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1 Introduction
An acoustic-to-articulatory inversion mapping us-

ing a Gaussian mixture model [1] is effective for de-
veloping a new speech modification framework [2].
Smoothly varying articulatory parameter trajectory
is well estimated from a given acoustic parameters
considering interframe correlation by imposing an
explicit relationship between static and dynamic fea-
tures on a maping process. However, this constraint
is not taken into accout in a training process of the
GMM. The trajectory training method [3] was pro-
posed to address this issue, but it makes the train-
ing process too complicated to analytically optimize
model parameters.
In this paper, as an alternative method to ad-

dress this issue, we propose a latent trajectory
GMM (LTGMM)-based inversion mapping method
inspired by the latent trajectory HMM [4], which
makes it possible to use EM algorithm to optimize
the model parameters. We conduct an experimen-
tal evaluation using a single speaker’s articulatory-
acoustic data, demonstrating that higher mapping
accuracy is achieved using the LTGMM than the
traditional GMM.

2 Conventional GMM for acoustic-
to-articulatory inversion mapping

Let x = [x⊤
1 , · · · ,x⊤

T ]
⊤ be a time sequence of

Dx-dimensional static acoustic feature vectors and
y = [y⊤

1 , · · · ,y⊤
T ]

⊤ be that of Dy-dimensional
static articulatory feature vectors. At frame t,
2Dx/2Dy-dimensional acoustic/articulatory feature
vectors are denoted as Xt = [x⊤

t ,∆x⊤
t ]

⊤ and
Y t = [y⊤

t ,∆y⊤
t ]

⊤, consisting ofDx/Dy-dimensional
joint static and dynamic features. Their joint vec-
tor is denoted as Zt = [X⊤

t ,Y
⊤
t ]

⊤. Moreover,
their time sequences are written respectively as
X = [X⊤

1 , · · · ,X
⊤
T ]

⊤, Y = [Y ⊤
1 , · · · ,Y

⊤
T ]

⊤, and
Z = [Z⊤

1 , · · · ,Z
⊤
T ]

⊤.
The joint probability density of the acoustic and

articulatory feature vectors is modeled by a GMM
as follows:

P (Z|λ(Z)) =

T∏
t=1

M∑
m=1

αmN (Zt;µ
(Z)
m ,Σ(Z)

m ), (1)

where λ(Z) is a set of model parameters consisting

of a mixture weight αm, a mean vector µ
(Z)
m and a

covariance matrix Σ(Z)
m for the mth mixture compo-

nent with M total number of mixture components.
These parameters are optimized for training data
with EM algorithm [1].
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In the mapping process, given an acoustic feature
sequence X, the estimated articulatory feature se-
quence ŷ is determined as follows:

ŷ = argmax
y

P (Y |X,λ(Z)) s.t. Y = W yy, (2)

where W y is a linear transform to append dynamic
features to a static feature sequence. This ML esti-
mate can be determined with EM algorithm [1].
In this paper, an approximation of the above con-

ditional p.d.f. is employed using a single mixture
component sequence m = {m1, · · · ,mT }. First, the
sub-optimum mixture component sequence m̂ is de-
termined. Then, the estimated articulatory feature
sequence ŷ is generated from the approximated con-
ditional p.d.f., where its ML estimate can be analyt-
ically determined with EM algorithm [5].
Note that the interframe correlation is explicitly

considered with the constraint (Y = W yy) in the
mapping process. In contrast, it is ignored while op-
timizing GMM parameters in the training process.

3 Proposed latent trajectory GMM
for the inversion mapping

Let the observed variable be a time sequence
of joint static feature vectors z = [z⊤

1 , · · · , z⊤
T ]

⊤,
where zt = [x⊤

t ,y
⊤
t ]

⊤. The following soft constraint
is used in the LTGMM:

Z ≃ W zz = [W x,W y][x
⊤,y⊤]⊤. (3)

The joint probability density of the acoustic and
articulatory feature vector sequences is modeled
with an LTGMM as follows:

P (z|λ(z)) =

∫
P (z|Z,Σ)P (Z|λ(Z))dZ, (4)

where

P (z|Z,Σ) = N (z;(W⊤
z Σ

−1W z)
−1W⊤

z Σ
−1Z,

(W⊤
z Σ

−1W z)
−1).

