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Abstract

The human auditory system has the ability, known as auditory induction, to estimate the missing parts of a continuous auditory
stream briefly covered by noise and perceptually resynthesize them. In this article, we formulate this ability as a model-based spectrogram
analysis and clustering problem with missing data, show how to solve it using an auxiliary function method, and explain how this
method is generally related to the expectation–maximization (EM) algorithm for a certain type of divergence measures called Bregman
divergences, thus enabling the use of prior distributions on the parameters. We illustrate how our method can be used to simultaneously
analyze a scene and estimate missing information with two algorithms: the first, based on non-negative matrix factorization (NMF), per-
forms analysis of polyphonic multi-instrumental musical pieces. Our method allows this algorithm to cope with gaps within the audio
data, estimating the timbre of the instruments and their pitch, and reconstructing the missing parts. The second, based on a recently
introduced technique for the analysis of complex acoustical scenes called harmonic-temporal clustering (HTC), enables us to perform
robust fundamental frequency estimation from incomplete speech data.
� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

The main goal of Computational Auditory Scene Anal-
ysis (CASA) is to enable computers to imitate human audi-
tory segregation abilities. CASA has been an area of
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intensive research in recent years. Particular attention has
been given to solving the so-called “cocktail party prob-
lem”, the computational counterpart of the “cocktail party
effect” (Cherry, 1953; von Helmholtz, 1954), i.e., the ability
of the human auditory system to focus on a single talker
within a mixture of conversations and background noise.
This has lead to the development of methods for multi-
pitch estimation, noise canceling, or source separation
(Wang and Brown, 2006). Less emphasis has been put on
the computational realization of another remarkable abil-
ity of the human auditory system, auditory induction.
Humans are able, under certain conditions, to estimate
the missing parts of a continuous acoustic stream briefly
covered by noise, to perceptually resynthesize and clearly
hear them (Bregman, 1990; Kashino, 2006; Warren, 1970,
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1982). They are thus able to simultaneously analyze an
auditory scene, as in the cocktail party effect, in the pres-
ence of gaps and to perceive the underlying acoustic events
as if the information inside those gaps had not been missing
(whether the incomplete stimuli are actually reconstructed
at low levels in human perception or not is a different issue,
which we shall not address here).

An effective computational counterpart to this ability
would have many important engineering applications, from
polyphonic music recording analysis and restoration to
mobile communications robust to both packet-loss and
background noise. Attempts to combine scene analysis on
incomplete data and reconstruction of the missing parts
are rare, with the notable exception of (Ellis, 1993, 1996).
There have been few attempts to address this problem
through a statistical approach.

This article aims at developing such a computational
counterpart to auditory induction, by simultaneously per-
forming a decomposition of the magnitude wavelet spec-
trogram of an acoustical scene with missing or corrupted
samples, and filling in the gaps into that spectrogram. Var-
ious approaches have emerged recently which attempt to
analyze the structure of the spectrogram of an acoustical
scene (Kameoka et al., 2007; Schmidt and Mørup, 2006;
Smaragdis, 2004), while on the other side gap interpolation
techniques have been the subject of research for many years
(Achan et al., 2005; Cemgil and Godsill, 2005; Clark and
Atlas, 2008; Esquef and Biscainho, 2006; Godsill and
Rayner, 1998; Lu et al., 2003; Wolfe and Godsil, 2005).
However, only few models so far try to deal with both
issues. One example is the framework developed by
Reyes-Gomez et al. (2004) that relies on local regularities
of the spectrogram. The framework that we introduce
can use both local and global regularities.

We show here how statistical models that globally model
acoustical scenes can be extended for the analysis of scenes
with incomplete data. We first derive the method for a gen-
eral class of distortion functions that measure the goodness
of fit between the model and the observed data. We then
show how, for a particular class of functions called Breg-
man divergences (Banerjee et al., 2005; Bregman, 1967),
the method can be interpreted in terms of the expecta-
tion–maximization (EM) algorithm, enabling the use of
prior distributions on the parameters, for example to
enforce local smoothness or other regularities. To illustrate
the concept, we apply it to the non-negative matrix factor
2D deconvolution algorithm (NMF2D) (Schmidt and
Mørup, 2006), and evaluate its performance on a poly-
phonic multi-instrumental musical piece: the proposed
method is able to analyze the scene in spite of the presence
of gaps, i.e., it can estimate the timbre of the instruments,
their pitch and the time of their activation, and separate
their contributions from those of other instruments, while
simultaneously reconstructing the missing parts. We finally
show how to apply this method to the harmonic-temporal
clustering framework (HTC) (Kameoka et al., 2007; Le
Roux et al., 2007a), and how the obtained algorithm can
be used to perform robust fundamental frequency (F0) esti-
mation of speech on incomplete data.

2. Computational auditory induction

2.1. Problem setting

We consider the problem of interpolating gaps in audio
signals by filling in the gaps in their magnitude spectro-
gram. We will not consider here the reconstruction of the
phase: if the magnitude spectrogram can be accurately
reconstructed, other methods could be used to obtain a
phase consistent with it (Griffin and Lim, 1984; Le Roux
et al., 2008b). We are interested in using local and global
regularities in the spectrogram to simultaneously analyze
the acoustical scene and fill in gaps that may have occurred
into it, or in other words to perform “audio inpainting” by
reconstructing missing regions of the spectrogram in the
same spirit as what is done in image inpainting (Bertalmio
et al., 2000), where diffusion-based (local) and exemplar-
based (global) techniques are used to restore missing parts
of an image (Criminisi et al., 2004).

This is analogous to what is performed by humans in
auditory induction, when for example phonemes deleted
from a speech signal and replaced by louder broadband
noise can be perceptually synthesized by the brain and sub-
jectively heard as if they were present (Bregman, 1990;
Kashino, 2006; Warren, 1970, 1982). The auditory induc-
tion phenomenon is a striking illustration of the law of clo-
sure of Gestalt psychology, according to which the human
perception system has a tendency to close “strong” percep-
tual forms which are incomplete, such as a circle partially
occluded by an irregular form. More generally, it can be
considered as an expression of Mach’s “economy of
thought” (Barlow, 2001), in that it is more rewarding in
terms of simplicity of explanation to assume that some
parts are occluded but actually present and need to be
reconstructed (either at the primitive grouping stage or at
higher levels) than to assume that the stimuli is actually
composed of several disconnected parts. The fact that audi-
tory induction does not occur if the phonemes are replaced
by silence can be linked to the point made by Bregman
(1990) that our perceptual system needs to be shown that
some evidence is missing: humans can indeed see figures
with actual gaps in them, as with no special hint or trigger
mechanism, they have no reason to believe that the “miss-
ing” parts are not missing but merely hidden. The localiza-
tion of the gaps will thus be considered known in the
following.

Most previous methods for gap interpolation focus on a
local modeling of the signal around the gaps. An important
corpus of work is for example based on auto-regressive
(AR) modeling, stemming from work by Janssen et al.
(1986) on an AR interpolator which alternately maximizes
the likelihood w.r.t. the missing data and the model param-
eters, and later extended by Vaseghi and Rayner (1990) to
consider samples which are a pitch period apart, by Rayner
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and Godsill (1991) to cope with the tendency of the AR
interpolator to lead to over-smoothed interpolants whose
amplitude decreases at the center of the gap, or by Rajan
et al. (1997) to consider time-varying AR processes, among
many others. Apart from AR, sinusoidal modeling
(McAulay and Quatieri, 1986) was also used by Maher
(1993) for missing-data interpolation by performing the
interpolation directly on the parameters of the sinusoidal
model. More details and references can be found in
(Veldhuis, 1990; Godsill and Rayner, 1998).

While previous works on gap interpolation mainly focus
on local regularities and do not attempt to explicitly model
and exploit the underlying structure of the scene, our
approach is more global and conceptually closer to miss-
ing-feature approaches to automatic speech recognition
(Barker et al., 2005; Cooke et al., 2001; Raj et al., 2004).
Trying to understand speech in the presence of noise can
be considered as a particular type of missing-data scene
analysis, in which time-frequency regions which are domi-
nated by noise are assumed missing. There as well, the goal
is to analyze a scene (recognize its speech content) in spite
of the presence of unreliable data, and high-order knowl-
edge given by the acoustic and language models can be
exploited to estimate the unreliable parts. We shall refer
to the very good reviews by Raj and Stern (2005) and Bar-
ker (2006) for more details on these methods.

Assuming we have at hand a statistical framework
which globally models an acoustical scene, we explain in
this article how to use it on scenes with incomplete data
and reconstruct to some extent the missing information.
We present two examples of statistical frameworks which
can be used in this context, Schmidt and Mørup’s NMF2D
algorithm (Mørup and Schmidt, 2006; Schmidt and
Mørup, 2006), and the Harmonic-Temporal Clustering
framework introduced in (Kameoka et al., 2007; Le Roux
et al., 2007a).

2.2. General method and applicability

The general idea is simple: given a statistical model that
can be matched to observed data, we show how it can be
used on incomplete data by iterating between analysis steps
and reconstruction steps. Furthermore, if the model is suf-
ficiently specified so as to describe the underlying data
everywhere, it can be used to reconstruct the missing parts
as well. The procedure goes as follows: during a reconstruc-
tion step, the missing data are estimated based on the cur-
rent value of the model; during an analysis step, the model
is updated based on the data completed during the recon-
struction step. We show in the following subsection how
this iterative algorithm can be interpreted as using an aux-
iliary function method to optimize the fitting of the statis-
tical model on the regions where data were actually
observed.

