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ABSTRACT

A sparse sound field decomposition method using prior information
on source signals in the time-frequency domain is proposed. Sparse
sound field decomposition has been proved to be effective for various
acoustic signal processing applications. Current methods for sparse
decomposition are based only on the spatial sparsity of the source
distribution. However, it can be assumed that possible source signals
to be decomposed are approximately known in advance. To exploit
this prior information, we incorporated the complex nonnegative fac-
torization model into sparse sound field decomposition. Since the
magnitude spectrum of the possible source signals can be trained
in advance, accuracy of the sparse decomposition can be improved
even when the source signals are highly correlated and the sources
are in a highly noisy environment. In addition, the proposed decom-
position algorithm is derived using the auxiliary function method.
Numerical experiments indicated that the sparse decomposition per-
formance was significantly improved using the proposed method.

Index Terms— Sound field decomposition, source localization,
sparse representation, complex nonnegative matrix factorization,
auxiliary function method

1. INTRODUCTION

Sound field decomposition forms the foundation of various acoustic
signal processing applications, such as sound field analysis, recon-
struction, and visualization. Its aim is to represent a sound field as
a linear combination of fundamental solutions of the wave equation
(or Helmholtz equation) from the results of the pressure measure-
ments. Using this representation, the entire sound field can be esti-
mated from the signals received by multiple microphones. It can be
considered that this problem involves source localization or direc-
tion of arrival (DOA) estimation because the power distribution of
the pressure field indicates the locations or directions of the sound
sources.

A conventional method for sound field decomposition is based
on spatial Fourier analysis of the sound field, which corresponds to
plane wave decomposition [1]. In acoustic holography, the method
based on spatial Fourier analysis is known as near-field acoustic
holography (NAH). NAH is used to measure the pressure or velocity
distribution on a surface close to acoustic sources. In the context of
sound field recording and reproduction, which is targeted at high-
fidelity audio systems, a method of converting signals received by
microphones into driving signals of loudspeakers for reproduction is
necessary. The wave field reconstruction filtering method is an ef-
ficient and stable signal conversion method based on spatial Fourier

analysis [2, 3]. Higher-order Ambisonics [4, 5] also enables signal
conversion by encoding and decoding processes in the spherical har-
monic domain.

Source localization and DOA estimation have been developed
in a different context from sound field decomposition [6, 7]. Delay
and sum (DAS) is one of the most classical approaches [6]. Sub-
space methods, such as the multiple signal classification (MUSIC)
method [8], are also well-established methods based on the assump-
tion of orthogonality of signal and noise subspaces. Since signal
reconstruction is not necessary in source localization, a wide range
of methods have been proposed compared with for sound field de-
composition.

In recent years, the sparse representation of a sound field has
attracted interest in various research fields involving acoustic sig-
nal processing. Sparse sound field decomposition has been applied
to acoustic holography [9] and sound field recording and reproduc-
tion [10,11] to improve their spatial resolution limits. Several meth-
ods for source localization based on sparse representation have been
proposed [12–14], which also make higher spatial resolution possi-
ble. Generally, these methods are formulated in a common frame-
work of an overcomplete linear equation of the observations and are
based on an assumption of a spatially sparse distribution of sound
sources. Therefore, improving the performance of sparse sound field
representation has important implications for various applications.

In current methods for sparse sound field decomposition, no as-
sumptions are imposed on the structure of the source signals in the
time-frequency domain. However, in some applications, it can be
assumed that the source signals of interest are known in advance.
For instance, speech signals are the main target of sparse sound field
decomposition in telecommunication systems. This assumption is
widely used in the blind source separation (BSS) problem. In non-
negative matrix factorization (NMF) [15], which is one of the well-
known methods for BSS, a time-frequency spectrogram of the source
signal is approximated as a product of two nonnegative low-rank ma-
trices. This means that acoustic source signals are represented by a
limited number of spectrogram components.

