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Abstract—This paper presents a novel implementation of latent
trajectory modeling in a deep acoustic-to-articulatory inversion
mapping framework. In the conventional methods, i.e., the Gaus-
sian mixture model (GMM)- and the deep neural network (DNN)-
based inversion mappings, the frame interdependency can be
considered while generating articulatory parameter trajectories
with the use of an explicit constraint between static and dynamic
features. However, in training these models, such a constraint is
not considered, and therefore, the trained model is not optimum
for the mapping procedure. In this paper, we address this
problem by introducing a latent trajectory modeling into the
DNN-based inversion mapping. In the latent trajectory model, the
frame interdependency can be well considered, in both training
and mapping, by using a soft-constraint between static and
dynamic features. The experimental results demonstrate that
the proposed latent trajectory DNN (LTDNN)-based inversion
mapping outperforms the conventional and the state-of-the-art
inversion mapping systems.

I. INTRODUCTION

Articulators, such as tongue and lips, play a dominant

role in determining the phonetic quality of a speech sound.

Indeed, representations of the articulatory movements, e.g.,

articulatory parameters, have been used in various works,

such as for speech recognition enhancement [1], for speech

therapy/pronunciation learning [2], and for speech produc-

tion/modification systems [3]. This infers that there is a rising

need for a reliable acoustic-articulatory mapping framework.

In the recent years, in fact, there have been many notable

works for developing robust statistical data-driven acoustic-

to-articulatory inversion mapping frameworks. These include

the codebook-based inversion mapping [4], the hidden Markov

model (HMM)-based mapping [5], the Gaussian mixture

model (GMM)-based mapping [6], and the artificial neural-

network (ANN)-based mapping [7]. In this paper, due to its

powerful predictive capability, we focus on the use of the deep

neural-network (DNN)-based inversion mapping system.

In estimating articulatory parameter trajectories in the in-

version mapping, it was reported that the use of temporal

constraints reduces the errors of the estimated trajectory [8].

Furthermore, in the GMM-based [6] and the state-of-the-art

mixture density network (MDN)-based inversion mappings

[7], the use of maximum likelihood parameter generation

(MLPG) [9], which explicitly uses a constraint between static

and dynamic features, significantly improves the mapping ac-

curacy. However, this constraint, which allows a consideration

of frame interdependency, is not taken into account while

training the corresponding models. In our previous work [10],

based on the latent trajectory concept [11], we have proposed

a latent trajectory training for the GMM-based inversion

mapping, where the frame interdependency is considered in

both training and mapping with a soft-constraint between a

static feature sequence (regarded as an observed variable)

and a static-dynamic feature sequence (regarded as a latent

variable). Note that, this framework capable of using a well-

formulated algorithm to optimize model parameters, such as

the variational EM algorithm, is different from [12], in which

such an algorithm is difficult to be used to optimize some of

the model parameters.

In this paper, to make it possible to consider the frame

interdependency in training while keeping the model parame-

ter optimization as easy as in the conventional DNN-based

inversion mapping, we propose a novel implementation of

the latent trajectory modeling for the deep inversion mapping

framework. Consistency between training and mapping is

preserved by considering the frame interdependency within

a latent space through the use of a soft-constraint between

static and dynamic features. Moreover, almost the same model

optimization procedure as in the conventional DNN training

is available in the proposed latent trajectory DNN (LTDNN).

The experimental results demonstrate the effectiveness of the

proposed LTDNN-based inversion mapping, yielding superior

mapping accuracy compared to the conventional methods.

II. CONVENTIONAL DEEP ACOUSTIC-TO-ARTICULATORY

INVERSION MAPPINGS

In this section, we describe two conventional deep architec-

tures for the use of acoustic-to-articulatory inversion mapping,

i.e., the deep neural network (DNN) and the minimum gener-

ation error DNN (MGEDNN) [13].

A. Feature description

Let xt and yt be the Dx- and Dy-dimensional acous-

tic and articulatory feature vector at frame t, respectively.