Situations in which such an incomplete data framework
needs to be used are quite varied. One can cite for example
situations where a portion of the power spectrogram
1. is lost, for example after a packet loss during a network
communication,

2. has been discarded, for example by a binary mask
designed to suppress noise or select a particular speaker
inside an acoustical scene,

3. or is simply not observed, for example because it lies
outside the observed frequency band or the time interval
of analysis.

The method we introduce can be used in general to
match a statistical model to incomplete data based on the
fitting on observed regions even if the original optimization
algorithm was designed to be effective only on complete
data, such as Gaussian fitting for example. For reconstruc-
tion purposes, however, an important point to ensure is
that the statistical model has sufficient “prediction power”

to interpolate the missing parts. The capacity to recon-
struct the missing-data regions will indeed depend on the
design of the model, and especially on the constraints intro-
duced: the only guaranty is to obtain, on the whole
domain, a complete model which fits the data were they
were observed. If the model is designed in such a way that
it inherently encompasses the same regularities as the data
that it is supposed to fit, then we can expect that what can
be inferred on the missing data, based on these regularities,
from the observed parts of the data will naturally be recon-
structed by the model in the course of the optimization.

For example, models which enforce continuity con-
straints would ensure a reconstruction with smooth transi-
tions over the missing-data regions. Decomposition
models, such as NMF2D, which use information from
the whole domain to build a lower-dimensional representa-
tion of the acoustical scene, will ensure a reconstruction
that conforms to the underlying representation. We will
show in particular in Section 4 how incomplete polyphonic
music scenes can be analyzed with NMF2D on the basis of
information on the spectro-temporal envelopes of the notes
of each instrument gathered from the non-missing portions
of the music. Similarly, a model such as HTC, through the
use of relevant prior distributions, will lead to reconstruc-
tions that are inherently guaranteed to respect Bregman’s
grouping cues (Bregman, 1990; Kameoka, 2007). We will
show in Section 6 in particular that the continuity con-
straint on the pitch contour of the HTC model enables us
to perform robust F0 estimation on incomplete speech data.

2.3. Auxiliary function method

Suppose one wants to fit a parametric distribution to an
observed contour which is incomplete, in the sense that its
values are only known on a subset I � D # Rn, where D is
the domain of definition of the problem of interest. Sup-
pose also that if the data were complete, the fitting could
be performed (e.g., Gaussian distribution fitting, etc.).
Then we show that using an iterative procedure based on
the auxiliary function method, the fitting to the incomplete
data can also be performed.
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Let f be the observed contour, and g(�;H) a model
parameterized by H such that the fitting of this model to
an observed contour defined on the whole domain D can
be performed.

We consider a distortion function d : S � S ! ½0;þ1Þ
where S# Rn, such that dðx; yÞP 0; 8x; y 2 S and equality
holds if and only if x = y. As this function d is not required
to respect the triangle inequality, it is not necessarily a met-
ric. For such a distortion function, we can introduce a mea-
sure of the distance between the observed data and the
model by integrating d between f and g(�;H) on the subset
I:

LðHÞ ¼
Z

I
dðf ðxÞ; gðx; HÞÞdx: ð1Þ

In this kind of situation, it is often preferable, instead of
defining an “incomplete model” whose estimation may be
cumbersome, to try to fall back on a complete data estima-
tion problem. This is what we do here by introducing an
auxiliary function. For any function h taking values in S
and defined on DnI, let us define

LþðH; hÞ ¼ LðHÞ þ
Z

DnI
dðhðxÞ; gðx; HÞÞdx: ð2Þ

As the second term on the right-hand side is itself derived
from the distortion measure, it is non-negative, and thus

LðHÞ 6 LþðH; hÞ; 8h: ð3Þ

Moreover, there is equality in the inequality for h = g(�;H).
The minimization procedure can now be described as

follows. After initializing H for example by performing
the distribution fitting on the observed data completed by
0 on DnI, one then iteratively performs the following
updates:

Step 1 Estimate h such that LðHÞ ¼ LþðH; hÞ:

ĥ ¼ gð�; HÞ: ð4Þ

Step 2 Update H with ĥ fixed:
Fig. 1. Optimization through the iterative procedure. During the step 1,
the auxiliary parameter h is updated to ĥ so that LðHÞ ¼ LþðH; ĥÞ. Then,
during the step 2, LþðH; ĥÞ is optimized w.r.t. H, ensuring that
Lð bHÞ 6 Lþð bH; ĥÞ < LþðH; ĥÞ ¼ LðHÞ. The minimization of LðHÞ can
thus be performed through the minimization of the auxiliary function
LþðH; hÞ alternately w.r.t. h and H.
bH ¼ argmin
H

LþðH; ĥÞ: ð5Þ

The optimization process is illustrated in Fig. 1.
3. Probabilistic interpretation for Bregman divergences

We investigate in this section the probabilistic interpre-
tation of the auxiliary function framework introduced
above in the particular case where the distortion function
is a Bregman divergence.

3.1. Relation between Bregman divergence-based

optimization and maximum-likelihood estimation

We follow (Banerjee et al., 2005; Grünwald, 2007) to
give a brief overview of the concepts of exponential family
and Bregman divergence and to present the relation
between them. As a complete presentation would take us
too far from the purpose of the present discussion, we shall
refer to them for more details and for rigorous derivations.
We tried however to keep this article as self-contained as
possible.

Exponential families form a group of probability distri-
butions which comprise many common families of proba-
bility distributions such as the normal, gamma, Dirichlet,
binomial and Poisson distributions, among others. They
are defined as follows.

Definition 1. Let K be an open convex subset of Rd and let
M¼ fPbjb 2 Kg be a family of probability distributions on
a sample space X .M is an exponential family if there exist a
function f ¼ ðf1; . . . ; fdÞ : X ! Rd and a non-negative func-
tion r : X ! ½0;þ1Þ such that, for all b 2 K,

Pw;bðX Þ , ehb;fðX Þi�wðbÞrðX Þ; ð6Þ
where hb; f(X)i is the inner product between b and f(X),
and

wðbÞ ¼ log

Z
X

expðhb; fðxÞiÞrðxÞ dx < þ1:

An exponential family defined in terms of a function
f = (f1, . . . ,fd) is called a regular exponential family if the
representation (6) is minimal, i.e., there exists no
a0; a1; . . . ; ad 2 Rdþ1 n f0g such that for all x with
rðxÞ > 0;

Pd
j¼1ajfjðxÞ ¼ a0.

As an example, we consider the family of Poisson distri-
butions {Phjh 2 (0,+1)} on the sample space X ¼ N

defined as P hðxÞ ¼ 1
x!

e�hhx. We see that it is an exponential

family, with b = logh, f(X) = X, w(b) = eb, and r(x) = 1/x!.
The function f is not always the identity function as in the
Poisson case, as can be seen with the family of normal
distributions ffl;r2 jðl; r2Þ 2 R� ½0;þ1Þg with fl;r2ðxÞ ¼

1ffiffiffiffiffiffiffi
2pr2
p e�

ðx�lÞ2

2r2 , which can be seen to be an exponential family

by setting b = (l/r2,�1/(2r2)), f(X) = (X,X2) and rðxÞ ¼
1=

ffiffiffiffiffiffi
2p
p

.
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It can be shown (Banerjee et al., 2005; Grünwald, 2007)
that exponential families can actually be parameterized by
the mean value lðbÞ ¼ EðfðX ÞÞ of f(X). If we let
Kmean , {lj$b 2 K such that l(b) = l}, then l(�) is a
1-to-1 mapping from K to Kmean. Moreover, there exists
a function / : Kmean ! R such that for all b 2 K and for
all l 2 Kmean such that l = l(b),

/ðlÞ þ wðbÞ ¼ hb; li; ð7Þ
from which one can deduce in particular that b(l) = $/(l).
Altogether, by noticing that

hb; fðX Þi � wðbÞ ¼ hb; li � wðbÞ þ hb; fðX Þ � li
¼ /ðlÞ þ hr/ðlÞ; fðX Þ � li; ð8Þ

Pw,b can be rewritten parameterized by l = l(b), leading to
the so-called mean-value parameterization of the exponen-
tial family:

P/;lðX Þ , Pw;bðlÞðX Þ ¼ e/ðlÞ�hr/ðlÞ;fðX Þ�lirðX Þ: ð9Þ

We will call l the expectation parameter of the exponential
family, which will be denoted by F/.

We are now ready to introduce the concept of Bregman
divergence and to derive its relation with the exponential
families.

Definition 2. Let / : S ! R be a strictly convex function
defined on an open convex set S# Rd such that / is
differentiable on S. The Bregman divergence
d/ : S � S ! ½0;þ1Þ is defined as

d/ðx; yÞ ¼ /ðxÞ � /ðyÞ � x� y;r/ðyÞh i;
where $/(y) is the gradient vector of / evaluated at y.

Bregman divergences include a large number of useful
loss functions such as squared loss, KL-divergence, logistic
loss, Mahalanobis distance, Itakura–Saito distance, and
the I -divergence. They verify a non-negativity property:
d/ðx; yÞP 0; 8x; y 2 S, and equality holds if and only if
x = y.

Banerjee et al. (2005) showed that the following infor-
mal derivation can be rigorously justified for a wide sub-
class of Bregman divergences, which includes in
particular all the loss functions cited above.

