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ABSTRACT

The modification of magnitude spectrograms is at the core of
many audio signal processing methods, from source separation to
sound modification or noise canceling, and reconstructing a natu-
ral sounding signal in such situations is thus a very important issue.
This article presents recent theoretical and experimental develop-
ments on the application to signal reconstruction from a modified
magnitude spectrogram of the constraints that an array of complex
numbers must verify to be a consistent short-time Fourier trans-
form (STFT) spectrogram, i.e., to be the STFT spectrogram of an
actual real-valued signal. We give here further theoretical insights,
present several potential variations on our previously introduced
algorithm, investigate various techniques to speed up the signal
reconstruction process, and present a thorough experimental com-
parison of the performance of all the considered algorithms.

1. INTRODUCTION

Short-time Fourier transform (STFT) is one of the most funda-
mental and ubiquitous tools in audio signal processing, and an ex-
tremely large amount of techniques developed for a wide range
of applications such as noise canceling, source separation, dere-
verberation or audio modification, are based on or involve the pro-
cessing of the STFT spectrogram of a waveform. The main reasons
for its success are that its computation is both fast and simple to
implement, and that it efficiently unveils the time-frequency struc-
ture of a signal under the assumption that it is short-term station-
ary, which is often a good approximation for natural sounds, such
as speech or music. Moreover, the STFT is both linear and invert-
ible: an additive mixture of time-domain signals transforms to the
corresponding additive mixture of STFT spectrograms, and there
is a perfect equivalence between a time-domain signal and its com-
plex STFT spectrogram, as the signal can be exactly reconstructed
through a weighted overlap-add procedure [1,2].

A very important issue is however often overlooked: the STFT
spectrogram is a redundant representation, computed by concate-
nating Fourier transforms of overlapping short-time frames of the
signal, and any processing performed in the STFT domain should
thus take into account this redundancy. Concretely, starting from
a “spectrogram-like” array of complex numbers in the complex
time-frequency domain, it is not guaranteed whether there exists
a signal in the time domain whose STFT is equal to that array of

complex numbers. We shall call consistent spectrograms the ar-
rays for which such a signal exists.

This article is a follow-up to our previous paper on phase es-
timation from a magnitude spectrogram [3], which formulated the
problem of phase estimation as that of minimizing a numerical
consistency criterion and derived a fast optimization algorithm.
We give here further theoretical insights, present several poten-
tial variations on our previously introduced algorithm, make clear
the relation between our framework and Griffin and Lim’s iter-
ative STFT algorithm [1], and perform a thorough experimental
evaluation of the performance of all the considered algorithms in
comparison with the iterative STFT algorithm.

After briefly reviewing the concept of spectrogram consis-
tency and the derivation of the numerical consistency criterion, we
present the proposed algorithms for fast phase estimation. Finally,
we investigate the performance of the proposed methods.

2. CONSISTENT STFT SPECTROGRAMS

2.1. Constraints in the time-frequency domain

We consider in this paper arrays of complex numbers(Hm,n) ∈
CMN , wherem ∈ [[0, M − 1]] will correspond to the frame in-
dex andn ∈ [[0, N − 1]] to the frequency band index. We assume
that these arrays of complex numbers correspond to the (possi-
bly modified) time-frequency representation of some time-domain
signals, obtained through the short-time Fourier transform (STFT)
with analysis window functionw of lengthN and window shiftR,
such thatQ = N/R ∈ N. We assume that the inverse STFT, de-
noted by iSTFT, is performed through the overlap-add procedure
using a synthesis windows equal tow, followed by normalization
by anR-periodic functionu(t) =

∑
q w2(t + qR) (t denoting the

time index), and we notẽs = s/u the normalized synthesis win-
dow. In this setting, a signal can be perfectly reconstructed from
its STFT spectrogram through the inverse STFT, and the inverse
STFT of a modified STFT spectrogramH leads to a reconstructed
signal whose spectrogram is closest toH in a least-squares sense,
as shown by Griffin and Lim [1].

