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ABSTRACT
Non-negative matrix factorization (NMF) is a powerful ap-
proach to single channel audio source separation. In a super-
vised setting, NMF is first applied to train the basis spectra of
each sound source. At test time, NMF is applied to the spec-
trogram of a mixture signal using the pretrained spectra. The
source signals can then be separated out using a Wiener filter.
A typical way to train the basis spectra of each source is to
minimize the objective function of NMF. However, the basis
spectra obtained in this way do not ensure that the separated
signal will be optimal at test time due to the inconsistency
between the objective functions for training and separation
(Wiener filtering). To address this, a framework called dis-
criminative NMF (DNMF) has recently been proposed. In
in this work a multiplicative update algorithm was proposed
for the basis training, however one drawback is that the con-
vergence is not guaranteed. To overcome this drawback, this
paper proposes using a majorization-minimization principle
to develop a convergence-guaranteed algorithm for DNMF.
Experimental results showed that the proposed algorithm out-
performed standard NMF and DNMF using a multiplicative
update algorithm as regards both the signal-to-distortion and
signal-to-interference ratios.

Index Terms— Discriminative non-negative matrix fac-
torization, majorization-minimization, single channel, speech
enhancement

1. INTRODUCTION

Single channel audio source separation is the challenging
task of extracting individual source signals from a monaural
recording of a mixture signal. Non-negative matrix factor-
ization (NMF) [1, 2] has attracted a lot of attention in recent
years after being proposed as a powerful approach for audio
source separation.

Factorizing an observed magnitude (or power) spectro-
gram of a mixture signal, interpreted as a non-negative ma-
trix, into the product of two non-negative matrices amounts
to approximating the observed spectra by a linear sum
of basis spectra scaled by time-varying amplitudes. In a
supervised/semi-supervised setting, NMF is first used to train
the basis spectra of each sound source using individually
recorded audio samples. At test time, NMF is applied to
the spectrogram of a test mixture signal, where each subset
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of the basis spectra is fixed at the pretrained spectra. The
source signals can then be separated out using a Wiener filter
constructed by employing the estimated power spectrogram
of each source. A typical way to train the basis spectra of
each source is to minimize a divergence measure between the
NMF model and the spectrogram of the training samples of
that source. However, the basis spectra obtained in this way
do not ensure that the separated signal at test time will be
optimal since the objective functions for training and sepa-
ration are inconsistent. To address this, a framework called
1discriminative NMF (DNMF) has recently been proposed
[3]. The central idea of DNMF is that the basis spectra are
trained in such a way that the output of the Wiener filter
becomes as close to the spectrogram of each of the training
examples as possible so that the separated signals become
optimal at test time. This approach differs from the conven-
tional supervised NMF framework in that it uses the training
examples of all the sources to train the basis spectra for each
of the sources. This is important since it helps to enhance
the discriminative power of the basis spectra. However, as
shown later, the training criterion for DNMF becomes ana-
lytically more complex than the typical divergence measures
used in the standard NMF framework, which causes diffi-
culty as regards optimization of the basis spectra. In [3]
Weninger proposed a multiplicative update algorithm for the
basis training, however one drawback is that the convergence
is not guaranteed. To overcome this drawback, this paper pro-
poses using a majorization-minimization principle to derive a
convergence-guaranteed algorithm for DNMF.

2. DISCRIMINATIVE NON-NEGATIVE MATRIX
FACTORIZATION

2.1. Standard NMF

We start by reviewing standard NMF for single channel
source separation. Let us denote the number of sources by L,
and an observed power spectrogram by Y = (Yω,t)Ω×T ∈
R≥0,Ω×T , where ω and t are frequency and time indices.
Supervised NMF factorizes an observed spectrogram Y of
a mixture signal into the product of a non-negative basis
matrix W = [W 1,W 2, . . . .WL] and a non-negative coef-
ficient (activation) matrix H = [H1;H2; . . . ;H l], where

1While many methods called “discriminative NMF” have been proposed
with the aim of enhancing the discriminative power of the basis spectra [3]–
[10], here we use this term in relation to the work done by Weninger [3].
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W l = (W l
ω,k)Ω×Kl ∈ R≥0,Ω×Kl

with l = 1, 2, . . . , L
is pretrained using the spectrograms of training samples
Sl = (Sl

ω,t)Ω×T . A typical criterion for this is

W l = argmin
W l

D(Sl|W lH l), (1)

where D is a cost function that measures the difference be-
tween Sl and W lH l. At test time, W is fixed at the pre-
trained basis spectra and the activation matrix H is estimated
so that the objective funtion

H = argmin
H

D(Y |WH), (2)

is minimized subject to non-negativity. When D is a general-
ized Kullback-Leibler (KL) divergence, the objective function
can be written as

DKL(Y |WH)

=
∑
ω,t

(
Yω,t log

Yω,t

[WH]ω,t
− Yω,t + [WH]ω,t

)
, (3)

where [·]i,j denotes the {i, j}-th element of a matrix. Once
W and H are obtained, the signals can be separated by a
Wiener filter constructed using the estimated power spectro-
gram as follows

Ŝl =
W lH l

WH
⊗ Y , (4)

where ⊗ and ·
· denote elementwise multiplication and divi-

sion.