If P/,l is the probability density function of the regular
exponential family F/ (in its mean-value parameterization)
associated to the function / defining the Bregman diver-
gence d/, from (9) we have,

P/;lðxÞ ¼ e/ðlÞþhr/ðlÞ;fðxÞ�lirðxÞ ¼ e�d/ðfðxÞ;lÞþ/ðfðxÞÞrðxÞ

and eventually

P/;lðxÞ ¼ e�d/ðfðxÞ;lÞb/ðxÞ ð10Þ

where b/(x) = e/(f(x))r(x). This relation holds for all
x 2 dom(/), which can be shown (Banerjee et al., 2005)
to include the set of all the instances that can be drawn
from the distribution P/,l. However, one must be careful
when using this relation in certain cases where the inclusion
is strict, in particular when the support of the carrier r(x) is
strictly smaller than dom(/). Indeed, for all x outside that
support, Eq. (10) is verified as both members are equal to
zero, but it is not informative on the relation between P/

,l(x) and d/(f(x),l) as the right-hand side member is zero
only because b/(x) is. This is what happens for example
for the I -divergence (with /(l) = l logl � l) for which
domð/Þ ¼ Rþ (extending the definition of / for l = 0).
The corresponding exponential family is the Poisson fam-
ily, for which the set of instances and the support of the
carrier are only N.

The relation (10) builds a bridge between optimization
based on Bregman divergences and Maximum-Likelihood
(ML) estimation with exponential families. As distribu-
tion-fitting problems usually involve only a first-order sta-
tistic, we will focus on the case f(X) = X. Trying to fit a
model g(�;H), defined on a domain D with parameter H,
to an observed distribution f with a measure of distance
between the two based on a Bregman divergence d/ then
amounts to looking for H minimizing

R
D d/ðf ðxÞ;

gðx; HÞÞdx. But according to (10), this is equivalent (up to
some precautions which may have to be taken because of
the misfit between the domains of definition of the
Bregman divergence and the exponential family evoked
above) to maximizing w.r.t. H the log-likelihoodR

D P/;gðx;HÞðf ðxÞÞdx where the observed data points f(x) at
point x are assumed to have been independently generated
from P/,g(x;H).

3.2. Relation to the EM algorithm

As we showed above, optimization based on a Bregman
divergence corresponds to an ML problem in which the
data are supposed to have been generated independently
from probability distributions of an associated exponential
family with expectation parameters g(x,H). We investigate
here the relation between the application of the EM algo-
rithm to this ML problem and the auxiliary function
framework of Section 2.3, in the particular case where
the distortion function is a Bregman divergence d/ such
that the associated exponential family F/ verifies f(X) = X.

The EM algorithm is based on the derivation of a so-
called Q-function, which is classically obtained by consid-
ering the expectation of the log-likelihood logP(fjH) of
the observed data f against the conditional probability of
the unobserved data h with respect to the observed data
and the model with parameter H:

log P ðf jHÞ ¼ Eðlog P ðf jHÞÞP ðhjf ;HÞ
¼ Eðlog P ðf ; hjHÞÞP ðhjf ;HÞ
� Eðlog P ðhjf ;HÞÞP ðhjf ;HÞ

¼ QðH;HÞ � HðH;HÞ; ð11Þ

where the functions Q and H were defined in the obvious
way from the previous line. One notices through Jensen’s
inequality that
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8H;HðH;HÞ 6 HðH;HÞ;

such that if one can update H such that QðH;HÞ >
QðH;HÞ, then log P ðf jHÞ > log P ðf jHÞ.

In the problem we consider, we can show that there is
actually a correspondence between the Q-function and
the auxiliary function Lþ that we introduced in Section
2.3. The computations of Appendix A indeed lead to the
following relation:

QðH;HÞ ¼ �LþðH; gðx; HÞÞ þ Cðf ;HÞ; ð12Þ

where Cðf ;HÞ does not depend on H. Computing the Q-
function, i.e., the E-step of the EM algorithm, corresponds
to computing the auxiliary function, which is done by
replacing the unknown data by the model at the current
step. Maximizing the Q-function w.r.t. H, i.e., the M-step
of the EM algorithm, corresponds to minimizing the auxil-
iary function w.r.t. H. This shows how to derive the auxil-
iary function in an EM point of view, and enables us for
example to consider prior distributions on the parameters
and perform a MAP estimation.

3.3. Remark on the limitations of this interpretation

We showed that the auxiliary function method in Sec-
tion 2.3 could be derived through the EM algorithm in
the special case of the function d being a Bregman diver-
gence d/ such that the associated exponential family veri-
fies f(X) = X. We shall note however that one has to pay
attention to the support of the probability distributions
of the exponential family. Indeed, as noted earlier, it may
happen that these distributions have a smaller support than
the original set on which the Bregman divergence is
defined. This is for example the case for the I -divergence,
which is defined on Rþ but is associated to the Poisson dis-
tribution, whose support is N. The formulation presented
in Section 2.3 is thus more general than its EM counter-
part, although it does not justify the use of penalty func-
tions as prior distributions on the parameters. In the
particular case of the I -divergence, it is actually possible
to justify the use of the ML interpretation with continuous
data (Le Roux et al., 2008a).

4. Missing-data non-negative matrix factor 2D deconvolution

4.1. Overview of the original algorithm

The NMF2D algorithm is an extension of Smaragdis’s
non-negative matrix factor deconvolution (NMFD) (Smar-
agdis, 2004), itself an extension of the original non-negative
matrix factorization (NMF) (Lee and Seung, 1999). NMF
is a general tool which attempts to decompose a non-nega-
tive matrix V 2 RP0;M�N in the product of two usually
lower-rank non-negative matrices W 2 RP0;M�R and
H 2 RP0;R�N ,

V � WH : ð13Þ
In applications to audio, the matrix V to decompose is usu-
ally the magnitude or power spectrogram of the observed
signal. The horizontal and vertical dimensions of the matri-
ces then respectively represent time and frequency (or
log-frequency), and the non-negative factorization of V is
expected to lead to a decomposition of the spectrogram in
spectral templates W and their activations H. The assump-
tion behind this decomposition is that the spectrogram of
an acoustical scene can be modeled as the repetition through
time of characteristic spectral templates with varying ampli-
tudes, the shape of these templates being time-invariant, i.e.,
invariant with the time at which they appear. NMFD
extends NMF by introducing a convolution in the time
direction, and looks for a decomposition of V as

V � K ¼
X

s

W s H
!s
; ð14Þ

where each Ws is a set of bases and !s denotes the right-
shift operator which moves each element in a matrix s col-
umns to the right, e.g.:

A ¼
1 2 3

4 5 6

7 8 9

0B@
1CA; A

!1

¼
0 1 2

0 4 5

0 7 8

0B@
1CA:

NMFD thus also enables the representation of time struc-
ture in the extracted templates W, as, for each k, the set
W k ¼ ðW s

m;kÞm;s of kth columns of all Ws can be considered
as a spectro-temporal template whose activation is deter-
mined by the kth row of H. NMF2D generalizes this
approach to the frequency direction through a 2D convolu-
tion. Using a log-frequency spectrogram and assuming that
the spectral patterns to be modeled are roughly pitch-
invariant, i.e., that the spectral patterns of similar sounds
differing only by their pitch are approximately equal up
to a shift on the frequency axis, NMF2D can account for
the repetition of a similar spectro-temporal structure at
various instants and with various frequency shifts as the
convolution of a single spectro-temporal template with
the information on the time and height of its activations.
Concretely, the NMF2D model is

V � K ¼
X

s

X
/

W s
#/

H/
!s

; ð15Þ

where H/ is a set of activations such that the kth row of H/

corresponds to the activations of the kth spectro-temporal
template Wk pitch-shifted by / frequency bins down, and
#/ denotes the down-shift operator which moves each ele-
ment in a matrix / lines down. Up-shift and left-shift oper-
ators can be introduced in the same way. Applying NMF,
NMFD or NMF2D to audio signals implies making a
sparseness assumption on the signal, as the additivity of
magnitudes in the spectral domain is only true if the under-
lying components of the signal are sparse enough to mini-
mize overlaps.

Lee and Seung (1999) introduced efficient algorithms for
computing the NMF of a matrix V based on both the
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least-squares error and the I -divergence, which have been
extended by Smaragdis for NMFD (Smaragdis, 2004)
and Schmidt and Mørup for NMF2D (Mørup and
Schmidt, 2006; Schmidt and Mørup, 2006). These algo-
rithms are based on multiplicative updates. If K is defined
as in (15), we define the objective function as
J ðW ;H jV Þ ¼ 1

2
kV � KkF j for the least-squares error,

where k�kF denotes the Frobenius norm (sum of the squares

of all the elements), or J ðW ;H jV Þ ¼
P

m;nV m;n log V m;n

Km;n

� �
�

ðV m;n � Km;nÞ for the I -divergence. For the least-squares
error, the updates can be written as

W s  W s �
P

/ V
"/

H/
!s >

P
/ K
"/

H/
!s > ; H/  H/ �

P
s W s
#/ >

V
 s

P
s W s
#/ >

K
 s
; ð16Þ

while for the I -divergence they become

W s  W s �
P

/
V
K

� �"/
H/
!s >

P
/1 H/
!s > ; H/  H/ �

P
s W s
#/ >

V
K

� � s

P
s W s
#/ >

1

;

ð17Þ

where � denotes the Hadamard product, i.e., element-wise
matrix multiplication, matrix divisions are also performed
element-wise, > denotes the matrix transposition and 1 de-
notes a M � N matrix with all its elements set to 1.

