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ABSTRACT

Deep clustering is a recently introduced deep learning-based
method for speech separation. The idea is to model and
train the mapping from each time-frequency (TF) region of
a spectrogram to an embedding space so that the embedding
features of the TF regions dominated by the same source
are forced to get close to each other and those dominated by
different sources are forced to get separated from each other.
This allows us to construct binary masks by applying a reg-
ular clustering algorithm to the mapped embedding vectors
of a test mixture signal. The original deep clustering uses
a bidirectional long short-term memory (BLSTM) recurrent
neural network (RNN) to model the embedding process. Al-
though RNN-based architectures are indeed a natural choice
for modeling long-term dependencies of time series data,
recent work has shown that convolutional networks (CNNs)
with gating mechanisms also have an excellent potential for
capturing long-term structures. In addition, they are less
prone to overfitting and are suitable for parallel computa-
tions. Motivated by these facts, this paper proposes adopting
CNN-based architectures for deep clustering. Specifically,
we use a gated CNN architecture, which was introduced
to model word sequences for language modeling and was
shown to outperform LSTM language models trained in a
similar setting. We tested various CNN architectures on a
monaural source separation task. The results revealed that the
proposed architectures achieved better performance than the
BLSTM-based architecture under the same training condition
and comparable performance even with a smaller amount of
training data.

Index Terms— monaural source separation, speaker-
independent, multi-speaker separation, deep clustering, gated
convolutional networks

1. INTRODUCTION

Monaural multi-speaker separation is the challenging task of
separating out all the individual speech signals from an ob-
served mixture signal. Although human can easily focus on
listening to one voice from multiple voices sounding simulta-
neously, this is an extremely difficult problem for machines,
which is well known as a cocktail party problem [1]. Re-
cently, inspired by the success of deep learning in different
areas [2-5], many deep learning-based methods have been
proposed to tackle this problem [6—10].

978-1-5386-4658-8/18/$31.00 ©2018 IEEE

kameoka.hirokazu@lab.ntt.co. jp

One impressive approach known as deep clustering [7]
has shown great improvements in speaker-independent multi-
speaker separation tasks. Deep clustering is a binary mask
estimation framework, which is theoretically able to deal
with arbitrary number of sources. One important feature
as regards deep clustering involves permutation invariance.
Namely, speaker labels do not need to be consistent over
different utterances in training data. This particular feature
makes this approach practically convenient. Deep clustering
uses neural networks to learn a mapping from a feature vector
obtained at each time-frequency (TF) region of an observed
spectrogram to a high-dimensional embedding space such
that embedding vectors that originate from the same source
are forced to get close to each other and those that do not
are forced to be separated from each other. At test time, we
can thus obtain binary masks by first mapping the feature
vector obtained at each TF point to the embedding space
and then clustering the embedding vectors. In the original
deep clustering paper, a bidirectional long short-term mem-
ory (BLSTM) recurrent neural network (RNN) was used to
model the embedding process.

Although RNN-based architectures are indeed a natural
choice for modeling long-term dependencies of time series
data, recent work has shown that convolutional networks
(CNNs) with gating mechanisms also have an excellent po-
tential for capturing long-term structures. In addition, they
are less prone to overfitting and are more suitable for parallel
computations than RNNs. Motivated by this fact, we propose
using CNN-based architectures to model the embedding pro-
cess of deep clustering and investigate which architecture is
best suited to source separation tasks. All the network archi-
tectures we investigated were built using the gated CNN [11],
which was originally introduced to model word sequences for
language modeling and was shown to outperform LSTM lan-
guage models trained in a similar setting. Similar to LSTMs,
the gating mechanism of gated CNNs allows the network
to learn what information should be propagated through the
hierarchy of layers. This mechanism is notable in that it can
effectively prevent the network from suffering from the van-
ishing gradient problem. We also investigate the use of bot-
tleneck architectures and dilated convolution [12,13]. Dilated
convolution is similar to standard convolution, but is different
in that the filters can be dilated or upsampled by inserting
zeros between coefficients. This allows networks to model
longer-term contextual dependencies with the same number
of parameters. We also compare 2-dimensional convolution
with 1-dimensional convolution which treats 2-dimensional
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inputs as sequences with multiple channels.

This paper is organized as follows. In sec. 2, we introduce
the details of our proposed CNN-based architectures follow-
ing with a review of the deep clustering method and the gated
CNN architecture. We present the experimental results in sec.
3 and conclude in sec. 4.

2. DEEP CLUSTERING WITH CNN-BASED
ARCHITECTURES

In this section, we first review the deep clustering method and
the gated CNN architecture, which are the core components of
the proposed method. We then show the details of the network
architectures we investigated.