2.2. DNMF and multiplicative update algorithm

Instead of using (1), Weninger [3] proposed directly using the
reconstruction error of the separated signals as an objective
function for the basis training

J =
∑
l

αlDKL(S
l|Ŝl), (5)

where αl ≥ 0 weighs the importance of source signal l. This
framework is called discriminative NMF by analogy with the
discriminative models for classification or regression.

For convenience of explanation, here we consider a
speech enhancement problem where the sources are speech
and noise, Ss = (Ss

ω,t)Ω×T ∈ R≥0,Ω×T denotes training
samples of clean speech and Sn = (Sn

ω,t)Ω×T ∈ R≥0,Ω×T

denotes training samples of noise. Since we are concerned
with reconstructing clean speech as well as possible, we
set α at 1 for speech and 0 for noise. In the same way
as in 2.1, we use a Wiener filter to separate the spectro-
gram of speech Ŝs from the spectrogram of a mixture signal
M = (Mω,t)Ω×T ∈ R≥0,Ω×T . The discriminative training
problem can be cast as an optimization problem

minimize f(W ,H) = DKL

(
Ss

∣∣∣∣W sHs

WH
⊗M

)
, (6)

subject to ∀k,
∑
ω

Wω,k = 1,

where the concatenated basis matrix W = [W s,W n] con-
sists of a total of K basis vectors with Ks for speech and Kn

for noise. It should be noted that in [3] a sparse regularization
term [9] is used to promote the sparsity of H .

An inspection of (1) and (6) shows that the training cri-
terion for DNMF is more analytically complex than the ob-
jective function of standard NMF. In [3], Weninger proposed
a multiplicative update algorithm for solving the above op-
timization problem. The algorithm consists of two stages:
First, the activation matrix H is obtained by solving (2) using
NMF. The basis matrix W is then iteratively updated accord-
ing to the following rules

W s ←W s ⊗
Ss⊗W sHs

WH⊗W sHsH
sT

M⊗W nHn

(WH)2 HsT
,

W n ←W n ⊗
M⊗W sHs

(WH)2 HnT

Ss

WHHnT
.

Here, the multiplicative factors are given by dividing the neg-
ative parts by the positive parts of the partial derivative of
f with respect to W s and W n in the same way as in [11].
Although this algorithm is easy to implement and works rea-
sonably well in practice, one drawback is that convergence to
a stationary point of f is not guaranteed.

3. DNMF WITH MAJORIZATION-MINIMIZATION

3.1. Majorization-minimization principle

To address the problem of the multiplicative update algorithm
shown above, we derive a novel convergence-guaranteed al-
gorithm for DNMF based on a majorization-minimization
(MM) principle. When constructing an MM algorithm to
minimize a certain objective function, the main issue is how
to design an auxiliary function called a “majorizer” that is
guaranteed to never be below the objective function. Suppose
F (Θ) is an objective function that we wish to minimize with
respect to Θ. A majorizer F+(Θ, α) is then defined as a func-
tion satisfying F (Θ) = minα F+(Θ, α), where α is called an
auxiliary parameter. An algorithm that consists of iteratively
minimizing F+(Θ, α) with respect to Θ and α is guaranteed
to converge to a stationary point of the objective function. It
should be noted that this concept is adopted in many exist-
ing algorithms. For example, the expectation-maximization
(EM) algorithm [13] builds a surrogate for a likelihood func-
tion of latent variable models by using Jensen’s inequality.
It is also well known for its use in devising an algorithm for
NMF [1, 12]. In general, if we can build a tight majorizer that
is easy to optimize for the objective function of some opti-
mization problem, we can expect to obtain a fast-converging
algorithm.

3.2. Majorizer for objective function

In this section, we derive a novel majorizer for the objective
function (6). First, let us focus on the term∑Ks

k=1 W
s
ω,kH

s
k,t∑K

k=1 Wω,kHk,t

. (7)
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To construct a majorizer for this term, we can use the follow-
ing inequality:

Lemma 1. For a ∈ R>0 and b ∈ R>0,

a

b
≤ λa2

2
+

1

2λb2
.

The equality holds if and only if λ = 1/(ab).

Proof of Lemma 1. For a, b, λ ∈ R>0,

λ

(
a− 1

λb

)2

= λ

(
a2 − 2

a

λb
+

1

λ2b2

)
≥ 0

⇒a

b
≤ λa2

2
+

1

2λb2
. (8)

The equality holds if and only if a− 1/(λb) = 0.