In the following, we will call “consistent spectrograms” the el-
ements ofCMN which can be obtained as the STFT spectrogram
of a time-domain signal. As the STFT is a redundant represen-
tation, not all elements ofCMN are consistent. We characterize
here consistency directly in the time-frequency domain. For an ar-
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Figure 1:Illustration of the concept of spectrogram consistency.

ray H ∈ CMN to be a consistent spectrogram, it needs to be the
STFT spectrogram of a signal which by perfect reconstruction is
iSTFT(H). The set of consistent spectrograms can thus be de-
scribed as the kernel (or null space) of theR-linear operator from
CMN to itself defined by

F(H) = G(H)−H, (1)

whereG(H) = STFT(iSTFT(H)). This result is illustrated in
Fig. 1. We can obtain an explicit expression forF by writing down
the computations in the STFT and inverse STFT as

F(H)m,n =

N
2 −1∑

p=− N
2

Q−1∑
q=−(Q−1)

e
j2π q

Q
n
αq,pHm−q,n−p, (2)

where frequency bin indices are considered moduloN and

αq,p =
1

N

∑
k

w(k)s̃(k + qR)e−j2πp k+qR
N − δpδq, (3)

whereδi is the Kronecker delta.

2.2. Numerical consistency criterion

Instead of enforcing consistency through the “hard” con-
straints (1), as they may be too restrictive or hard to solve exactly,
we relax them by taking theL2 norm ofF(H), defining a numer-
ical criterionI(H) = ||F(H)||2 as follows:

I(H) =
∑
m,n

∣∣∣ N
2 −1∑

p=− N
2

Q−1∑
q=−(Q−1)

e
j2π q

Q
n
αq,pHm−q,n−p

∣∣∣2. (4)

Looking at the actual values of the coefficientsαq,p involved
in the definition ofF(H), we notice that most of the weight is
actually concentrated near(0, 0). One can thus approximate the
consistency criterion by using only(2l+1)×(2Q−1) coefficients
instead of the totalN × (2Q− 1), wherel≪ N/2:

Il(H) =
∑
m,n

∣∣∣ Q−1∑
q=−(Q−1)

e
j2π q

Q
n
∑
|p|≤l

αq,pHm−q,n−p

∣∣∣2. (5)

We investigate how good this approximation is on the exam-
ple of the magnitude spectrogram of 20 s of speech by a male
speaker. Denoting byS the complex spectrogram of the utterance,
the array of complex (actually here all real) numbersH = |S|
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Figure 2: Example of evolution of the approximated numerical
consistency criterionIl(H) w.r.t. the truncation orderl.

constituted by the magnitude part only is, as the phase information
is discarded, not consistent. We show in Fig. 2, for both 50 % and
75 % overlap cases, the evolution of the approximated numerical
consistency criterionIl w.r.t. the truncation orderl, as the square
root
√
Il(H)/I(H) of the ratio ofIl(H) to the exact criterion

I(H). We used the sine window for the analysis and synthesis
windows. In both cases, the numerical criterionI(H) is roughly
equal to the total energy||H||2. Most of the contribution is already
taken into account for truncation orders larger than or equal to2, in
both 50 % and 75 % overlap cases. Forl = 2, the approximation
error is roughly equal to 0.12 % for both overlap cases, and it falls
below 0.1 % for largerl.

These results show more generally that the values of
F(H)m,n orG(H)m,n can be computed with very good accuracy

as a sum over only a few terms of the formej2π q
Q

n
αq,pHm−q,n−p

instead of convolutions over all the bins involving FFTs. This is
the key point which will enable us to develop fast phase estimation
algorithms in the following.

3. APPLICATION TO PHASE ESTIMATION

In the problem of phase estimation from a magnitude STFT spec-
trogram, we are given an array of real non-negative numbersAm,n

which are supposedly the magnitude part of an STFT spectro-
gram, for example obtained through modifications of the magni-
tude spectrogram of a sound. The goal is to find the “most rel-
evant” phase forA. We formulate here this problem as that of
estimating a phaseϕm,n to adjoin toA such thatAm,nejϕm,n is
“as consistent as possible”. Based on the above derivation, the
problem amounts to minimizing the consistency criterionI w.r.t.
the phaseϕ, with the magnitudeA given, defining a new objective
function Ĩ(ϕ) =

∑
m,n

∣∣G(Aejϕ)m,n − Am,nejϕm,n
∣∣2 to mini-

mize.