4.2. Sparseness as a key to global structure extraction

As pointed out by Mørup and Schmidt (2006), there is
an intrinsic ambiguity in the decomposition (15): the struc-
ture of a factor in H can to some extent be put into the sig-
nature of the same factor in W and vice versa. One way to
alleviate this ambiguity is to impose sparseness on H, thus
forcing the structure to go into W. In the case of spectro-
grams with missing regions, this becomes even more critical
if one expects to retrieve a “meaningful” reconstruction of
the missing parts, and sparseness becomes compulsory, as
can be clearly seen in the particular case where some time
frames are completely missing: indeed, without a sparse-
ness term on the activations, assuming that the spectral
envelopes were time- and pitch-invariant (which is only
approximately true), a perfect reconstruction of the spec-
trogram with gaps could be obtained with a single frame
representing the instantaneous spectral envelope template
in W modulated by the power envelope in the time direc-
tion (gaps included) in H. If sparseness of H is enforced,
then typical spectro-temporal templates would be learnt
in W, and seeing only a part of those templates in the
incomplete spectrogram would give us information on their
activations’ time, pitch and strength, which in turn would
enable us to reconstruct the unseen parts. The role of
sparseness is thus to ensure that global and recurring struc-
tures are extracted and used throughout the spectrogram,
and it will be the key that will enable us to fill in the gaps
in the underlying acoustical scene, assuming the scene is
characterized by the same kind of regularity.

A sparseness-promoting penalty function can be added
to the NMF2D objective function, in the form of the Lp

(quasi-)norm, for 0 < p < 2, of the matrix H, or of this
quantity raised to the power p (Kameoka et al., 2009;
Mørup and Schmidt, 2006). Concretely, we define here a
new objective function as

J sðW ;H jV Þ ¼ J ðW ;H jV Þ þ k
X
/;m;n

H/
m;n

��� ���p: ð18Þ

The update equations for the minimization of this objective
function can be obtained similarly to the ones without the
sparseness term through an auxiliary function approach
(Lee and Seung, 2001), the sparseness term being dealt with
in the same way as in (Kameoka et al., 2009) for sparse-
ness-based NMF and complex NMF. Although we shall
skip here the derivation, the updates for H become

H/  H/ �
P

s W s
#/ >

V
 s

P
s W s
#/ >

K
 s
þkpH/�ðp�1Þ

ðleast-squares errorÞ

ð19Þ

H/  H/ �
P

s W s
#/ >

V
K

� � s

P
s W s
#/ >

1þ kpH/�ðp�1Þ
ðI -divergenceÞ

ð20Þ
where H/�(p�1) denotes the matrix H/ with all elements
raised to the power (p � 1). To take care of the fact that
the sparseness term could be made arbitrarily small by scal-
ing down H and correspondingly scaling up W, leaving
J ðW ;H jV Þ unchanged, a unit-norm constraint is intro-
duced on W. This constraint could be introduced in the
update equations using Lagrange multipliers: in the I -
divergence case and using L1-norm normalization, this
would simply amount to rescaling W and H appropriately
afterwards, while for L2-norm normalization as well as in
the least-squares case, as an analytical solution cannot be
obtained, one would need to resort to numerical computa-
tions. Here, we shall use instead update equations for W

which are derived in (Mørup and Schmidt, 2006) by replac-
ing each Wk by Wk/kWkkF in the definition of the objective
function, for both the least-squares and I -divergence cases.
This idea was first investigated by Eggert and Körner
(2004) for sparse NMF based on least-squares minimiza-
tion. Although the convergence of these updates is not pro-
ven, it is conjectured and has been observed on extensive
tests (Eggert and Körner, 2004; Mørup and Schmidt,
2006). We reproduce here the updates for the sake of
completeness:

W s  W s �

P
/ V
"/

H/
!s >
þW sdiag

P
s01 k

"/
H/
!s0 >

 !
� W s0

 ! ! !
P

/ K
"/

H/
!s >
þW sdiag

P
s01 V

"/
H/
!s0 >

 !
� W s0

 ! ! ! ; ðleast-sq:Þ

ð21Þ
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W s W s�

P
/

V
K

� �"/
H/
!s >
þW sdiag

P
s01ðð1 H/

!s0 >
Þ�W s0 Þ

 ! !
P

/ 1 H/
!s >
þW sdiag

P
s01

V
K

� �"/
H/
!s0 >

 !
�W s0

 ! ! ! ; ðI �div:Þ

ð22Þ
where diag denotes a diagonal matrix whose elements are
given by the argument. W is normalized at the beginning
of each step, before performing the updates for H and W.
4.3. Use of prior distributions

The NMF framework can be considered in a Bayesian
way based on the correspondence between Bregman diver-
gence-based optimization and ML estimation either for the
least-squares error or the I -divergence. Indeed, the NMF
objective function can be converted into a log-likelihood
(Lee and Seung, 1999; Sajda et al., 2003), to which prior
constraints on the parameters can further be added
(Cemgil, 2008; Févotte et al., 2009).

Sparseness terms evoked above involving Lp (quasi-)
norms of H can be considered as such, corresponding in
general to generalized Gaussian process priors, and the
Laplace distribution for p = 1. But one can also introduce
Markovian constraints on the parameters to ensure smooth
solutions. Using Gamma chains on the coefficients of W and
H in the time direction, one can show that analytical update
equations can still be obtained and the objective function
can be optimized based on the expectation–constrained
maximization (ECM) algorithm (Meng and Rubin, 1993).

As explained in Section 3, the auxiliary function method
we propose can be interpreted in an EM point of view in
the special case of Bregman divergences. The use of prior
distributions on the parameters will thus be justified as well
for the missing-data version of the NMF2D algorithm,
which we describe in more details in the next section, and
local convergence will be guaranteed.
4.4. NMF2D on incomplete spectrograms

We consider the wavelet magnitude spectrogram of an
acoustical scene represented as a non-negative matrix Vm,n,
defined on a domain of definition D = [[1,M]] � [[1,N]] (cor-
responding for example to the time-frequency region
fx; t 2 RjX0 6 x 6 X1; T 0 6 t 6 T 0 þ T g, sampled in time
and frequency). We assume in general that the spectro-tem-
poral patterns to be modeled are roughly pitch-invariant,
and that the signals are sparse enough such that the additiv-
ity assumption on the magnitude spectrograms holds.

We assume that some regions of the magnitude spectro-
gram are degraded or missing and are interested in per-
forming simultaneously an analysis of this acoustical
scene with the NMF2D algorithm despite the presence of
gaps, and a reconstruction of the missing parts.

Even if the data matrix V is incomplete, i.e., if the values
Vm,n are missing or considered not reliable for some indices
(m,n) 2 J � D, due to the fact that the NMF2D update
equations (as well as the NMF and NMFD update equa-
tions) are in fact multiplicative versions of a gradient
update, it would actually be possible to still perform the
minimization of the distance taken over the observed data
by computing the gradient of this restricted objective func-
tion, in the same way as was done in (Virtanen et al., 2008)
for NMF. However, the formulation of the update equa-
tions would then become more intricate and less obvious
to interpret, and, although the updates could be originally
computed simply and efficiently using FFT thanks to their
convolutive nature, their missing-data version would
require an additional trick in order to compute them in
the same way (concretely, setting to zero the values of the
term against which H or W are convolved in the denomina-
tors of (16) and (17) where data is actually missing before
computing their FFT). In any case, using the method intro-
duced in Section 2 is cleaner and easier to interpret, more
systematic and general. Finally, the simplicity and ease of
interpretation of NMF2D make it a good example to illus-
trate the general principle we presented.

Applying the method introduced in Section 2.3 to
NMF2D leads to the following algorithm, which can be
used to analyze incomplete spectrograms, with both objec-
tive functions:

Step 1 V ðpþ1Þ
m;n ¼ KðpÞm;n if ðm; nÞ 2 J

V m;n if ðm; nÞ R J

�
.

Step 2 Update W through (16) or (17) and H through (19)
or (20)

We note that recent work by Smaragdis et al. (2009) can
be considered as another illustration of our framework. It
is based on a spectrogram model which is very close to
NMF. In the same way as we present here, this work relies
on the EM algorithm to estimate the parameters on incom-
plete data, and it is thus very similar to our NMF2D exam-
ple. As mentioned above for the NMF2D illustration, the
optimization could have been solved with multiplicative
updates as well, although the EM interpretation is more
general and elegant. Several applications to the reconstruc-
tion of missing audio data are considered there, investigat-
ing in particular the use of separate training data to
improve the estimation of the bases, which we did not con-
sider here. Irregular repartitions of the missing data are
also considered, while we focus here on situations where
some frames are entirely missing: such situations exploit
the convolutive nature of the NMF2D model, relying on
the time structure of the bases or on information from
other notes appearing at different pitches, and are thus
appropriate to illustrate our framework.
5. Examples of application of missing-data NMF2D

5.1. Toy example: reconstructing a 2D image

We first tested our algorithm on simulated data used in
(Mørup and Schmidt, 2006). The data, shown in Fig. 2(a),