We propose a sparse sound field decomposition method that
takes the time-frequency-spectrum structures of the source signals
into consideration. The proposed method is derived by incorporating
complex NMF (CNMF) [16] into sparse sound field decomposition.
The source signal is modeled as a sum of products of a rank 1 mag-
nitude spectrogram and its phase spectrogram. Therefore, a complex
spectrogram of the source signals can be incorporated into sparse
decomposition without transformation into nonnegative values. The
decomposition algorithm is obtained by an auxiliary function ap-
proach. By exploiting time-frequency-spectrum structures trained in
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advance, it is possible to improve the decomposition accuracy even
when the source signals are highly correlated and the sources are in
a highly noisy environment. Numerical simulations are conducted
to evaluate the proposed method in terms of DOA estimation and
signal reconstruction.

2. SPARSE SOUND FIELD DECOMPOSITION

First, we formulate a signal model for sparse sound field decompo-
sition and its optimization criterion for current methods in a gener-
alized form [9–14]. Figure 1 shows this signal model in the special
case of a linear microphone array and plane wave decomposition.
The number of sources is assumed to be small in the region of inter-
est. We consider M microphones receiving signals from I sources.
The locations (or directions) of the sources are denoted by position
vectors in an arbitrary number of dimensions vi (i ∈ {1, · · · , I}). A
model of observed signals in the time-frequency domain at a single
time frame can be represented as

y(ω) = A(ω)s(ω) + z(ω), (1)

where ω denotes the frequency, y(ω) ∈ CM and s(ω) ∈ CI re-
spectively denote the signals received by the microphones and the
complex amplitudes of the source signals, and z(ω) ∈ CM is an un-
known noise vector. Hereafter, we omit ω for notational simplicity.
The quantity

A = [d(v1) d(v2) · · · d(vI)] (2)

is referred to as a steering matrix, where each column d(vi) ∈ CM

is a vector whose elements consist of a fundamental solution of the
Helmholtz equation defined by the locations of the sources and mi-
crophones, such as the Green’s function and plane wave function. In
the source localization problem, arbitrary transfer functions can be
used for A. Our objective is to estimate both the parameters vi and
s. Note that only vi is necessary in the source localization.

To solve (1) as a sparse representation problem, we generalize
the steering matrix A as an overcomplete dictionary matrix D com-
prising all possible source locations v̂n (n ∈ {1, · · · , N}), which
are referred to as grids, such that

D = [d(v̂1) d(v̂2) · · · d(v̂N )], (3)

where N denotes the number of grids and both N ≫ I and N ≫M
are assumed. The source vector s can be accordingly modified to
x ∈ CN , where the nth element xn has a nonzero value and equals
si when the ith source originates from v̂n, and is zero otherwise.
Using D and x, (1) can be reformulated as

y = Dx+ z. (4)

When the source distribution is spatially sparse, x becomes a sparse
vector, i.e., x has a few nonzero elements. Therefore, sparse decom-
position algorithms can be applied to estimate x from y [17].

The optimization criterion for the sparse sound field decompo-
sition can be formulated as

minimize
x

{
∥y −Dx∥22 + ηJ(x)

}
, (5)

where J(x) is a penalty term for inducing the sparsity of x and η
is a parameter that balances the approximation error and the penalty
J(x) [17]. In general, the ℓp-norm of x is used as J(x),

Jp(x) = ∥x∥p =

(
N∑

n=1

|xn|p
)1/p

, (6)

Fig. 1. Signal model for plane wave decomposition using linear ar-
ray of microphones.

where 0 < p ≤ 1. When observations of multiple time frames are
available and the source locations can be assumed to be static during
the observations, a matrix in which each column is an observation is
constructed, and a row-sparse penalty term of the matrix is usually
used for decomposition, such as the ℓp/q-norm (q ≥ 2) [11, 18, 19].
This problem is generally referred to as the multiple measurement
vector (MMV) problem.

3. PROPOSED SIGNAL MODEL AND OBJECTIVE
FUNCTION

In (4) and (5), no assumptions are imposed on x for the tempo-
ral structure; therefore, the signal decomposition is based only on
the spatial sparsity of the sources. Although it is assumed that x
for multiple time frames has the same sparsity pattern in the MMV
problem, a time-frequency-spectrum structure that is unique in wide-
band acoustic signals is not exploited.