2.1. Deep clustering

Based on an assumption that the energy of each time-
frequency (TF) region of a mixture signal is dominated by
a single source, deep clustering [7] aims to find a set of TF
points that are dominated by the same source. Given a mix-
ture signal consisting of C' sources, we denote its TF repre-
sentation (e.g., log magnitude spectrogram) by X = {X,,} €
RN*1 where n denotes a pair of the frequency and time
indices (f,t) and so N is the number of TF points, F' x T.
Deep clustering projects each TF region X, into an unit
D-dimensional embedding vector V,, = (V,,.1,..., Vap)?
with a BLSTM network V = gg(X), where g(-) denotes the
nonlinear transformation operated by the network, ® denotes
parameters of the network and V. = {V,} € RV¥XDP, The
BLSTM network can be trained by minimizing the objective
function

J(V)=|[VVT - YY"|[%
= [IVIVIE = 2VTY[E + YY) %

ey
@)

where || - ||% is the squared Frobenius norm. In (1), Y =
{Y,..} € RVXC is a source indicator matrix consisting of
one-hot vectors in rows, indicating to which source among
1,...,C the TF region n belongs. In this case, YY7 is
an N x N binary affinity matrix, where the element is
given by (YY7?),,,» = 1if TF region n and n’ are domi-
nated by the same source, otherwise the element is given by
(YYT),,,,, = 0. This implies that this objective function en-
courages the mapped embedding vectors to become parallel
if they are dominated by the same source and become orthog-
onal otherwise. Hence, the embedding vectors originating
from the same source will be likely to form a single cluster.
Here, although it may appear that VV7” and YY 7 can be too
huge to compute, we can use (2) to compute the gradients of
® with a reasonably small amount of computational effort.
At test time, a clustering algorithm (e.g., K-means) is applied
to the assigned embedding vectors of the observed mixture
spectrogram to obtain binary mask for each source.

2.2. Proposed method and network architectures

RNN:gs, in particular LSTMs, are a natural choice for model-
ing time series data since the recurrent connection architec-
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Fig. 1. Architecture of a gated CNN

tures allow the networks to make prediction with the entire
input time series. However, the deeper the network archi-
tecture becomes, the more challenging its training becomes.
Furthermore, it is difficult to employ parallel implementations
for RNNs; thus, the training and prediction processing be-
come computationally demanding. Motivated by the recent
success achieved by CNNs in language modeling and the mer-
its of CNNss that they are practically much easier to train and
well suited to parallel implementation, in this paper, we pro-
pose using CNN-based neural networks to model the embed-
ding process of deep clustering. Considering the fact that
log magnitude spectrograms of speech signals have region
dependency (i.e. they have different frequency structures in
voiced and unvoiced segments), we use the gated CNN archi-
tecture [11] to design all the network architectures. We call
the proposed method the gated convolutional deep clustering
(GCDC).

2.2.1. Gated convolutional networks

By using H;_; to denote the output of the (I — 1)-th layer,
the output of the [-th layer H; of a gated CNN is given as a
linear projection H;_q % Wlf + bf modulated by an output gate
o(H;_1 * WF + bf).

H = (Hi « Wi +b)@c(H_1 W +b5),  (3)
where Wlf ng, bf and b% are weight and bias parameters of
the [-th layer, ® denotes the element-wise multiplication and
o is the sigmoid function. Fig. 1 shows the gated CNN archi-
tecture. The main difference between a gated CNN and a reg-
ular CNN layer is that a gated linear unit (GLU), namely the
second term of (3), is used as an nonlinear activation function
instead of tanh activation or regular rectified linear units (Re-
LUs) [14]. Similar to LSTMs, GLUs are data-driven gates,
which play the role of controlling the information passed on
in the hierarchy. This particular mechanism allows us to cap-
ture long-range context dependencies efficiently by deepen-
ing the layers without suffering from the vanishing gradient
problem.

2.2.2. Network architectures

For network architecture designs, we focused on how to deal
with the 2-dimensional inputs and how to efficiently capture
long-term contextual dependencies.
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Fig. 2. Example of 1-dimensional dilated convolutions with
various dilate numbers. Red blocks denote the origial filter.

A. 1D convolution or 2D convolution

For the first question, we investigate both 1-dimensional (1D)
convolution and 2-dimensional (2D) convolution. With 1D
convolution models, the frequency dimension is regarded as
the channel dimension (just like the RGB channels of an im-
age) and an input spectrogram is convolved with a (1, kr)
filter, where k7 is the filter width in the time dimension. With
2D convolution models, an input spectrogram is convolved
with a (kp, kr) filter, where kr denotes the filter width in the
frequency dimension.