3.1. Griffin and Lim’s iterative STFT

In [1], Griffin and Lim formulated the problem as that of estimat-
ing a real-valued time-domain signalx such that the magnitude
of its STFT is closest to the magnitude spectrogramA in a least-
squares sense. To solve it, they proposed the iterative STFT algo-
rithm, which consists in iteratively updating the phaseϕ

(k)
m,n at step

k by replacing it with the phase of the STFT of its inverse STFT,

∠G(Aejϕ(k)
), while keepingA fixed.

We can actually interpret the iterative STFT as the applica-
tion of the auxiliary function method [4] to the minimization of
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Ĩ. Indeed,G(H) can be shown [1] to be the closest consistent
spectrogram toH in a least-squares sense, i.e.,∀H,∑

m,n

∣∣G(H)m,n −Hm,n

∣∣2= min
H̄∈Ker(F)

∑
m,n

∣∣H̄m,n −Hm,n

∣∣2. (6)

From the above relation, we can see that the function

Ĩ+(ϕ, H̄) =
∑
m,n

∣∣∣H̄m,n −Am,nejϕm,n

∣∣∣2, (7)

is an auxiliary function for̃I with auxiliary variableH̄ ∈ Ker(F).
Alternate minimizations of̃I+ w.r.t. ϕ andH̄ lead to an iterative
optimization scheme for̃I(ϕ) which is none other than Griffin and
Lim’s update,

ϕ← ∠G(Aejϕ). (8)

We can also show through this method thatĨ(ϕ) still decreases
when updating a few bins only before recomputingG(Aejϕ).

3.2. Fast minimization ofĨ

The iterative STFT algorithm is based on the computation of
STFTs and inverse STFTs, and is thus quite costly. This way of
computingG(Aejϕ) is the bottleneck of the algorithm, and we
would like to replace it by a light computation for each bin directly
in the time-frequency domain. Using explicit summations of the
form of Eq. (2) to replace the FFT-based updates would only raise
the computational cost, but we saw in 2.2 that very good approx-
imations involving only a few terms could be derived. We shall
now explain in more details the approximations we consider and
the many advantages that can be drawn from them.

3.2.1. Approximate optimizations

As mentioned in 2.2, thanks to the concentration of the coeffi-
cientsαq,p near(0, 0), we can approximate the computation of
F(Aejϕ)m,n by using only(2l + 1) × (2Q − 1) central coef-
ficients. This approximation enables us to compute directly the
update of each bin through the summation of a few terms. Let
H = Aejϕ. AsG(H) = H + F(H), the update (8) becomes

ϕm,n ← ∠
(
Hm,n +

∑
p,q

|p|≤l

e
j2π q

Q
n
αq,pHm−q,n−p

)
, (9)

which we will refer to as the “Truncated Update”, as it relies on
the truncation of the sum involved in the original iterative STFT
update. Forl = 2 and a50 % overlap, for example, we only
consider5× 3 coefficients.

We also investigate another kind of approximation. Noticing
thatα0,0 dominates over the other coefficients, we can attempt to
neglect the influence ofϕm,n in all the termsF(H)m′,n′ other
thanF(H)m,n, which is the one where it is multiplied byα0,0.
We could thus consider, for the update of a binHm,n, looking at
the minimization of|F(H)m,n| only instead of the whole|I(H)|.
From Eq. (2),|F(H)m,n| is minimized w.r.t.Hm,n with the other
terms fixed whenα0,0Hm,n is equal to the opposite of the sum
of the terms coming from the neighboring bins. As we want here
to keepAm,n fixed, the phaseϕm,n should be updated such that
α0,0Am,nejϕm,n is in opposite direction with the terms coming

from the neighboring bins. More precisely, as we can easily see
thatα0,0 = 1/Q− 1 < 0, the update for bin(m, n) is