Kameoka et al. proposed CNMF [16], in which a complex spec-
trogram in the time-frequency domain is represented as a sum of
products of a rank 1 magnitude spectrogram and its phase spectro-
gram. We consider now to incorporate the signal model of CNMF
into sparse sound field decomposition since the complex spectro-
gram of the observed signals is necessary to model signals received
by multiple microphones. In CNMF, a complex spectrogram in the
time-frequency domain is modeled as

fk,t ≈
∑
l

hk,lul,te
jϕk,l,t , (7)

where k, t, and l respectively denote the frequency, time frame, and
basis index, fk,t is the complex spectrogram of a source signal, hk,l

is a static magnitude spectrum, ul,t is a time-varying activation co-
efficient, and ϕn,k,t is a time-varying phase spectrum. This model
allows any observed complex spectrum to be accurately represented
only using a few active magnitude spectrum bases, each of which is
paired with an arbitrary phase spectrum.

The signal model (7) can be introduced into the source compo-
nent x in (4). Again, n denotes the index of the grids. When xn,k,t

represents the complex spectrogram in the time-frequency domain at
each grid, xn,k,t can be described as

xn,k,t ≈
∑
l

hk,lun,l,te
jϕn,k,t . (8)
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We assume that the magnitude spectrum hk,l is static and trained in
advance using possible monaural source signals. Although ϕn,k,t

should have the basis index l when the CNMF model is straightfor-
wardly applied, we omit this index and assume that each grid has its
own phase spectrogram. Denoting the microphone index as m, the
observed signal of the mth microphone, ym,k,t, can be represented
as

ym,k,t ≈
∑
n

dm,n,k

∑
l

hk,lun,l,te
jϕn,k,t , (9)

where dm,n,k is the element of the dictionary matrix between the
nth grid and the mth microphone in the kth frequency bin.

Finally, we formulate the objective function under the assump-
tion that dm,n,k is known and the basis magnitude spectrum hk,l is
trained in advance. We define the modeling error of (9) as

R(U,Φ) =∑
m,k,t

|ym,k,t −
∑
n

dm,n,k

∑
l

hk,lun,l,te
jϕn,k,t |2, (10)

where U and Φ represent third-rank tensors whose elements are
un,l,t and ϕn,k,t, respectively. To obtain a spatially sparse solution
of U, the following penalty term is introduced:

Jp,2(U) =
∑
n

(∑
l,t

u2
n,l,t

)p/2
. (11)

Therefore, the optimization criterion is formulated as

minimize
U,Φ

{
R(U,Φ) + 2λJp,2(U)

}
, (12)

where λ is a parameter used to balance the modeling error R(U,Φ)
and the penalty Jp,2(U).

4. OPTIMIZATION ALGORITHM BASED ON AUXILIARY
FUNCTION METHOD

We derive an optimization algorithm using the auxiliary function
method [16], which can give stable and fast update rules. First, we
develop an auxiliary function of the objective function using the fol-
lowing inequalities:

|ym,k,t −
∑
n

dm,n,k

∑
l

hk,lun,l,te
jϕn,k,t |2

≤
∑
n,l

|ym,n,k,l,t − dm,n,khk,lun,l,te
jϕn,k,t |2

βm,n,k,l,t
, (13)

and

2(
∑
l,t

u2
n,l,t)

p/2

≤ p(
∑
l,t

u2
n,l,t)

p/2−1(
∑
l,t

u2
n,l,t − u2

n,l,t) + 2(
∑
l,t

u2
n,l,t)

p/2.