Fig. 2. NMF2D with missing-data on a toy problem. (a) Original simulated data. W consists of one cross in the first factor and one circle in the second.
They are convolved with H given in the top of the figure to yield the full data matrix V. (b) Truncated data. The truncated areas are indicated in black. (c)
Estimated factors and reconstructed image using the least-squares algorithm. (d) Estimated factors and reconstructed image using the I -divergence
algorithm.
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were created with W consisting of one cross in the first fac-
tor and one circle in the second, convolved with H given in
the top of the figure to yield the full data matrix V. The
NMF2D algorithm was used in the same conditions as in
(Mørup and Schmidt, 2006), with s = {0, . . . , 16}, /
= {0, . . . , 16} and an L1-norm sparseness penalty with coef-
ficient 1 for the least-squares algorithm and 0.001 for the I -
divergence algorithm. The circle and cross templates span
roughly 15 frames in both horizontal and vertical direc-
tions, while the whole data is 200 frames wide. To construct
the incomplete data, we erased 3 frames horizontally and 2
frames every 10 frames vertically, as shown in Fig. 2(b).
Note that none of the occurrences of the structures (circle
and cross) is fully available. However, in this ideal case
where the original data is a strict convolution of the tem-
plates, the proposed algorithm is able to extract the origi-
nal templates and their occurrences and to reconstruct
the original data, as can be seen in Fig. 2(c) (least-squares
update equations) and Fig. 2(d) (I -divergence update
equations). This shows that the reconstruction is based
on global features of the data learnt by gathering informa-
tion from the whole domain.
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5.2. Audio example: reconstructing gaps in a sound

5.2.1. Experimental setting

For auditory restoration experiments, contrary to what
is done in (Schmidt and Mørup, 2006), we did not use the
short-time Fourier transform afterwards converted into a
log-frequency magnitude spectrogram, but a wavelet trans-
form, which directly gives a log-frequency spectrogram.
More precisely, the magnitude spectrogram was calculated
from the input signals digitized at a 16 kHz sampling rate
using a Gabor wavelet transform with a time resolution
of 16 ms for the lowest frequency subband. Higher sub-
bands were downsampled to match the lowest subband res-
olution. The frequency range extended from 50 Hz to
8 kHz and was covered by 200 channels, for a frequency
resolution of 44 cent.

We used a 4.8 s piece of computer generated polyphonic
music containing a trumpet and a piano, already used in
(Schmidt and Mørup, 2006). Its spectrogram can be
seen in Fig. 3(a). The incomplete waveform was built by
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Fig. 3. NMF2D with missing-data on the spectrogram of a truncated wavef
trumpet sounds). (b) Spectrogram of the truncated waveform. (c) Truncated sp
and reconstructed spectrogram using the I-divergence algorithm. (e) Reconstr
separated spectrogram of the trumpet part.
erasing 80 ms of signal every 416 ms, leading to a signal
with about 20 % of data missing. Its spectrogram is shown
in Fig. 3(b).

The mask indicating the region J to inpaint was built
according to the erased portions of the waveform. With a
Gabor wavelet transform, the influence of a local modifica-
tion of the signal theoretically spans the whole interval.
However, as the windows are Gaussian, one can consider
that the influence becomes almost null further than about
three times the standard deviation. This standard deviation
is inversely proportional with the frequency, and the influ-
ence should thus be considered to span a longer interval for
lower frequencies. Although it leaves some unreliable por-
tions of the spectrogram out of the mask in the lower fre-
quencies, for simplicity, we did not consider here this
dependence on frequency, and simply considered unreli-
able, for each 80 ms portion of waveform erased, 6 whole
spectrogram frames (corresponding to about 96 ms of sig-
nal in the highest frequencies). The incomplete spectrogram
is shown in Fig. 3(c), with areas to inpaint in black.
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The NMF2D parameters were as follows. As in
(Schmidt and Mørup, 2006), we used two factors, d = 2,
since we are analyzing a scene with two instruments, and
the number of convolutive components in pitch was set
to / = {0, . . . , 11}, as the pitch of the notes in the data
spans three whole notes. For the convolutive components
in time, we used empirically s = {0, . . . , 31}, for a time
range of about 500 ms, thus roughly spanning the length
of the eighth notes in the music sample. The I -divergence
was used as the distortion measure, and the L1 norm as
the sparseness term with the coefficient k set to 0.001.
The algorithm was ran for 100 iterations.

5.2.2. Results and discussion
To evaluate the reconstruction accuracy of the spectro-

gram, we use two measures: Signal to Noise Ratio
(SNR), defined as 10log10ðkbS � Sk2

=kSk2Þ where S denotes
the reference magnitude spectrogram and bS the recon-
structed magnitude spectrogram, and Segmental SNR
(SSNR), computed as the median of the individual SNRs
of all the frames. We note that computing the SNR directly
on the magnitude spectrogram amounts to assuming that
the phase is perfectly reconstructed. The results are sum-
marized in Table 1, where “in” refers to the measure com-
puted inside the gaps (the inpainted part), “out” to the
measure computed outside the gaps (the part more classi-
cally reconstructed based on observed data), “M” refers
to the proposed Missing-data NMF2D, “O” to the original
NMF2D on the whole data with missing data (if any)
assumed to be zero, “C” to the magnitude spectrogram
of the complete waveform, and “I” to the one of the incom-
plete waveform. Finally, “WX” refers to the spectrogram
reconstructed by applying algorithm W on spectrogram
X, and “Y/Z” to the comparison of spectrogram Y with
spectrogram Z as a reference. For example, the SNR of
“MI/C” is the SNR of the spectrogram reconstructed using
our missing-data approach on the spectrogram of the
incomplete data w.r.t. the spectrogram of the full
waveform.
Table 1
Results of the reconstruction experiment. “in” and “out” refer to the
measures computed inside and outside the gaps, respectively; “M” refers
to the proposed Missing-data NMF2D, “O” to the original NMF2D on
the whole data with missing-data (if any) assumed to be zero, “C” to the
magnitude spectrogram of the complete waveform, and “I” to that of the
incomplete waveform. Finally, “WX” refers to the spectrogram recon-
structed by applying algorithm W on spectrogram X, and “Y/Z” to the
comparison of spectrogram Y with spectrogram Z as a reference.

SNR SSNR

In Out In Out

OC/C 13.2 13.1 12.6 12.4
I/C 2.5 21.3 2.7 28.2
OI/C 4.3 10.6 4.1 10.1
OI/I 5.8 10.8 7.3 10.5
MI/C 10.6 13.1 10.5 12.1
MI/I �3.8 13.1 3.3 12.1
The OC spectrogram is the spectrogram reconstructed
by the original method applied to the complete spectro-
gram C. Comparing it to the complete spectrogram (OC/
C results) thus gives us the modeling accuracy of NMF2D
in ideal conditions, and a reference on the performance
that we should aim for when trying to analyze the incom-
plete scene and to reconstruct its missing parts. On the
other hand, comparing the spectrogram I of the incomplete
waveform to that of the complete waveform inside the gaps
(I/C “in” results) indicates the starting point before any
reconstruction is done. Let us now look at the performance
of the original NMF2D applied to the spectrogram of the
incomplete waveform, under the crude assumption that
data in the gaps are equal to zero. Comparing the recon-
structed spectrogram OI to either that of the complete
waveform (OI/C) or the incomplete waveform (OI/I) shows
first that a bias is introduced even in the reconstruction of
the observed data (“out”), and second that, as expected,
the missing data are not reconstructed (OI/C “in”). We
finally look at the performance of the proposed missing-
data NMF2D also applied to the spectrogram of the
incomplete waveform. Comparing the reconstructed spec-
trogram MI to that of the incomplete waveform (MI/I),
we see that the proposed algorithm correctly performs its
task of reconstructing the observed data (“out”). This
result is important in itself as it shows that the proposed
framework enables NMF2D, designed for complete data,
to be used on incomplete data without decrease of the per-
formance measured on the observed part of the data, in
particular without letting the missing regions introduce a
bias in the analysis of the observed regions. One could
actually think of applications for which reconstruction of
the missing parts may be unnecessary, for example if only
the spectro-temporal templates or their activations them-
selves are desired. Comparing now MI to the spectrogram
of the complete waveform (MI/C), we see that the formerly
erased regions (“in”) are correctly inpainted, with a great
improvement over the incomplete spectrogram, as seen ear-
lier with the I/C results, and that our method performs clo-
sely to NMF2D applied on the complete spectrogram, as
we saw above with the OC/C results.

Graphical results are shown in Fig. 3(d)–(f), where one
can see in particular that the acoustical scene analysis
(i.e., the learning of a spectro-temporal template for each
instrument and the estimation of the pitch and onset time
of each note) is performed correctly, and that blind source
separation is also performed in spite of the presence of
gaps.