B. Bottleneck or dilated convolution

To capture long-term contextual dependencies without in-
creasing the parameters, we use bottleneck architectures
and dilated convolution. With bottleneck architectures, 2-
dimensional inputs are downsampled to 1/2 size at each layer
by setting the stride at 2, and upsampled to the original size
using deconvolutional networks [15]. We also use a skip
architecture [16] to combine the final output layer with lower
layer outputs. This allows the network to take account of
both the higher-level and lower-level features when generat-
ing outputs.

Dilated convolution [12] is another effective approach al-
lowing CNNs to capture wider receptive fields with a fewer
parameters. Fig. 2 shows an image of 1-dimensional dilated
convolutions with various dilate settings. Dilated convolu-
tion handles wider receptive fields without increasing model
parameters by convolving a larger filter derived from the orig-
inal filter with dilating zeros, namely the original filter is ap-
plied by skipping certain elements in the input.

C. Other settings

Tab. 1 details the network architectures. The symbols | and 1
denote downsampling and upsampling respectively. In prac-
tice, we use convolutional networks and deconvolutional net-
works with stride 2. Batch normalization [17] is applied to
each layer. The number of layers and channels are set to
different values depending on the scale of the networks and
dataset. More specific, we use 64 channels for a sub training
dataset and 128 channels for the total training dataset. All the
models are designed to fit a single GPU memory.

3. EXPERIMENTS

3.1. Datasets and experimental settings

To comparatively evaluate the proposed method with BLSTM-
based deep clustering [7], we created datasets using the utter-
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ances from the Wall Street Journal (WSJO) corpus and data
generation code provided in [18], which was also used for
the evaluation of the previous deep clustering work [7-9]. It
consisted in a 30h training data and 10h validation data gen-
erated by randomly mixing two different speakers selected
from the WSJ10 training set si_tr_s with signal-to-noise
ratios between 0 dB and 10 dB. A 5h test set was similarly
generated using utterances from si_dt_05 and si_et_05.
The speakers were different from those in the training set
and validation set. We created a sub dataset with 1/5 training
data (roughly 5.5h) and 0.5h validation data to evaluate the
effectiveness of our models when only a limited scale dataset
is available.

We downsampled the data to 8 kHz to save the com-
putational and memory cost. We used log magnitude spec-
trograms as inputs and calculated them using a short-time
Fourier transform (STFT) with a 254-point long hanning
window with 1/2 overlap to keep the input frequency size
F = 128 being an even number. A mixture was separated
into segments of 128 frames with 1/2 overlap to train the net-
works. But we could take utterances with arbitrary length as
inputs at test time since all the architectures were designed as
fully convolutional networks. We set embedding dimension
D at 20 or 40. According to the results reported in [7], 20
had taken a good balance of the separation performance and
model size, while 40 had achieved the best source separation
performance. We trained the networks using Adam optimizer
with a minibatch of size 16 or 8 depending on the model
size. To save memory cost, 400 frames of each utterance
were randomly chosen to calculate the backpropagation of
the objective function (1). TF regions with magnitude under
-40 dB, compared to the maximum of the magnitude, were
omitted in calculating the loss function as being done in [7,8].
Signal-to-distortion ratio (SDR) [19] improvement was used
as the performance evaluation criterion.

3.2. Results and discussions

As a baseline, we implemented the BLSTM architecture de-
scribed in [7]. Although we would have liked to exactly repli-
cate their implementation, we made our own design choices
owing to missing details of hyperparameters. While the aver-
age SDR improvement with D = 20 presented in the original
paper was 5.7 dB, that obtained with our implementation was
2.46 dB on similar training and test conditions. This implies
that our current design choices may not be optimal. Our fu-
ture work includes further investigation of the hyperparameter
settings.

Tab. 2 lists the average SDR improvement obtained by
the proposed CNN-based architectures trained using the sub
training dataset and the total dataset. These results indicated
that our proposed architectures achieved similar level per-
formance comparing to the BLSTM-based architecture pre-
sented in [7]. Both of the two architectures built using dilated
convolution outperformed the baseline and obtained a 1.08
dB improvement in terms of SDR improvement, showing that
the dilated convolution is more effective than bottleneck ar-
chitectures. Furthermore, the architecture combining 2D con-
volution and dilated convolution not only obtained the highest
score with 30h training data but also showed the capability to