(14)

Here, ym,n,k,l,t and un,l,t are auxiliary variables and βm,n,k,l,t

is an arbitrary constant. The inequality (13) is satisfied when∑
n,l ym,n,k,l,t = ym,k,t, and the inequality (14) is satisfied when

0 < p ≤ 2, 0 ≤ βm,n,k,l,t ≤ 1, and
∑

n,l βm,n,k,l,t = 1. Then, an

upper bound function of f(U,Φ,Y,U), f+(U,Φ,Y,U), can be
defined as

f+(U,Φ,Y,U)

=
∑

m,n,k,l,t

|ym,n,k,l,t − dm,n,khk,lun,l,te
jϕn,k,t |2

βm,n,k,l,t

+λ
∑
n

{
p
(∑

l,t

u2
n,l,t

)p/2−1(∑
l,t

u2
n,l,t − u2

n,l,t

)
+2
(∑

l,t

u2
n,l,t

)p/2}
. (15)

This function satisfies f(U,Φ) ≤ f+(U,Φ,Y,U), and the equal-
ity is satisfied when

ym,n,k,l,t = dm,n,khk,lun,l,te
jϕn,k,t

+βm,n,k,l,t

(
ym,k,t −

∑
n,l

dm,n,khk,lun,l,te
jϕn,k,t

)
(16)

and

un,l,t = un,l,t. (17)

Therefore, the conditions required for f+(U,Φ,Y,U) to be an
auxiliary function of f(U,Φ) are satisfied [16]. Here, Y and U are
tensors whose elements consist of ym,n,k,l,t and un,l,t, respectively.

Using the auxiliary function (15), we can derive iterative update
rules for U and Φ. Although un,l,t should be updated under the
nonnegative constraint, we here update un,l,t without this constraint.
First, by solving ∂f+/∂un,l,t = 0, we obtain the following update
rule:

un,l,t ←
∑

m,k ℜ[y
∗
m,n,k,l,tdm,n,khk,le

jϕn,k,t ]/βm,n,k,l,t∑
m,k |dm,n,k|2h2

k,l/βm,n,k,l,t + λp(
∑

l,t u
2
n,l,t)

p/2−1
.

(18)
Here,ℜ[·] denotes the operator that returns the real part of a complex
number and ∗ denotes the operator that returns the complex conju-
gate value. To obtain the update rule for Φ, we use the following
properties. When θ′ satisfies ejθ

′
=
∑

i aib
∗
i /|
∑

i aib
∗
i |, θ′ mini-

mizes
∑

i |ai − bie
jθ|2, where ai, bi ∈ C and θ ∈ R. Then, the

update rule is obtained as

ejϕn,k,t ←
∑

m,l ym,n,k,l,td
∗
m,n,khk,lun,l,t/βm,n,k,l,t

|
∑

m,l ym,n,k,l,td
∗
m,n,khk,lun,l,t/βm,n,k,l,t|

. (19)

We here set the arbitrary variable βm,n,k,l,t to

βm,n,k,l,t =
|dm,n,k|hk,lun,l,t∑
n,l |dm,n,k|hk,lun,l,t

. (20)

We summarize the proposed algorithm as follows. In the train-
ing stage, the magnitude spectrum bases hk,l are trained in advance
using possible monaural source signals and dm,n,k is obtained by
setting the locations of microphones and grids. In the decomposi-
tion stage, U and Φ are first initialized. Then, Y, U, U, and Φ are
iteratively updated using (16), (17), (18), and (19), respectively.
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5. EXPERIMENTS

Numerical experiments on DOA estimation and signal reconstruc-
tion in terms of plane wave decomposition were conducted to evalu-
ate the proposed method. We compared the proposed method (Pro-
posed), M-FOCUSS [18], which is a sparse decomposition method
for the MMV problem based only on the simultaneous spatial spar-
sity of the sources, and conventional DOA estimation methods, i.e.,
DAS, the Capon beamformer (CB) [7], and MUSIC.

Omnidirectional microphones were linearly aligned along the x-
axis with their center at the origin. The number of microphones was
four and they were arranged at intervals of 0.24 m; therefore, the
array length was 0.72 m. Two plane wave sources, whose angles of
arrival were randomly determined within the range of (−90◦, 90◦),
impinged on the microphones. Identical source signals were gen-
erated by artificial MIDI sounds, i.e., the two source signals were
the same. The musical instrument used to generate the source sig-
nals as above was the oboe. The sampling frequency was 16 kHz.
The short-time Fourier transform (STFT) was performed to obtain
time-frequency spectrograms of the observed signals. A square-root
Hanning window of 32 ms length with a 16 ms overlap was used
in the STFT. The training data were two octaves of notes that cov-
ered all the notes of the source signal. They were also generated by
artificial MIDI sounds. The number of bases was 25. A white Gaus-
sian noise was added to the signals received by the microphones so
that the signal-to-noise ratio became 20 dB. The dictionary matrix,
i.e., the steering vector for the conventional DOA estimation meth-
ods, was generated so that the intervals between the grids were 1.0◦

within the range of (−90◦, 90◦) as shown in Fig. 1. The angles of
each grid is denoted as θn.