ϕm,n ← ∠
( ∑

(p,q) ̸=(0,0)

p∈[[− N
2 , N

2 −1]]

e
j2π q

Q
n
αq,pHm−q,n−p

)
. (10)

Further combining this with the truncation introduced above, we
obtain the following update:

ϕm,n ← ∠
( ∑

(p,q) ̸=(0,0)
|p|≤l

e
j2π q

Q
n
αq,pHm−q,n−p

)
. (11)

We will refer to these updates as the “Modified Update” and the
“Truncated Modified Update”, respectively. Although the way in
which these modified updates have been obtained may look rather
exotic, they can actually be linked to the original iterative STFT
update (8). Indeed, in concise form, the update (10) can also be
written, using the operatorG,

ϕm,n ← ∠
(
G(H)m,n −

1

Q
Hm,n

)
, (12)

which is very close to (8), up to the extra term− 1
Q

Hm,n. Un-

fortunately,Ĩ is not in general non-increasing under the modified
update. However, we noticed experimentally that the truncated
modified update leads to a very efficient minimization procedure
for Ĩ when the newly updated values for each bin are used in the
subsequent updates of the other bins.

3.2.2. Taking advantage of sparseness

The auxiliary function interpretation of the iterative STFT shows
that we can update only a few bins, even only one, before recom-
putingG(Aejϕ). Thanks to the low-cost updates derived above,
we can efficiently exploit this property by selecting which bins to
update. The idea here is to exploit the sparseness of the acoustic
signal in the time-frequency domain to limit the updates to bins
with a significant magnitude, as those with relatively small magni-
tude arguably contribute less to the objective function and are less
likely to give disturbing perceptual artifacts. We progressively de-
crease the magnitude threshold above which the bins are updated,
starting with the most significant bins and refining afterwards. Ob-
viously, the speed at which this threshold is decreased at each iter-
ation is likely to have a strong impact on performance: at a given
iteration, if a very large threshold is used, only a few bins will be
updated, leading to a very short computation time for this iteration
on one hand, but also limiting the improvement which can be ex-
pected from that iteration; if on the contrary a very low threshold is
used, most bins will be updated, leading to a significant improve-
ment in the objective function but at the cost of a longer compu-
tation time. We experimentally evaluate in 4.3 several types of
decreasing contours for the threshold as a function of the iteration
number.

We note that further improvement could be obtained by sorting
the bins by decreasing magnitude order beforehand and updating
them from the largest to the smallest, stopping when the thresh-
old is reached: we could then avoid comparison tests for each bin
by precomputing where to stop for each step’s threshold by going
through the ordered magnitude list once only. We shall however
leave such refinements for future developments.
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3.2.3. Reducing computational cost using symmetries

We easily notice thatαq,−p = αq,p andα−q,p = αq,p. Based
on these symmetries and on the fact that, for complex numbers
a, b andc, the computation of the quantityab + ac can be per-
formed using only four real-number multiplications instead of the
eight real-number multiplications required in general for the sum
of two products of two complex numbers, we can reduce the num-
ber of multiplications involved in the computation of the truncated
updates (9) and (11) by a factor4.

3.2.4. Update schemes

As, in the truncated updates, the bins are updated one by one
through independent low-cost computations, we can use at once
the newly updated values for the computation of the subsequent
updates of the other bins. We shall call this update scheme “on-
the-fly” update, and the usual scheme where updates are computed
using only values of the previous step as “stepwise” update. We
expect the on-the-fly updates to lead to faster convergence, as the
new values are re-used straight away, and incoherences between
neighboring bins are thus likely to be smoothed more efficiently.
Another benefit of the on-the-fly scheme is that updates are per-
formed “in place”, reducing the computation cost and the required
memory space.