The segmental acoustic feature vector is denoted as Xt =
[x⊤

t−C , . . . ,x
⊤
t , . . . ,x

⊤

t+C ]
⊤, while the joint static-dynamic

articulatory feature vector is denoted as Y t = [y⊤
t ,∆y⊤

t ]
⊤

at frame t. The number of contextual frames is 2C + 1.
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B. Deep neural network (DNN)-based inversion mapping

In the DNN-based inversion mapping, the conditional prob-

ability density function (pdf) of the joint static-dynamic artic-

ulatory feature vector Y t, at frame t, is defined as follows:

P (Y t|Xt,D,λ) = N (Y t; fλ(Xt),D), (1)

where fλ(·) is a nonlinear function given by the network, i.e.,

the network output. The network parameters, i.e., weights and

biases are given in a set of the parameters λ. The diagonal

covariance matrix of the articulatory training data is denoted

as D.

In the training procedure, the updated network parameters

λ̂ are determined with

λ̂ = argmax
λ

T
∑

t=1

logP (Y t|Xt,D,λ)

= argmin
λ

1

2

T
∑

t=1

(Y t−fλ(Xt))
⊤D−1(Y t−fλ(Xt)). (2)

A graphical representation of the training process is given

in the left diagram of Fig. 1. Following the MLPG proce-

dure [9], given a segmental acoustic feature vector sequence

X = [X⊤

1 , . . . ,X
⊤

t , . . . ,X
⊤

T ]
⊤, the corresponding articula-

tory parameter trajectory ŷ
(λ)
X is given by

ŷ
(λ)
X = argmax

λ

T
∑

t=1

logP (Y t|Xt,D,λ) s.t. Y = Wy

= argmin
λ

1

2
(Wy −M

(λ)
X )⊤U−1(Wy −M

(λ)
X )

= (W⊤U−1W )−1W⊤U−1M
(λ)
X , (3)

where

U = IT×T ⊗D, (4)

M
(λ)
X =

[

fλ(X1)
⊤ . . . , fλ(Xt)

⊤, . . . , fλ(XT )
⊤
]⊤

, (5)

and W is a transformation matrix to develop a joint

static-dynamic articulatory feature vector sequence Y =
[Y ⊤

1 , . . . ,Y
⊤

t , . . . ,Y
⊤

T ]
⊤ from y = [y⊤

1 , . . . ,y
⊤
t , . . . ,y

⊤

T ]
⊤.

The Kronecker product is denoted as ⊗.

C. Minimum generation error DNN (MGEDNN)-based inver-

sion mapping

In the MGEDNN-based [13] inversion mapping, the con-

ditional pdf of the articulatory feature vector sequence y is

defined as follows:

P (y|X,D,λ) = N (y; ŷ
(λ)
X , I), (6)

where ŷ
(λ)
X is given in (3).

In the training procedure, the updated network parameters

λ̂ are determined with

λ̂ = argmin
λ

1

2
(y − ŷ

(λ)
X )⊤(y − ŷ

(λ)
X )

= argmax
λ

N (y; ŷ
(λ)
X , I). (7)

A-1
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Fig. 1. Graphical representations for the training procedure of the conventional
DNN, MGEDNN, and the proposed LTDNN. Unobserved variables are
shaded.

A graphical representation of the training process is given in

the middle diagram of Fig. 1. The network parameters need

to be updated utterance by utterance, which is different from

the frame-by-frame update available in the conventional DNN.

Note that, due to the use of identity covariance matrix, it

is difficult to apply articulatory parameter modification with

covariance compensation as has been done in our previous

work [10].

III. PROPOSED DEEP INVERSION MAPPING WITH LATENT

TRAJECTORY MODELING

In this section, we describe the proposed latent trajectory

modeling [11] for the DNN-based inversion mapping, i.e., the

latent trajectory DNN (LTDNN).

A. Latent trajectory model

Let the articulatory feature vector sequence y be the ob-

served variable and the joint static-dynamic articulatory feature

vector sequence Y be the latent variable. The following

soft-constraint is used between the observed and the latent

variables:

Y ≃ Wy. (8)

Considering an error-covariance matrix Σ, the conditional

pdf of the latent variable Y can be defined as follows:

P (Y |y,Σ)∝exp

{

−
1

2
(Y−Wy)⊤Σ−1(Y−Wy)

}

. (9)

By completing the square of the exponential part of the above

pdf, the conditional pdf of the observed articulatory feature

sequence y is then defined as follows:

P (y|Y ,Σ) = N (y;HY ,Λ−1), (10)

where

H = Λ
−1W⊤

Σ
−1, (11)

Λ = W⊤
Σ

−1W . (12)