Here again, it is interesting to note that the missing
information is not reconstructed from the neighboring
parts as in classical interpolation techniques, but indirectly
from similar patterns in other regions of the spectrograms,
using the local information mainly to determine what sim-
ilar patterns to use in the reconstruction. Although one
may think that in this particular simple example, where
pitches are flat and spectral envelopes rather steady, inter-
polation techniques could be used as well, it is important to
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note that such techniques are helpless when higher-order
structure is necessary to reconstruct the missing regions:
this is for example the case when these regions include
the beginning or the end of a note and typical note length
is thus a crucial key, when a complete harmonic is missing
and needs to be reconstructed by inferring it from the typ-
ical spectro-temporal envelope and the strength of the cur-
rent note, or in general when the missing information is too
complex to be inferred from the neighboring parts only.
One can relate this behavior of our model to the phonemic
illusion phenomenon mentioned earlier, where humans
arguably also use higher-order models (e.g., language mod-
els, production models) to infer the missing phonemes.
6. Missing-data harmonic-temporal clustering

The Harmonic-Temporal Clustering framework attempts
to perform the analysis of an acoustical scene by modeling its
power spectrogram as a constrained Gaussian mixture
model. It has been introduced by Kameoka et al. (2007) for
music signals and later extended to signals with continuously
varying pitch such as speech by Le Roux et al. (2007a). We
explain here how it can be further extended to deal with
acoustical scenes with incomplete data, and how the inherent
continuity constraint on the fundamental frequency contour
imposed by the use of cubic spline functions and an extra
Markovian prior enables us to perform robust F0 estimation
on incomplete speech data.
Fig. 4. Graphical representation of an HTC source model. (a) shows the
time-frequency profile of the model, while (b) shows a cross-section of the
model at constant time and (c) the evolution in time of the power envelope
function. The harmonic structure of the model can be seen in (b), and the
approximation of the power envelope in the time direction as a sum of
Gaussian kernels can be seen in (c).
6.1. Overview of the HTC model

Consider the wavelet power spectrum W(x, t) of a signal
recorded from an acoustical scene, defined on a domain of
definition D ¼ fx; t 2 RjX0 6 x 6 X1; T 0 6 t 6 T 0 þ T g.
The problem considered is to approximate the power spec-
trum as well as possible as the sum of K parametric source
models qk(x, t;H) modeling the power spectrum of K

“objects” each with its own F0 contour lk(t) and its own
harmonic-temporal structure. As described in (Kameoka
et al., 2007; Le Roux et al., 2007a), the source models
qk(x, t;H) are expressed as a Gaussian mixture model
(GMM) with constraints on the characteristics of the ker-
nel distributions: supposing that there is harmonicity with
N partials modeled in the frequency direction, and that
the power envelope is described using Y kernel functions
in the time direction, we can rewrite each source model in
the form

qkðx; t; HÞ ¼
XN

n¼1

XY�1

y¼0

Sknyðx; t; HÞ; ð23Þ

where H is the set of all parameters and with kernel densi-
ties Skny(x, t;H) which are assumed to have the following
shape:

Sknyðx; t; HÞ ,
wkvknukny

2prk/k
e
�ðx�lk ðtÞ�log nÞ2

2r2
k

�ðt�sk�y/k Þ2

2/2
k ; ð24Þ
where the weight parameters wk, vkn and ukny are normal-
ized such that

P
kwk ¼ 1;

P
nvkn ¼ 1; 8k and

P
yukny ¼ 1;

8k; n. The parameter sk gives the onset time of the source
model qk, wk its energy, vkn the ratio of energy inside its
nth partial, and the parameters ukny together with the dura-
tion parameter /k determine the shape of the temporal
envelope of this nth partial. A graphical representation of
an HTC source model qk(x, t;H) can be seen in Fig. 4.
The F0 contours lk(t) can be expressed using piece-wise flat
functions or cubic spline functions according to the signal
to be modeled.

The goal is to minimize the difference between W(x, t)
and Qðx; t; HÞ ¼

PK
k¼1qkðx; t; HÞ according to a certain cri-

terion. We use the I -divergence (Csiszár, 1975) as a classi-
cal way to measure the distance between two non-negative
distributions:

IðW jQðHÞÞ ,
Z Z

D
W ðx; tÞ log

W ðx; tÞ
Qðx; t; HÞ

	
� W ðx; tÞ � Qðx; t; HÞÞ
	 


dx dt; ð25Þ

and we are thus looking for Hopt ¼ argmin
H

IðW jQðHÞÞ.
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6.2. Formulation of the model on incomplete data

The optimization process in HTC (Kameoka et al.,
2007; Le Roux et al., 2007a) is nothing else than the fitting
of a model (in particular a constrained Gaussian mixture
model) to an observed distribution (the wavelet power
spectrum of an acoustical scene), using the I -divergence
as a measure of the goodness of fit.

If some parts of the power spectrum are missing or cor-
rupted, or if some parts of the HTC model are partially or
entirely lying outside the boundaries of the spectrogram (for
example if some harmonics of the model are above the max-
imum frequency and a prior is used to link the powers of the
harmonics, fitting the upper harmonics to zero will bias the
optimization), the estimation of the HTC model must be
performed under an incomplete-data framework, as in Sec-
tion 2.3. In the same way as we showed there, optimization
can be performed in an iterative way by using the values of
the model at the previous step as an estimation of the unob-
served data. In the case of HTC, this results in a hierarchical
algorithm with two levels. At the upper level is the iterative
algorithm described above. At the lower level, inside the
step 2 of the upper level, the EM algorithm is used as in
the classical formulation of the HTC optimization. Let W

be the observed part of the spectrogram and I � D its
domain of definition. The objective function to minimize
here is the same as (25) but restricted to the domain where
the spectrogram is observed:

IðW ;QðHÞÞ ,
Z Z

I
W ðx; tÞ log

W ðx; tÞ
Qðx; t; HÞ

	
� W ðx; tÞ � Qðx; t; HÞð Þ



dx dt: ð26Þ

We define the auxiliary function as

IþðW ; V ;QðHÞÞ , IðW ;QðHÞÞ

þ
Z Z

DnI
V ðx; tÞ log

V ðx; tÞ
Qðx; t; HÞ

	
� V ðx; tÞ � Qðx; t; HÞÞð



dx dt: ð27Þ

Then membership functions m can be further introduced as
in the classical formulation of HTC to build the final aux-
iliary function IþþðW ; V ;QðHÞ;mÞ. These membership
functions are non-negative and sum up to 1 for each
(x, t) :

P
k;n;ymknyðx; tÞ ¼ 1. If we note

Zðx; tÞ ¼
W ðx; tÞ if ðx; tÞ 2 I

V ðx; tÞ if ðx; tÞ 2 D n I

�
:

we define

IþþðW ; V ;QðHÞ;mÞ

,

Z Z
D

X
k;n;y

mknyðx; tÞZðx; tÞ log
Sknyðx; t; HÞ

mknyðx; tÞZðx; tÞ

 

� Zðx; tÞ � Qðx; t; HÞð Þ



dx dt: ð28Þ
Using the concavity of the logarithm, one can see that

IþðW ; V ;QðHÞÞ 6 IþþðW ; V ;QðHÞ;mÞ ð29Þ
with equality for

m̂knyðx; tÞ ¼
Sknyðx; t; HÞPK

k¼1

PN
n¼1

PY�1
y¼0 Sknyðx; t; HÞ

: ð30Þ

Altogether, the optimization process can be formulated as
follows.

Step 1 Estimate V such that IðW ;QðHÞÞ ¼ IþðW ; V ;HÞ:bV ðx; tÞ ¼ Qðx; t; HÞ; 8ðx; tÞ 2 D n I : ð31Þ
Step 2 Update H with bV fixed:bH ¼ argmin

H

IþðW ; bV ;HÞ: ð32Þ

To do so, perform one iteration of the classical formulation
of HTC:

E-Step

m̂knyðx; tÞ ¼
Sknyðx; t; HÞPK

k¼1

PN
n¼1

PY�1
y¼0 Sknyðx; t; HÞ

; ð33Þ

M-StepbH ¼ argmin
H

IþþðW ; bV ;H; m̂Þ � log P ðHÞ
� �

ð34Þ

where P(H) is a prior distribution on the parameters.
6.3. Optimization of the model

Analytical update equations for the M-step are derived
in (Kameoka et al., 2007; Le Roux et al., 2007a). However,
when the F0 contour is modeled using cubic spline func-
tions, which is relevant for speech or musical instruments
whose pitch can vary continuously, the spline parameters
were updated in (Le Roux et al., 2007a) not globally but
one after the other. The corresponding optimization proce-
dure, called the expectation–constrained maximization
algorithm (ECM) (Meng and Rubin, 1993), does not
ensure the minimization in the M-step but nonetheless
guarantees the decrease of the objective function. This
spline parameter update was thus not optimal but yet led
to very good results in F0 estimation accuracy. However,
it suffered from some instability problems in long regions
with low harmonic energy (silence or unvoiced parts of
speech for example). When dealing with missing-data prob-
lems, such issues become critical, and we thus need to use
better update equations for the spline parameters, briefly
introduced in (Le Roux et al., 2007b) and which we present
in detail in Appendix B. Contrary to the update equations
previously described in (Le Roux et al., 2007a), the ones
presented here are global analytical update equations
which lead to the minimum of the auxiliary function in
the M-step. They ensure a greater stability of the spline
model and a better F0 estimation accuracy, as shown in
the next section.
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7. F0 estimation on incomplete data with HTC

7.1. Importance of F0 estimation accuracy

Ensuring a very good accuracy for the F0 estimation is
not only important as a necessary step for computational
auditory induction by HTC, but it is also in itself a primary
issue. Indeed, being able to estimate the F0 accurately is
important as well for some previous audio interpolation
methods such as Maher’s sinusoidal model based method
(Maher, 1994), in which the harmonics before and after
the gap need to be linked, or Vaseghi and Rayner’s
extended AR model (Vaseghi and Rayner, 1990), which
takes advantage of the long-term correlation structure of
the signals by introducing extra predictor parameters
around the pitch period.

7.2. Relevance of HTC’s F0 contour model

When applied to speech, HTC is based on a spline F0

contour. A Markovian prior, presented in Appendix B, is
used on the parameters of the contour to ensure that it will
not move too abruptly. This Markovian prior penalizes the
deviation of a spline parameter from the linear interpola-
tion of its neighbors. Altogether, HTC’s F0 contour model
is somewhere between a spline interpolation and a linear
interpolation, depending on the strength of the matching
between the HTC source model and the observed data.