Table 1. Architectures of CNN-based networks. Details are expressed as “kp X k7, «, 8,7, 7, where kpr X kr denotes filter size,
and «, f and vy denote channel number, stride number and dilation respectively. 1 and | denote upsampling and downsampling

respectively.
[ layer # || 2D, B, w/o skip | 2D, B, w/ skip | 2D, DC | 1D | 1ID,DC |
Ith 5x5,64/128,1, 1 5x5,64/128,1, 1 3x3,64/128,1,1 || 1 x 11,512, 1,1, 1 x3,512,1, 1
2th 4 x4,64/128,1 2,1 | 4 x4,64/128, 12,1 | 3 x3,64/128,1,2 || 1 x 11,1024, 1, 1 1 x3,1024,1,2
3th 3 x3,64/128, 1, 1 3x3,64/128, 1,1, | 3 x3,64/128,1,3 || 1 x 11,2048,1,1 1 x3,2048, 1,3
4th 4 x4,64/128,1 2,1 | 4 x4,64/128,1 2,1 | 3 x3,64/128,1,4 || 1 x 11,2048, 1, 1 1 x 3,4096, 1,4
Sth 3x3,64/128,1, 1 3x3,64/128, 1, 1 3x3,D,1,5 1 x11,FxD,1,1 | 1x3,4096,1,4
6th 4 x4,64/128,12,1 | 4 x4,D, 12,1 1 x3,2048, 1,4
7th 4x4,D,12,1 4x4,D,12,1 1 x3,FxD,1,4
Table 2. Average SDR improvement [dB] obtained by  Table 4. Average SDR improvement [dB] of 3-speaker sepa-

the proposed architectures, BLSTM-based deep clustering
trained using the sub training dataset and the total dataset with
D=20. Bold font indicates top scores.

model 5.5h 30h

2D, B, w/o skip 3.90 5.49

2D, B, w skip 3.78 5.23

GCDC 2D, DC 5.78 6.78
1D 3.49 5.16

1D, DC 3.94 6.36

our implementation 1.57 2.46

be [71 - 5.7

Table 3. Comparison of the average SDR improvement [dB]
obtained by the proposed architectures with the best perfor-
mance achieved by the original BLSTM-based deep cluster-
ing with D=40. Bold font indicates the top score.

model |  SDRi[dB]
2D, DC 6.71
GeDbC 1D, DC 639
(71 6.0
be (8] 9.4

perform well even only 1/5 amount of data being provided.
We also trained the two architectures using dilated con-
volution which obtained the high scores in Tab. 2 with set-
ting embedding dimension D at 40 and compared them to the
results reported in [7, 8]. The proposed architectures outper-
formed the result presented in [7], which also indicated the
effectiveness of the CNN-based architectures. However, as
shown above, the SDRs obtained with GCDC were about 3
dB lower than those obtained with the deeper and fine-tuned
BLSTM-based model presented in [8]. To confirm how close
we can get to these results with GCDC, we implemented a
deeper version of GCDC with 2D dilated convolutions and
trained it on multiple GPUs. Through this implementation,
we were able to achieve 9.07 dB SDR improvement, which is
comparable to the result in [8]. It is noteworthy that although
the deeper architecture consists of 14 layers, the parameter
number is 2/3 less than the BLSTM-based architecture pre-
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ration task. Bold font indicates the top score.

model |  SDRi[dB]
2D, DC 3.14
Gebe ID, DC 248
[7] 22
be [8] 7.1

sented in [8]. The proposed model can thus be trained more
quickly. Our future work also includes investigating more
deeper architectures and the effectiveness of regularziations
such as dropout, L1, L2 weight regularization on our models
since regularization has shown to play a crucial role in im-
proving the separation performance [8].

For reference, we tested two models trained using 2-
speaker mixture data on a 3-speaker separation task using the
same test dataset presented in [7]. Tab. 4 shows the results
that the proposed architectures outperformed the BLSTM-
based deep clustering. In [8], the well-tuned BLSTM-based
model improved the 3-speaker source separation performance
from 2.2 dB to 7.1 dB using a curriculum training, which
points out another direction to improve our models.

4. CONCLUSIONS

Deep clustering is a recently proposed promising approach
to solve cocktail party problem. In this paper, we proposed
using CNN-based architectures instead of BLSTM networks
to model the embedding process of deep clustering. We
investigated S5 different CNN-based architectures based on
the gated CNN architecture. The results revealed that the
proposed architectures using dilated convolution achieved
better performance than the BLSTM-based architecture and
the other CNN-based architecturesls on monaural speaker-
independent multispeaker separation tasks. We also showed
that 2D convolution with dilated convolution architecture ob-
tained a comparable performance even with a smaller training
dataset.
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