Then, by marginalizing out the latent variable Y , the like-

lihood function of the observed articulatory feature vector

sequence y can be written as

P (y|Σ,λ) =

∫

P (y|Y ,Σ)P (Y |λ)dY , (13)

where we can simplify a pdf of the latent variable P (Y |λ),
e.g., P (Y |λ) =

∏

t P (Y t|λ).
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B. Proposed latent trajectory DNN (LTDNN)-based inversion

mapping

In the proposed LTDNN, following the likelihood function

in (13), given an input segmental acoustic feature vector

sequence X , the conditional pdf of the articulatory feature

vector sequence y is defined as follows:

P (y|X,Σ,D,λ) =

∫

P (y|Y ,Σ)

T
∏

t=1

P (Y t|Xt,D,λ)dY

=

∫

N (y;HY ,Λ−1)N (Y ;M
(λ)
X ,U)dY

=

∫

N

(

[

y

Y

]

;

[

HM
(λ)
X

M
(λ)
X

]

,

[

Λ
−1 +HUH⊤ HU

UH⊤ U

]

)

dY

= N (y;HM
(λ)
X ,Λ−1 +HUH⊤). (14)

In the training procedure, the updated network parameters λ̂

are determined with

λ̂ = argmax
λ

logP (y|X,Σ,D,λ). (15)

A graphical representation of the training process is given in

the right diagram of Fig. 1.

An auxiliary function to assist in finding the updated pa-

rameters λ̂ can be defined as follows:

Q(λ̂,λ) =

∫

P (Y |y,X,Σ,D,λ) logP (Y |X,D, λ̂)dY,(16)

where

P (Y |y,X,Σ,D,λ) = N (Y ; Ŷ
(λ)

y,X , Σ̂
(λ)

y,X) (17)

Ŷ
(λ)

y,X = M
(λ)
X +UH⊤(Λ−1+HU−1H⊤)−1(y−HM

(λ)
X )

(18)

Σ̂
(λ)

y,X = U −UH⊤(Λ−1 +HU−1H⊤)−1HU . (19)

In this paper, an approximation of the posterior pdf of the

above auxiliary function is employed with delta function as

follows:

Q(λ̂,λ) ≈

∫

δ(Y = Ŷ
(λ)

y,X) logP (Y |X,D, λ̂)dY

= logP (Ŷ
(λ)

y,X |X,D, λ̂). (20)

Therefore, the updated network parameters λ̂ are determined

with

λ̂ = argmax
λ

logP (Ŷ
(λ)

y,X |X,D, λ̂)

= argmin
λ

1

2

T
∑

t=1

(Ŷ
(λ)

y,X,t−fλ(Xt))
⊤D−1(Ŷ

(λ)

y,X,t−fλ(Xt)).

(21)

Note that this equation is almost the same as (2). Therefore,

the frame-by-frame network parameter update is still available

although a mean vector of the posterior pdf needs to be

estimated utterance by utterance as shown in (18).

In the mapping procedure, the estimated articulatory feature

vector sequence ŷ
(λ)
X is given by

ŷ
(λ)
X = argmax

y

P (y|X,Σ,D,λ) = HM
(λ)
X

= (W⊤
Σ

−1W )−1W⊤
Σ

−1M
(λ)
X . (22)

Thanks to the use of the temporal covariance matrix, it would

be straightforward to apply articulatory parameter modification

as in [10] with the proposed LTDNN framework.

IV. EXPERIMENTAL EVALUATION

A. Experimental conditions

We used the multichannel articulatory (MOCHA) data

[14] provided by CSTR, University of Edinburgh. From this

dataset, the speech and the articulatory data, recorded with

electromagnetic articulograph (EMA), were used. In this ex-

periment, we used the female speaker dataset (fsew0). The

total number of utterances was 460.

As the spectral envelope parameters, we used the first

through 24th mel-cepstral coefficients converted from the

spectral envelope, which was extracted frame-by-frame using

STRAIGHT [15] analysis. As the articulatory parameters, we

used the 14-dimensional EMA data, consisting of the time-

varying positions of seven articulators: lower incisor, upper

lip, lower lip, tongue tip, tongue body, tongue dorsum, and

velum; on x- and y-coordinate in the mid-sagittal plane. These

articulatory parameters were converted into Z-scores. The

speech data were sampled at 16 kHz. The frame shift was set

to 5 ms. Starting and ending silence frames were included, 20
frames for each side, which were smoothed toward starting or

ending zero values, respectively, using half-hanning windows.