Since Mω,t is non-negative, we can construct an upper
bound for W sHs

WH ⊗M according to the above lemma,

DKL

(
Ss

∣∣∣∣W sHs

WH
⊗M

)
c
=
∑
ω,t

(
− Ss

ω,t logG
s
ω,t + Ss

ω,t logGω,t +
Gs

ω,t

Gω,t
Mω,t

)
≤

∑
ω,t

(
− Ss

ω,t logG
s
ω,t + Ss

ω,t logGω,t

+
λω,tMω,tG

s
ω,t

2

2
+

Mω,t

2λω,tG2
ω,t

)
, (9)

where =c denotes equality up to a constant term, Gs
ω,t =∑Ks

k=1 W
s
ω,kH

s
k,t and Gω,t =

∑K
k=1 Wω,kHk,t. The equal-

ity of (9) holds if and only if

λω,t =
1

Gs
ω,tGω,t

. (10)

In the following, we construct a majorizer for each of the
terms in the right-hand side of (9).

Since Ss
ω,t is positive, −Ss

ω,t logG
s
ω,t is convex in Gs

ω,t.
Hence, we can use Jensen’s inequality to obtain a majorizer
for this term as

− logGs
ω,t ≤−

Ks∑
k=1

γk,ω,t log
W s

ω,kH
s
k,t

γk,ω,t
, (11)

where γk,ω,t is a positive weight that sums to unity. The
equality of (11) holds if and only if

γk,ω,t =
W s

ω,kH
s
k,t∑

k′ W s
ω,k′Hs

k′,t

. (12)

The second term Ss
ω,t logGω,t is concave in Gω,t. Hence, we

can use the fact that a tangent line to the graph of a differen-
tiable concave function lies entirely above the graph:

logGω,t ≤
∑
k

Wω,kHk,t

ηω,t
+ log ηω,t − 1, (13)

where ηω,t is an arbitrary positive number. The equality of
this inequality holds if and only if ηω,t = Gω,t. Since a
quadratic function is convex, we can apply Jensen’s inequality
to the third term, which yields

Gs
ω,t

2 ≤
Ks∑
k=1

W s
ω,k

2Hs
k,t

2

βk,ω,t
, (14)

where βk,ω,t > 0 is also a positive number that sums to unity,
i.e.,

∑
k βk,ω,t = 1. The equality of (14) holds if and only if

βk,ω,t =
W s

ω,kH
s
k,t∑Ks

k′=1 W
s
ω,k′Hs

k′,t

. (15)

As regards the fourth term, we can use the fact that 1/x2 is
convex in the first quadrant and use Jensen’s inequality to ob-
tain a majorizer:

1

G2
ω,t

≤
∑
k

θ3k,ω,t

W 2
ω,kH

2
k,t

, (16)

where θk,ω,t > 0 and
∑

k θk,ω,t = 1. We can confirm that the
equality of this inequality holds if and only if

θk,ω,t =
Wω,kHk,t∑
k′ Wω,k′Hk,t′

. (17)

From (9), (11), (14) and (16), we can construct a majorizer
for the objective function as

f(W ,H) ≤ f+(W ,H,Γ)

= −
∑
ω,t,k

Ss
ω,tγk,ω,t log

W s
ω,kH

s
k,t

γk,ω,t
+

∑
ω,t,k

Ss
ω,tWω,kHk,t

ηω,t

+
∑
ω,t,k

λω,tMω,t

2βk,ω,t
W s

ω,k
2Hs

k,t
2 +

∑
ω,t,k

Mω,tθ
3
k,ω,t

2λω,tW 2
ω,kH

2
k,t

+ d,

where Γ denotes a set of all the auxiliary variables, λω,t,
γk,ω,t, ηω,t, βk,ω,t and θk,ω,t, and d denotes a constant term.
This majorizer is particularly noteworthy in that it can be min-
imized analytically with respect to Wω,k and Hk,t since it is
given as the sum of the reciprocal, logarithmic, first-order and
second-order functions.

3.3. Update rules

We can obtain the update rules for Wω,k and Hk,t by setting
the partial derivatives of the proposed majorizer with respect
to W s, Hs, W n and Hn at zero. Thus, the update rules can
be obtained as the positive solution of the following quartic
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Fig. 1. Means and standard deviations of the SDR improvements [dB]
obtained with the proposed algorithm with various iteration numbers (0, 10,
25, 50, 100, 200) initialized at 5 random values.

and cubic equations:∑
t

λω,tMω,t

2βk,ω,t
Hs

k,t
2W s

ω,k
4 +

∑
t

Ss
ω,tH

s
k,t

ηω,t
W s

ω,k
3

−
∑
t

Ss
ω,tγk,ω,tW

s
ω,k

2 −
∑
t

Mω,tθ
3
k,ω,t

2λω,tHs
k,t

2
= 0, (18)

