorithm which can take advantage
of the sparseness of the input signal and can take into account regions where phase
is reliable. We applied this algorithm for time-scale modification, and explained
how to perform a real-time processing based on a sliding-block analysis.
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