We conducted experiments to evaluate the accuracy of

the proposed inversion mapping system by comparing the

generated articulatory trajectory with the measured ones. The

proposed LTDNN-based inversion mapping system was com-

pared to three baseline systems, i.e., GMM [6], DNN, and

MGEDNN. The inversion mapping accuracy was measured by

computing the root-mean-square error (RMSE). The number

of training uterrances was varied to 46, 92, 184, and 368. The

validation set contained 46 utterances, consisting of the files

ending with 2, e.g.,“fsew0 002”. The evaluation set contained

also 46 utterances, but consisting of the files ending with 6.

The hyperparameters of the network were set as follows: the

learning rate was set to 0.0006; the number of hidden units

was set to 1024; the rectified linear unit (ReLU) was used

as the non-linear activation function for the hidden units; the

number of hidden layers was set to 5; the number of iteration

limit for early-stopping was set to 20; and utterance mini-batch

was used. The Adam [16] optimization algorithm was used

to train the network parameters. The weights were randomly

initialized with Xavier [17] initialization method. The biases

were initialized with zero values. The trained DNN were used

as the initial model for both the MGEDNN and the LTDNN.

As for the GMM, the number of mixture components was set

to 256, 512, 1024, and 2048, with respect to each number of

training utterances, using a tied-covariance matrix.
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TABLE I
AVERAGE OF ROOT-MEAN-SQUARE ERROR (RMSE) [MM] FOR ALL

MODELS AND NUMBER OF TRAINING UTTERANCES

Model
Number of Training Utterances
46 92 184 368

GMM 1.655 1.558 1.498 1.423
DNN 1.576 1.464 1.391 1.326

MGEDNN 1.589 1.462 1.379 1.318
LTDNN 1.575 1.450 1.371 1.302

B. Experimental results

The results of the average RMSE from 14 articulatory

dimensions for all combinations of models and number of

training utterances are shown in Table I. The lowest RMSEs

for all number of training utterances were achieved by the

proposed LTDNN, yielding 1.575 mm, 1.450 mm, 1.371 mm,

and 1.302 mm, for the 46, 92, 184, and 368 training utterances,

respectively. Note that, as a related work, the best result with a

similar data configuration was achieved using the state-of-the-

art mixture density network (MDN)-based inversion mapping

in [7] with 1.370 mm RMSE using 368 training utterances.

Considering that the movements of tongue and jaw are

ones of the most dominant in speech production mechanism,

we present also the RMSE for five important articulators,

i.e., lower incisor (LI), lower lip (LL), tongue tip (TT),

tongue body (TB), and tongue dorsum (TD), on y-coordinate

in the mid-sagittal plane. The RMSEs computed from each

of the optimum models are given in Table II. The lowest

RMSEs for all articulatory dimensions, i.e., LI y, LL y, TT y,

TB y, and TD y, are achieved by the proposed LTDNN

yielding 1.067 mm, 2.040 mm, 1.823mm, 1.738 mm, and

1.843 mm, respectively. Note that in the related work [7], the

lowest achieved RMSEs are respectively given as 1.030 mm,

2.200 mm, 1.940 mm, 1.730 mm, and 1.850 mm.

These experimental results show that the proposed latent

trajectory modeling for the deep acoustic-to-articulatory inver-

sion mapping improves the mapping accuracy compared to the

conventional baseline systems. Moreover, although it cannot

be compared directly, the proposed LTDNN achieves higher

accuracy than that of the state-of-the-art MDN-based inversion

mapping method with the same dataset configuration.

V. CONCLUSIONS

We have proposed the latent trajectory modeling in deep

acoustic-to-articulatory inversion mapping systems. The latent

trajectory model allows frame-interdependency to be con-

sidered in training the model by utilizing a soft-constraint

between static and dynamic features in the latent space. The

experimental results show that the proposed LTDNN yields

higher inversion mapping accuracy compared to the conven-

tional inversion mapping systems. In the future, we would like

to combine the latent trajectory modeling with deep mixture

density network.
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RMSE [MM] FOR FIVE IMPORTANT ARTICULATORY DIMENSIONS: LOWER
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LI y LL y TT y TB y TD y

GMM 1.085 2.258 2.068 1.890 1.910
DNN 1.078 2.121 1.831 1.773 1.886

MGEDNN 1.124 2.095 1.831 1.791 1.872
LTDNN 1.067 2.040 1.823 1.738 1.843

17H01763.
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