In M-FOCUSS, the parameters for the row-sparse penalty (p and
q in [18]) were set to p = 1 and q = 2. The maximum number of
iterations was 400. The parameter corresponding to η in (5) was
set to 1.0. In Proposed, λ in (12) was set to 10−5 in the first five
iterations, and 2.0× 102 in the remaining 95 iterations.

To evaluate the source localization performance, we used the
DOA spectrum [7], which indicates the power distribution of plane
waves from each angle θn. For example, in Proposed, the DOA
spectrum P (θn) was obtained as

P (θn) = 10 log10

∑
l,t

u2
n,,l,t

 . (21)

For a quantitative evaluation, we define the F -measure as

Fmsr = 2
|supp{Pest(θn)} ∩ supp{Ptrue(θn)}|
|supp{Pest(θn)}|+ |supp{Ptrue(θn)}|

, (22)

where Pest(θ) and Ptrue(θ) are the estimated and true DOA spectra,
respectively. The operator supp(·) extracts a set of indexes such
that the value of each element of the solution P (θn) is larger than a
threshold value µ,

supp{P (θn)} = {n ∈ {1, ..., N} | P (θn) > µ}. (23)

Since there exists no optimal threshold value for all the methods, we
here changed µ from –15 dB to –1 dB in this experiment. The true
indexes of θn were set to those for the two grids nearest the true
angle. Fmsr was averaged over 100 trials, i.e., 100 pairs of DOAs
randomly selected.

We also evaluated the signal reconstruction performance, using
the signal-to-distortion ratio (SDR) defined as

SDR = 10 log10

∑
m,k,t |yorg,m,k,t|2∑

m,k,t |yorg,k,m,t − yest,m,k,t|2
, (24)
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where yorg,m,k,t is the original signal in the observations and
yest,m,k,t is the signal in the observations reconstructed using the
decomposed signals.

Figure 2 shows examples of the DOA spectra of Proposed, M-
FOCUSS, DAS, CB, and MUSIC when the true angles were –43.5◦

and 54.2◦. The DOA spectra of the conventional methods (DAS, CB,
and MUSIC) had a false peak around 0◦. This is because these meth-
ods were derived under the assumption that the source signals are
uncorrelated. Since the source signals were identical in this experi-
mental setup, it is very difficult to accurately estimate the true source
angles. In the DOA spectra of M-FOCUSS and Proposed, the spatial
resolution was significantly improved by assuming the spatial spar-
sity of the sources. However, the DOA spectrum of M-FOCUSS still
contained multiple false peaks. In contrast, that of Proposed had two
peaks at accurate angles. The average values of Fmsr were shown in
Figure 3. When the true angles were –43.5◦ and 54.2◦, the SDRs of
Proposed and M-FOCUSS were 5.27 dB and 2.13 dB, respectively.
This indicates the efficacy of the proposed method, particularly for
the decomposition of multiple coherent sources.

6. CONCLUSION

We proposed a sparse sound field decomposition method using prior
information on source signals in the time-frequency domain. The
proposed method was derived by incorporating the CNMF model of
source signals into sparse sound field decomposition. Whereas cur-
rent methods are based only on the spatial sparsity of the source dis-
tribution, the proposed method exploits magnitude spectrum bases
pretrained using possible monaural source signals. The decompo-
sition algorithm was derived using the auxiliary function method.
Numerical simulation results indicated that the DOA estimation and
signal reconstruction performance of the proposed method was sig-
nificantly improved from that of current methods, particularly when
the multiple source signals were highly correlated.
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