Attempting to use this model for reconstruction of
incomplete data implies that the F0 contour inside the
gap is close to an interpolation based on the values of
the contour outside the gap. To confirm the relevance of
this interpolation, we thus need to ensure that, assuming
that the F0 estimation on complete parts of the data is
accurately performed, the F0 of the missing parts of the
data is accurately performed as well.

We thus evaluated as a preliminary experiment the accu-
racy of the F0 contour obtained by interpolating the refer-
ence F0 values outside the gaps on the whole interval using
both natural splines and linear interpolation. This can be
considered as an evaluation of what can be expected by
HTC.

We then conducted experiments to confirm the accuracy
of the proposed method for F0 estimation. The goal here
was first to confirm that the new spline update equations
indeed outperform the former update equations on sin-
gle-speaker F0 estimation in clean environment for com-
plete data, then to evaluate the F0 accuracy with parts of
the data missing.

7.3. Experimental setting

The general conditions of the experiments were exactly
the same as in (Le Roux et al., 2007a), and we shall briefly
review them here, all the details being given there.

We used a database of speech recorded together with a
laryngograph signal (Bagshaw et al., 1993), consisting of
one male and one female speaker who each spoke 50 Eng-
lish sentences for a total of 5 min and 37 s of speech, for the
purpose of evaluation of F0-estimation algorithms. The
power spectrum W(x, t) was calculated from an input signal
digitized at a 16 kHz sampling rate (the original data of the
database was converted from 20 kHz to 16 kHz) using a
Gabor wavelet transform with a time resolution of 16 ms
for the lowest frequency subband. Higher subbands were
downsampled to match the lowest subband resolution.
The lower bound of the frequency range and the frequency
resolution were respectively 50 Hz and 14 cent. The spline
contour was initially flat and set to 132 Hz for the male
speaker and 296 Hz for the female speaker. The length of
the interpolation intervals was fixed to 4 frames. For
HTC, we used K = 10 source models, each of them with
N = 10 harmonics. We used as ground truth the F0 esti-
mates and the reliability mask derived by de Cheveigné
and Kawahara (2002). As the spline function gives an ana-
lytical expression for the F0 contour, we compare our result
with the reference values at a sampling rate of 20 kHz
although all the analysis was performed with a time resolu-
tion of 16 ms. Deviations over 20% from the reference were
deemed to be gross errors.

For the incomplete data, we prepared four sets of data
by replacing segments of the utterances of different lengths
by silence. The sets are prepared such that approximately
20% of the data is lost, erasing segments of length L ms
every 5L ms of data (the obtained utterances would then
be successions of L ms of silence, 4L ms of speech, L ms
of silence, etc.). The four lengths we selected are 25 ms,
50 ms, 75 ms and 100 ms, and the corresponding data sets
are denoted by Erase-25 ms, Erase-50 ms, Erase-75 ms
and Erase-100 ms, respectively. For example, the utter-
ances in Erase-50 ms were produced by erasing 50 ms every
250 ms of data, leading to utterances which are successions
of 50 ms of silence, 200 ms of speech, 50 ms of silence, etc.
We shall note that gaps from 30 ms to 50 ms are already
considered very long gaps in the audio restoration litera-
ture (Esquef and Biscainho, 2006; Godsill and Rayner,
1998; Maher, 1994).

7.4. Preliminary experiment on F0 interpolation

We first performed a preliminary experiment based on
the reference F0 and the reliability mask derived in (de
Cheveigné and Kawahara, 2002). The reliability mask
was used to determine the voiced regions of the speech
utterance, and a global contour over the whole utterance
was derived by interpolating the values of the F0 reference
which were both inside the reliability mask and outside the
erased segments of the data. We used both linear interpo-
lation and cubic spline interpolation. We then computed
the gross error rates of the interpolated F0 values inside
the gaps (by construction the values outside the gaps are
equal to the reference and thus no error can occur there).
Results for the incomplete data sets can be seen in Table 2.
Spline interpolation does not perform as well as linear



Table 2
Gross error rates (%) for F0 interpolation inside the gaps based on
reference F0.

Data set Cubic splines Linear interpolation

Erase-25 m s Male 0.9 0.0
Female 0.2 0.0

Total 0.5 0.0

Erase-50 m s Male 1.5 0.5
Female 1.0 0.5

Total 1.2 0.5

Erase-75 m s Male 4.0 1.3
Female 3.0 0.5

Total 3.5 0.9

Erase-100 m s Male 7.6 4.2
Female 6.2 1.6

Total 6.9 2.9
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interpolation due to the large variations that can occur
depending on the slope of the contour at the beginning
or end of a voiced region. This is precisely what the Mar-
kovian prior in HTC’s F0 contour model aims to avoid.

7.5. Accuracy on complete data

We first used the classical HTC formulation on complete
data, using the new spline update equations. Here, only
step 2 of the algorithm devised in Subsection 6.2 is thus
used (iteration of equations (33) and (34)).

The results can be seen in Table 3, with for comparison
the results obtained with HTC using the former spline
update equations as well as the ones obtained with the
state-of-the-art algorithm YIN (de Cheveigné and Kawa-
hara, 2002). We note that we obtained 2.1% gross error
rate for YIN using the code made available by its authors,
as opposed to 1.3% reported in the original paper. We can
see that HTC with the newly proposed spline update equa-
tions now performs comparably to YIN.
Table 3
Gross error rates for F0 estimation on complete data (clean single-speaker
speech).

Method Gross error (%)

YIN Male 3.2
Female 1.0

Total 2.1

HTC (former spline update) Male 3.2
Female 3.7

Total 3.5

HTC (proposed spline update) Male 1.1
Female 1.3

Total 1.2
7.6. Accuracy on incomplete data

The wavelet transforms were performed on the trun-
cated waveforms of the data sets introduced above. The
regions DnI which are to be considered missing in the spec-
trogram were defined as the frames corresponding to the
erased parts of the waveform. The influence of the erased
portion is larger for low frequencies, but we neglect this
and consider missing a whole frame regardless of the fre-
quency bin.

In such situations where part of the data is irrelevant,
one might think that algorithms which perform F0 estima-
tion more locally should be used, using interpolation
between the preceding and following voiced portions to
obtain F0 values inside the gap. If the estimation can be
accurately performed outside the gaps, such a method
should lead to very good results, as we saw in Section
7.4. However, one needs to note that if such algorithms
are used, a robust voice activity detection (VAD) must be
performed as well to determine which points should be
used in the interpolation. A poor VAD accuracy could lead
to very bad results in the interpolation process, as unreli-
able values for the F0 could be used as base points for
the interpolation, leading to wrong results on the whole
interpolation region. To illustrate this and as a comparison
with HTC, we used the algorithm YIN to perform F0 esti-
mation outside the gaps, and used a linear interpolation to
obtain values inside the gaps, using the closest voiced
regions outside the gaps as boundaries. The positions of
the gaps were given, and the voiced regions were deter-
mined using the aperiodicity measure given by YIN, with
a threshold of 0.2. The results given here were obtained
using linear interpolation, but cubic spline interpolation
gave similar results.

Results for HTC and YIN are given in Table 4, with
gross error rates for the whole file as well as for the erased
segments only. We can see that the performance of HTC
degrades as the gaps become longer. HTC performs better
than the algorithm based on YIN for the total accuracy as
well as for the accuracy inside the gaps with 25 ms and
50 ms erased segments, while the algorithm based on
YIN performs better inside the gaps with 75 ms and
100 ms erased segments but is still outperformed on the
total error.

These results raise several remarks. We note first that
the accuracy of YIN on the whole waveform is stable as
gaps become longer while decreasing inside the gaps, mean-
ing that it tends to increase outside the gaps. Although this
may first sound surprising, it is related to the fact that
interpolation is performed by using as anchors the closest
regions outside the gaps with a sufficiently low aperiodicity
measure; the presence of gaps will thus influence the inter-
polation process and the F0 estimates around them. But as
gaps become longer, the results inside and outside become
less dependent: each gap inducing a loss of information
which influences a small neighborhood through interpola-
tion, many small gaps are likely to harm the estimates



Table 4
Gross error rates for F0 estimation on incomplete data with HTC and YIN
(clean single-speaker speech). The results for YIN are indicated in
parentheses.

Data set Error in the gaps (%) Total error (%)

Erase-25 ms Male 6.0 (12.0) 3.9 (10.0)
Female 4.6 (4.7) 3.1 (3.3)

Total 5.3 (8.3) 3.5 (6.5)

Erase-50 ms Male 8.8 (14.2) 4.2 (9.5)
Female 6.9 (5.7) 2.7 (3.2)

Total 7.9 (9.9) 3.4 (6.3)

Erase-75 ms Male 14.1 (15.5) 4.5 (9.5)
Female 13.4 (6.4) 4.1 (3.3)

Total 13.7 (10.9) 4.3 (6.3)

Erase-100 ms Male 22.1 (19.2) 7.0 (10.3)
Female 19.5 (7.4) 5.6 (3.6)

Total 20.9 (13.5) 6.3 (6.9)
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outside the gaps more than a few long ones. On the other
hand, HTC is influenced in a different way by the length
of the gaps. Results outside the gaps are stable, while accu-
racy inside the gaps decreases faster than for YIN when
gaps become too long. One reaches here the limits of the
above-mentioned “prediction power” of the model inside
the gaps, and its degree of freedom becomes too high to
systematically converge to a relevant solution. This prob-
lem could be coped with by investigating the introduction
of more complex pitch contour models which try to encom-
pass the long-term dynamics of the F0, such as the Fujisaki
model (Fujisaki and Nagashima, 1969) for example, or
more complex priors on the spline contours, although in
both cases one faces the risk of making the optimization
intractable.