∑
t

Ss
ω,tH

n
kn,t

ηω,t
W n

ω,k
3 −

∑
t

Mω,tθ
3
k,ω,t

2λω,tHn
k,t

2
= 0, (19)

∑
ω

λω,tMω,t

2βk,ω,t
W s

ω,k
2Hs

k,t
4 +

∑
ω

Ss
ω,tW

s
ω,k

ηω,t
Hs

k,t
3

−
∑
ω

Ss
ω,tγk,ω,tH

s
k,t

2 −
∑
ω

Mω,tθ
3
k,ω,t

2λω,tW s
ω,k

2
= 0, (20)

∑
ω

Ss
ω,tW

n
ω,k

ηω,t
Hn

k,t
3 −

∑
ω

Mω,tθ
3
k,ω,t

2λω,tW n
ω,k

2
= 0. (21)

Although there are two quartic equations that must be solved,
it is worth noting that the parameters can be updated in par-
allel using these update rules. This means that this algorithm
is well suited to parallel implementations. Furthermore, since
each of the update rules consists of a negative 0th-order term
and a negative 2nd-order term, it turns out that there is only
one positive solution, implying that there is no need to solve
a solution selection problem.

4. EXPERIMENTS

To evaluate the effect of the proposed algorithm for speech
enhancement tasks, we tested baseline supervised NMF
(SNMF), DNMF using the multiplicative update algorithm
proposed in [3] (DNMF-MU) and DNMF using the proposed
algorithm (DNMF-MM) using speech data excerpted from
the ATR503 database [14] and two types of measured noise,
namely department store and subway station noise, excerpted
from the ATR ambient noise sound database. We used signal-
to-distortion ratios (SDRs) and signal-to-interference ratios
(SIRs) [15] for the evaluation.

The test data were created by adding noise signals to clean
speech signals with signal-to-noise ratios (SNRs) of -6, -3, 0,
and 3 dB. All the audio signals were monaural and sampled at

Table 1. SDR improvement [dB] evaluated under department
store noise (top row) and subway station (bottom row) condi-
tions.

Method Input SNR
-6 dB -3 dB 0 dB 3 dB Avg

SNMF 5.58 5.53 5.18 4.64 5.23
DNMF MU 5.88 5.68 5.11 4.70 5.34
DNMF MM 6.41 6.29 5.72 4.70 5.78

SNMF 5.79 5.65 5.19 4.06 5.17
DNMF MU 5.51 5.86 5.22 4.80 5.35
DNMF MM 6.82 7.20 6.50 4.89 6.35

Table 2. SIR improvement [dB] evaluated under department
store noise (top row) and subway station conditions (bottom
row).

Method Input SNR
-6 dB -3 dB 0 dB 3 dB Avg

SNMF 7.23 7.44 7.44 7.31 7.36
DNMF MU 8.07 7.87 7.44 7.34 7.68
DNMF MM 9.76 9.66 10.16 9.74 9.83

SNMF 7.78 8.04 8.10 8.16 8.02
DNMF MU 8.04 8.67 7.95 8.29 8.24
DNMF MM 10.77 11.58 11.89 11.28 11.38

16KHz. The STFT was computed using a Hanning window
that was 32ms long with a 16ms overlap.

In the training phase, 200 utterances spoken by 2 male and
2 female speakers were used to train 40 speech basis spectra.
For noise we used the same number of basis spectra. Fig.
1 shows the means and standard deviations of the SDR im-
provements [dB] obtained with the proposed algorithm with
various iteration numbers (0, 10, 25, 50, 100, 200) initialized
at 5 random values. On the basis of these results, we set the
iteration number at 25 in the following experiments. We used
40 utterances selected randomly from the ATR database as the
test set.

Tabs. 1 and 2 show the results of the SDR and SIR im-
provements obtained with the proposed algorithm (DNMF-
MM) and the other two algorithms (SNMF, DNMF-MU) us-
ing two types of noise. The proposed algorithm (DNMF-MM)
yielded an SDR improvement that was 0.86 dB higher than
SNMF and 0.71 dB higher than DNMF-MU. It is worth not-
ing that the proposed algorithm obtained an average SIR im-
provement of more than a 2.9 dB over SNMF, showing the
discriminative power of the basis spectra.

5. CONCLUSION

While DNMF is noteworthy in that it directly uses the recon-
struction errors of the separated signals as the training cri-
teria, it causes difficulty as regards optimization. This paper
derived a novel majorizer for the objective function of DNMF
and successfully developed an MM algorithm that is guaran-
teed to converge to a stationary point. Experimental results
showed that the proposed algorithm achieved significant im-
provements in terms of the SDR and SIR criteria over stan-
dard NMF and DNMF using the multiplicative update algo-
rithm.
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