4. EXPERIMENTAL EVALUATION

We investigate the performances of the various proposed meth-
ods and compare them with that of Griffin and Lim’s algorithm
in terms of the decrease of a normalized inconsistency measure
defined asC(H) = 10 log10

I(H)

∥H∥2 (i.e., the objective function
I(H) represented in decibels with the total energy of the origi-
nal spectrogram as a reference) w.r.t. the number of iterations as
well as w.r.t. the computation time. The task we consider is that
of the estimation of the most consistent phase for a given magni-
tude spectrogram for the purpose of time-scale modification. All
methods were implemented in C on a PC with 3.16 GHz CPU run-
ning Linux. We used 100 speech utterances (both male and female
speakers, taken from Bagshaw’s database [5], totaling 5 min and
32 s) and 8 excerpts of music pieces (piano and guitar solos from
the RWC music database [6], totaling 3 min and 04 s) as the data.
The sampling rate was 16 kHz. The sine window was used as anal-
ysis and synthesis window. The time-scaled spectrograms are built
through a sliding-block analysis technique described in [3].

4.1. General performance comparison

In a first experiment, we compare the behaviors of the various
methods under several time-scale modification and analysis con-
ditions. The time-scale modification factorsf used were0.7 (slow
down by 30 %),1 (no time-scale modification), and1.3 (pace up
by 30 %). We used a frame length of 1024 samples for all the
experiments, and two different settings for the frame shift, namely
512 (50 % overlap) and 256 (75 % overlap). We use the magnitude
of the time-scaled spectrograms as the initial point for all the meth-
ods, i.e., we set the initial phase to zero. All methods are stopped
after 200 iterations. Only the time required by the phase estima-
tion part of the algorithm is reported as other parts are identical.

The sparseness threshold at iterationk is set toae−bkc

E, whereE
denotes the mean magnitude of the given magnitude spectrogram
and is introduced for the purpose of normalization. The parameters
were set toa = 100, b = 0.1 andc = 1 based on a preliminary
experiment on one music piece.

Figure 3 shows the evolution of the normalized inconsistency
measureC w.r.t. the number of iteration (left) and the computa-
tion time (right) on the speech data. We can see first in general
that the On-the-fly Truncated Modified update (11) (solid black
line) constantly outperforms all other methods, and in particular
the iterative STFT (8) (solid gray line), in terms of decrease of in-
consistency w.r.t. the computation time, and w.r.t. the number of it-
erations as well in the no sparseness threshold case. However, the
Modified update (10) (dotted gray line) and Stepwise Truncated
Modified update (dash-dot black line) do not lead to a significant
decrease in the 50 % overlap case: it seems that the influence of
the extra term− 1

Q
H is harmful when not used in on-the-fly up-

dates. In the 75 % overlap case, the1
Q

factor decreases and these
two methods lead to very good results as well. The On-the-fly and
Stepwise Truncated versions (9) of the iterative STFT algorithm
(dotted black line and dashed gray line) perform similarly to the
iterative STFT, but seem to lead to better performance in terms
of computational time when a sparseness threshold is introduced,
as can be seen in Figs. 3 (d) and (e). Results on the music data
showed similar trends.

Several other remarks can be made on these results. We can
see by comparing Figs. 3 (a) and (b) that the typical values ofC dif-
fer between 50 % and 75 % overlap, the decrease reached for 75 %
overlap being smaller than for 50 % overlap, and they should not
be directly compared numerically. It turns out that, from our expe-
rience based on informal listening experiments, a−17 dB measure
with 75 % overlap for example actually tends to sound better than
−22 dB with 50 % overlap. From Figs. 3 (b) and (c), obtained with
differentf , we can see the influence of the modification factor on
the values reached: lowerC values are usually obtained for the
magnitude spectrogram without time-scale modification (f = 1)
than for those with modification (f = 0.7 andf = 1.3). This
can be connected to the fact that forf = 1 there actually exists
a solution to the phase estimation problem, for whichC is equal
to−∞, while there may be no exact solution in general for modi-
fied magnitude spectrograms. This tendency is especially true for
75 % overlap, where the constraints are stronger. The influence
of the introduction of a sparseness threshold can be seen by com-
paring Figs. 3 (a) and (d), in which the parameters differ only by
the value ofa. As only a small part of the time-frequency bins
are updated in the first few iterations, the decrease ofC w.r.t. the
number of iterations is much slower when a sparseness threshold
is used. However, each iteration being much faster, overall the per-
formance is much better w.r.t. the computation time than when all
bins are updated at each iteration. Looking now at Fig. 3 (e), we
see that raising the truncation order tol = 5 seems to lead to a
slightly better final value, generally for a similar computation time
or only slightly longer than forl = 2. Each iteration is slightly
slower, but larger improvements compensate for this extra compu-
tational time per iteration. This is especially true when combined
with the use of a sparseness threshold for bin selection.