(5)

The covariance matrix Σ depends on only dimen-
sion of zt, i.e., independent of both time frames and
mixture components. The model parameters can be
optimized with variational EM algorithm [4]. In this
paper, an approximation of the above joint p.d.f. is
employed using the sub-optimum mixture compo-
nent sequence m̂. The approximated joint p.d.f. is
given by:

P (z|λ(z)) =

∫
P (z|Z,Σ)P (Z|m̂,λ(Z))dZ. (6)

In this case, the model parameters can be optimized
with EM algorithm.
In the inversion mapping process, given an acous-
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Fig. 1 Average root-mean-square error of testing
data and optimum numbers of mixture components.

tic feature sequence x, the estimated articulatory
feature sequence ŷ is determined as follows:

ŷ = argmax
y

P (y|x,λ(z)), (7)

where

P (y|x,λ(z)) =

∫
P (y|Y ,Σ)∫
P (X,Y |x,λ(z))dXdY .

(8)

This ML estimate can be determined with varia-
tional EM algorithm. In this paper, an approxima-
tion of the above conditional p.d.f. is employed by
first determining the sub-optimum mixture compo-
nent sequence m̂. Then, the estimated articulatory
parameter sequence ŷ is determined as follows:

ŷ = argmax
y

P (y|x, m̂,λ(z)), (9)

where

P (y|x, m̂,λ(z)) =

∫
P (y|Y ,Σ)∫

P (Y |X, m̂,λ(Z))P (X|x, m̂,λ(z))dXdY .

(10)

The ML estimate can be determined analytically.
Note that the interframe correlation is considered,

both in the training and conversion process, by im-
posing explicitly the constraint in Eq. (3).

4 Experimental evaluation

4.1 Experimental conditions

A set of speech and articulatory data of a sin-
gle British male speaker in MOCHA [6] was used.
As the acoustic parameters, we used the 1st-to-24th
mel-cepstral coefficients extracted with STRAIGHT
analysis [7] from 16 kHz sampled speech data. As
the articulatory parameters, we used 14-dimensional
EMA data converted to z-score, which represented
the movements of 7 articulators, as used in [1].
Frame shift was set to 5 ms.
The constant positive-definite matrixΣ in Eq. (5)

was set to the diagonal matrix of global variances.
In the training process, the sub-optimum mixture
component sequence m̂ was initialized beforehand
and held fixed. The trained conventional GMM was
used as an initial model for the LTGMM training.
We conducted an objective evaluation by calculat-

ing the root-mean-square errors (RMSEs) and the
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Fig. 2 Average correlation coefficient of testing
data and optimum numbers of mixture components.

correlation coefficients between the estimated artic-
ulatory parameters and the measured ones. The
number of training utterances was varied to 50, 100,
150, 200, 250, 300, 350, and 400. The number of
mixture components was optimized for each number
of training utterances, as given in both Fig. 1 and
Fig. 2, using the conventional GMM. The number
of testing utterances was 20.

4.2 Experimental results
Figures 1 and 2 show the RMSE and the corre-

lation coefficient averaged over all 14 dimensions
articulatory parameters through all 20 testing ut-
terances. Higher accuracy of inversion mapping is
achieved with the LTGMM. This is because the LT-
GMM can be optimized while considering the inter-
frame correlation, which is considered in only the
mapping process if using the conventional GMM.

5 Conclusion
We have proposed an inversion mapping method

based on the latent trajectory GMM (LTGMM).
The experimental results have demonstrated that
higher accuracy of inversion mapping with LTGMM
is achieved than the traditional GMM. We will fur-
ther investigate its performance with the use of
an acoustic segment feature consisting of multiple
frames of input features and by taking into account
all possible mixture component sequences.
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