Altogether, the results show that HTC’s F0 estimation
accuracy, while degrading in extreme cases, is very good
even in the presence of long gaps, and that, although other
F0 estimation algorithms could be used as well, it is not
obvious, regardless of their performance on complete data,
whether they can be turned into effective algorithms on
incomplete data, due in particular to the importance of a
robust VAD for the interpolation to be effective.
8. Conclusion

We presented a computational framework to model
auditory induction, i.e., the human auditory system’s abil-
ity to estimate the missing parts of a continuous auditory
stream briefly covered by noise, by extending acoustical
scene analysis methods based on global statistical models
such as HTC and NMF2D to handle unobserved data.
We related the method to the EM algorithm, enabling
the use of priors on the parameters. We illustrated on a
simple example how the proposed framework was able to
simultaneously perform acoustical scene analysis and gap
interpolation in a musical piece with NMF2D, and how a
robust F0 estimation could be performed on incomplete
data with HTC. While we assumed here that the gap loca-
tions were known, future work will investigate their joint
estimation together with the model parameters and the
missing data, in a similar way to Barker et al. (2005) for
missing-feature speech recognition.
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Appendix A. Derivation of the Q-function of Section 3.2

We compute here the explicit form of the Q-function
QðH;HÞ involved in the application of the EM algorithm
to the ML problem introduced in Section 3.2 in which
the data are supposed to have been generated indepen-
dently at each x from a probability distribution of an expo-
nential family F/ with expectation parameter g(x,H). In
the following, we will denote by mx,/,H(z) the density of this
probability distribution, which can be written as explained
in Section 3.1 directly using the corresponding Bregman
divergence:

mx;/;HðzÞ ¼ e�d/ðz;gðx;HÞÞb/ðzÞ: ðA:1Þ

As the data are supposed to have been generated inde-
pendently at each x from the probability distribution with
density mx,/,H(z), observed and unobserved data are in par-
ticular independent conditionally to H, and the Q-function
can be written as follows:

QðH;HÞ ¼ Eðlog P ðhjHÞÞPðhjf ;HÞ þ Eðlog P ðf jHÞÞPðhjf ;HÞ

¼
Z

RnnI
Eðlog PðhðxÞjHÞÞPðhðxÞjHÞ dx

þ
Z

P ðhjf ;HÞ
	 
Z

I
log P ðf ðxÞjHÞdx

¼
Z

RnnI

Z
mx;/;HðzÞ log mx;/;HðzÞ dz dxþ

Z
I

log P ðf ðxÞjHÞdx

¼
Z

RnnI

Z
mx;/;HðzÞ log b/ðzÞ � d/ðz; gðx;HÞÞ

� �
dz dx

ðA:2Þ

þ
Z

I
log b/ðf ðxÞÞ � d/ðf ðxÞ;gðx; HÞÞ
� �

dx

¼ �
Z

RnnI

Z
mx;/;HðzÞd/ðz;gðx;HÞÞdz dx

�
Z

I
d/ðf ðxÞ;gðx;HÞÞdxþ C1ðf ;HÞ;

where C1ðf ;HÞ does not depend on H. If we now rewrite
d/(z,g(x;H)) as

d/ðz; gðx; HÞÞ ¼ d/ðgðx; HÞ; gðx; HÞÞ þ /ðzÞ � /ðgðx; HÞÞ
� hz� gðx; HÞ;r/ðgðx; HÞÞi; ðA:3Þ
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we can simplify the first term in Eq. (A.2):Z
mx;/;HðzÞd/ðz; gðx; HÞÞdz

¼
Z

mx;/;HðzÞdz
	 


d/ðgðx; HÞ; gðx; HÞÞ

�
Z
ðz� gðx; HÞÞmx;/;HðzÞdz;r/ðgðx; HÞÞ

� �
þ C2ðf ;HÞ ¼ d/ðgðx; HÞ; gðx; HÞÞ þ C2ðf ;HÞ;

where C2ðf ;HÞ does not depend on H. To lead the calcula-
tion above, we used the fact that the mass of a probability
distribution of an exponential family with expectation
parameter gðx; HÞ is 1 and its mean is gðx; HÞ:Z

mx;/;HðzÞdz ¼ 1; ðA:4ÞZ
zmx;/;HðzÞdz ¼ gðx; HÞ: ðA:5Þ

We then obtain for the Q-function

QðH;HÞ ¼ �
Z

RnnI
d/ðgðx; HÞ; gðx; HÞÞdx

�
Z

I
d/ðf ðxÞ; gðx; HÞÞdxþ Cðf ;HÞ

¼ �LþðH; gðx; HÞÞ þ Cðf ;HÞ; ðA:6Þ

where Cðf ;HÞ again does not depend on H.

Appendix B. Derivation of the spline parameter update

equations in HTC

B.1. Spline contour

The analysis interval is divided into subintervals [ti, ti+1)
of equal length �. The parameters of the spline contour
model are then the values zi of the F0 at each bounding
point ti. Assuming that the second derivative vanishes at
the bounds of the analysis interval leads to the so-called
natural splines. Under this assumption, one can explicitly
compute offline a matrix M linking the values z00i of the sec-
ond derivative of the contour at ti with the values zi, such
that z00 = Mz. An analytical expression for the contour
l(t;z) as a concatenation of third order polynomials can
then be classically obtained. For t 2 [ti, ti+1):

lðt; zÞ , 1

tiþ1 � ti
ziðtiþ1 � tÞ þ ziþ1ðt � tiÞð

� 1

6
ðt � tiÞðtiþ1 � tÞ ðtiþ2 � tÞz00i þ ðt � ti�1Þz00iþ1

 �

:

ðB:1Þ

One can notice that the expression of l(t;z) is actually lin-
ear in z:

lðt; zÞ ¼ AðtÞ>z ðB:2Þ
where A(t) is a column vector such that, for t 2 [ti, ti+1),
AðtÞ ¼ 1

tiþ1 � ti
ðtiþ1 � tÞei þ ðt � tiÞeiþ1ð

� ðt � tiÞðtiþ1 � tÞ
6

ðtiþ2 � tÞM>
i þ ðt � ti�1ÞM>

iþ1

 �

ðB:3Þ

where Mj denotes the jth row of the matrix M and ej de-
notes the jth vector of the canonical basis. We note further-
more that A(t) = $zl(t;z).

B.2. Optimization of the objective function

During the M-step of the EM algorithm, one wants to
minimize J ðHÞ ¼ IþþðW ; bV ;H; m̂Þ � log P ðHÞ with
respect to H. We can compute the gradient with respect
to z:

rzJ ¼ �
Z Z

D

X
k;n;y

‘knyðx; tÞ
r2

k

ðx� lðt; zÞ � log nÞAðtÞdx dt

�rz log P ðHÞ

¼ �
Z Z

D

X
k;n;y

‘knyðx; tÞ
r2

k

ðx� AðtÞ>z� log nÞAðtÞdx dt

�rz log P ðHÞ

where ‘kny(x, t) = mkny(x, t)Z(x, t). Note that the termR R
D Qðx; t; HÞdx dt in (28) does not contribute to the gradi-

ent w.r.t. z as the spline parameters do not influence the
normalization of the model. Let

/ðtÞ ¼
Z X

k;n;y

‘knyðx; tÞ
r2

k

ðx� log nÞdx;

cðtÞ ¼
Z X

k;n;y

‘knyðx; tÞ
r2

k

dx:

Then

rzJ ¼ �
Z

/ðtÞAðtÞdt þ
Z

cðtÞAðtÞAðtÞ>dt
	 


z

�rz log P ðHÞ:

One can then obtain the Hessian matrix:

H zJ ¼
Z

cðtÞAðtÞAðtÞ>dt � H z log P ðHÞ: ðB:4Þ

If one uses a Markov assumption on the spline parameters
with Gaussian distributions for the state transitions, the
prior distribution becomes

PðzÞ ¼ Pðz0Þ
Yjzj
j¼1

P ðzjjzj�1Þ;

with z0 following a uniform distribution and

Pðzjjzj�1Þ ¼
1ffiffiffiffiffiffi

2p
p

rs

e
�
ðzj�zj�1Þ2

2r2
s :
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Then

rz log PðHÞ ¼ � 1

r2
s

1 �1 0

�1 2 �1

. .
. . .

. . .
.

�1 2 �1

0 �1 1

0BBBBBB@

1CCCCCCAz

¼ H z log P ðHÞz:

ðB:5Þ

Putting to 0 the gradient w.r.t. z, one can find the update
equation for z:

z ¼ ðH zJ Þ�1

Z
/ðtÞAðtÞ dt: ðB:6Þ

The convexity can be studied by looking at H zJ in Eq.
(B.4). The first term is indeed non-negative, as c(t) P 0, "t.
For the second term, coming from the prior distribution,
we recognize a tridiagonal matrix, for which the principal
minors can be easily calculated. If T = (tij) is a tridiagonal
matrix and an its nth principal minor, then

an ¼ tn;nan�1 þ tn;n�1tn�1;nan�2: ðB:7Þ

In our case, we see that the principal minors of Hzlog P(H)
are all non-positive. The matrix�Hzlog P(H) is thus positive
semi-definite. Altogether, H zJ is at least positive semi-defi-
nite, and the update (B.6) thus corresponds to a minimum.
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