We show in Table 1 and Table 2 the computation time required
by the iterative STFT and the proposed On-the-fly Truncated Mod-
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(a) 50 % overlap,f = 0.7, l = 2, a = 0.
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(b) 75 % overlap,f = 0.7, l = 2, a = 0.
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(c) 75 % overlap,f = 1, l = 2, a = 0.
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(d) 50 % overlap,f = 0.7, l = 2, a = 100.
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(e) 50 % overlap,f = 0.7, l = 5, a = 100.

Figure 3:Evolution of the inconsistency measureC w.r.t. the number of iterations (left) and the computation time (right) on the speech data.

ified update (11) to reach a given level of decrease inC, for 50 %
overlap and 75 % overlap respectively. The results are averaged
on the speech and music data, forf = 0.7, and the average output
signal length is 41 s. We notice again the very important reduction
in computation time brought first by using truncated computations

for G(H) and second by the bin selection scheme: for example,
compared with the iterative STFT, the average computation time
required to reach−21 dB for 50 % overlap is divided by a factor3
in the proposed method witha = 0 andl = 5, and by a factor60
with a = 100.
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Table 1:Computation time (s) required to reach a given decrease
of C (50 % overlap,f = 0.7).

Time to reach -15 dB -18 dB -21 dB
Iterative STFT 0.81 s 2.36 s 10.01 s
Prop.,a=0, l=2 0.09 s 0.43 s 3.52 s
Prop.,a=0, l=5 0.11 s 0.37 s 3.32 s
Prop.,a=100, l=2 0.06 s 0.09 s 0.18 s
Prop.,a=100, l=5 0.06 s 0.08 s 0.16 s

Table 2:Computation time (s) required to reach a given decrease
of C (75 % overlap,f = 0.7).

Time to reach -16 dB -17 dB -17.5 dB
Iterative STFT 7.75 s 14.41 s 20.84 s
Prop.,a=0, l=2 1.22 s 3.42 s 6.63 s
Prop.,a=0, l=5 1.56 s 4.05 s 7.16 s
Prop.,a=100, l=2 0.49 s 1.76 s 9.84 s
Prop.,a=100, l=5 0.52 s 1.10 s 4.84 s

4.2. Divergence from equilibrium

Consistent spectrograms are invariant byG, and are thus stability
points for the iterative STFT algorithm. We investigate here the in-
fluence of the truncations on this stability property. The methods
we proposed are expected not to be stable anymore and to diverge
from the initial consistent spectrogram, but hopefully they should
not diverge too much. We performed experiments with both trun-
cated methods (modified or not). We tested both stepwise and on-
the-fly updates for the unmodified method, while we dropped the
stepwise update for the modified method as we saw in the previ-
ous experiment that it did not lead to an effective algorithm. Note
that the consistent spectrograms are invariant through the iterative
STFT (8) and the modified update (10), which are thus not rele-
vant for the current experiment. We used the unmodified complex
STFT spectrogram of each piece of data as initial point, the frame
overlap being set to 50 %. The evolution of the measure of in-
consistencyC averaged on the music data for the three methods
considered is shown in Fig. 4. Similar results were obtained on the
speech data. We can see that all the methods slightly diverge from
the initial point, although the measureC stays lower than−30 dB.
This is typically lower than the results we obtained in the previ-
ous section starting from a magnitude spectrogram with any of the
methods, truncated or not, and the divergence can be considered
moderate. This result also gives an estimate of the maximum de-
crease which can be expected from the truncated methods.

4.3. Sparseness threshold experiments

We investigate here the influence of the way the sparseness
threshold decreases on the performance of the on-the-fly trun-
cated modified update (11). As a general setting, we con-
sider a time-scale modification factor of0.7 and 50 % over-
lap, and the truncation order is set tol = 2. We investi-
gate several settings for the decrease of the sparseness thresh-
old introduced in 4.1. At iterationk, only bins whose mag-
nitude is larger thanae−bkc

E are updated. Depending on the
values ofa, b and c, at each step a certain subset of the time-
frequency bins only is updated, and this subset grows at each it-

1 50 100 150 200
−38

−36

−34

−32

−30

Nb. of iterations

In
co

ns
is

te
nc

y 
(d

B
)

 

 

On−the−fly Trunc. Modif.
On−the−fly Trunc.
Stepwise Trunc.

Figure 4:Divergence of the truncated methods starting from a con-
sistent spectrogram.

eration. The values we investigated werea ∈ {1, 10, 50, 100},
b ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5} andc ∈
{1, 2}, corresponding to linear and quadratic decreases with vari-
ous slopes and starting points in the decibel domain.

We show in Fig. 5 a few examples of results for various sparse-
ness threshold decrease settings on the speech data (results on mu-
sic data showed similar behaviors), as the evolution ofC w.r.t. the
number of iterations (left) and the computation time (right). We
also show for comparison on each plot the results obtained by the
proposed truncated modified update without sparseness threshold
(a = 0) as a dark continuous line, and by the iterative STFT (G.-
L.) as a gray continuous line. The top and middle plots both cor-
respond toc = 1, and differ by the initial valueaE used, with
a = 1 for the top plots anda = 50 for the middle ones. The
results fora = 10 and a = 100 are omitted as they are sim-
ilar to those fora = 50. In the bottom plots, the decrease in
the log-domain is quadratic (c = 2), and the initial value is set
to aE = 10E (10 times the average magnitude). Results for
a ∈ {1, 50, 100} are omitted as they show only limited varia-
tion to those fora = 10. Note that the meaning of the plot
styles varies with the plots: we omitted for clarity the results for
b ∈ {0.0001, 0.0005, 0.001} in the plots forc = 1 as the thresh-
old decreases too slowly to lead to a significant decrease in 200
iterations, and the results forb ∈ {0.01, 0.1} as they showed in-
termediate behaviors to the plots displayed. Similarly, we omitted
the results forb ∈ {0.05, 0.1, 0.5} in the plots forc = 2 as the
threshold decreases so fast that the results are very close to the no
threshold (a = 0) curve, and the results forb ∈ {0.0005, 0.005}
as they showed intermediate behaviors to the plots displayed.

The experiments performed here show that a very good trade-
off between updating enough bins so as to make the inconsistency
measure decrease and skipping enough bins to make the compu-
tation faster can be obtained, leading to very important reductions
in the computation time required to reach a given decrease of the
inconsistency measureC. Even if the number of iterations neces-
sary to reach a given decrease of the inconsistency measure may
be larger with sparseness thresholds than for the iterative STFT
or the proposed method without sparseness threshold, as can for
example be seen in the left part of Fig. 5 (b) forb = 0.005 or
Fig. 5 (c) forb = 0.0001, the shorter time taken by each iteration
when only updating a fraction of the time-frequency bins leads to
a faster decrease in terms of computation time, as can be seen in
the right part of Figs. 5 (b) and (c). Furthermore, we can see that
several settings ofa, b andc lead to similar computation times.
The performance of the algorithm is thus expected to be robust to
the choice of threshold parameters within a wide range of values.
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Figure 5:Evolution of the inconsistency measureC w.r.t. the number of iterations (left) and the computation time (right) on the speech data
for various sparseness threshold decrease settings.

5. CONCLUSION

We introduced a general framework to assess for the consistency of
complex STFT spectrograms, studied the relationship between our
framework and Griffin and Lim’s iterative STFT algorithm, and
developed a fast phase estimation algorithm which can take ad-
vantage of the sparseness of the input signal in the time-frequency
domain. We performed a thorough experimental evaluation show-
ing that, to reach the same level of quality in the estimation of the
phase from a given magnitude spectrogram, our method required
much less computation time. Future work will investigate the in-
troduction of consistency concepts in various signal processing al-
gorithms and the use of techniques similar to those introduced here
to reduce computational cost.
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