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ABSTRACT
For monaural source separation two main approaches have
thus far been adopted. One approach involves applying
non-negative matrix factorization (NMF) to an observed
magnitude spectrogram, interpreted as a non-negative ma-
trix. The other approach is based on the concept of
computational auditory scene analysis (CASA). A CASA-
based approach called the “harmonic-temporal clustering
(HTC)” aims to cluster the time-frequency components
of an observed signal based on a constraint designed ac-
cording to the local time-frequency structure common in
many sound sources (such as harmonicity and the conti-
nuity of frequency and amplitude modulations). This pa-
per proposes a new approach for monaural source sepa-
ration called the “Harmonic-Temporal Factor Decompo-
sition (HTFD)” by introducing a spectrogram model that
combines the features of the models employed in the NMF
and HTC approaches. We further describe some ideas how
to design the prior distributions for the present model to
incorporate musically relevant information into the separa-
tion scheme.

1. INTRODUCTION
Monaural source separation is a process in which the sig-
nals of concurrent sources are estimated from a monaural
polyphonic signal and is one of fundamental objectives of-
fering a wide range of applications such as music informa-
tion retrieval, music transcription and audio editing.

While we can use spatial cues for blind source sepa-
ration with multichannel inputs, for monaural source sep-
aration we need other cues instead of the spatial cues.
For monaural source separation two main approaches have
thus far been adopted. One approach is based on the con-
cept of computational auditory scene analysis (e.g., [7]).
The auditory scene analysis process described by Breg-
man [1] involves grouping elements that are likely to have
originated from the same source into a perceptual struc-
ture called an auditory stream. In [8, 10], an attempt
has been made to imitate this process by clustering time-
frequency components based on a constraint designed ac-
cording to the auditory grouping cues (such as the har-
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monicity and the coherences and continuities of ampli-
tude and frequency modulations). This method is called
“harmonic-temporal clustering (HTC).”

The other approach involves applying non-negative ma-
trix factorization (NMF) to an observed magnitude spec-
trogram (time-frequency representation) interpreted as a
non-negative matrix [19]. The idea behind this approach
is that the spectrum at each frame is assumed to be repre-
sented as a weighted sum of a limited number of common
spectral templates. Since the spectral templates and the
mixing weights should both be non-negative, this implies
that an observed spectrogram is modeled as the product of
two non-negative matrices. Thus, factorizing an observed
spectrogram into the product of two non-negative matri-
ces allows us to estimate the unknown spectral templates
constituting the observed spectra and decompose the ob-
served spectra into components associated with the esti-
mated spectral templates.

The two approaches described above rely on different
clues for making separation possible. Roughly speaking,
the former approach focuses on the local time-frequency
structure of each source, while the latter approach fo-
cuses on a relatively global structure of music spectro-
grams (such a property that a music signal typically con-
sists of a limited number of recurring note events). Rather
than discussing which clues are more useful, we believe
that both of these clues can be useful for achieving a reli-
able monaural source separation algorithm. This belief has
led us to develop a new model and method for monaural
source separation that combine the features of both HTC
and NMF. We call the present method “harmonic-temporal
factor decomposition (HTFD).”

The present model is formulated as a probabilistic gen-
erative model in such a way that musically relevant infor-
mation can be flexibly incorporated into the prior distribu-
tions of the model parameters. Given the recent progress
of state-of-the-art methods for a variety of music informa-
tion retrieval (MIR)-related tasks such as audio key detec-
tion, audio chord detection, and audio beat tracking, in-
formation such as key, chord and beat extracted from the
given signal can potentially be utilized as reliable and use-
ful prior information for source separation. The inclusion
of auxiliary information in the separation scheme is re-
ferred to as informed source separation and is gaining in-
creasing momentum in recent years (see e.g., among oth-
ers, [5,15,18,20]). This paper further describes some ideas
how to design the prior distributions for the present model
to incorporate musically relevant information.

We henceforth denote the normal, Dirichlet and Poisson
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distributions by N , Dir and Pois, respectively.

2. SPECTROGRAM MODEL OF MUSIC SIGNAL
2.1 Wavelet transform of source signal model
As in [8], this section derives the continuous wavelet trans-
form of a source signal. Let us first consider as a signal
model for the sound of the kth pitch the analytic signal
representation of a pseudo-periodic signal given by

fk(u) =
N∑

n=1

ak,n(u)ej(nθk(u)+φk,n), (1)

where u denotes the time, nθk(u) + φk,n the instantaneous
phase of the n-th harmonic and ak,n(u) the instantaneous
amplitude. This signal model implicitly ensures not to vi-
olate the ‘harmonicity’ and ‘coherent frequency modula-
tion’ constraints of the auditory grouping cues. Now, let
the wavelet basis function be defined by

ψα,t(u) =
1
√

2πα
ψ

(u − t
α

)
, (2)

where α is the scale parameter such that α > 0, t the shift
parameter and ψ(u) the mother wavelet with the center fre-
quency of 1 satisfying the admissibility condition. ψα,t(u)
can thus be used to measure the component of period α at
time t. The continuous wavelet transform of fk(u) is then
defined by

Wk(log 1
α
, t) =

∫ ∞

−∞

N∑
n=1

ak,n(u)ej(nθk(u)+φk,n)ψ∗α,t(u)du. (3)

Since the dominant part of ψ∗α,t(u) is typically localized
around time t, the result of the integral in Eq. (3) shall
depend only on the values of θk(u) and ak,n(u) near t. By
taking this into account, we replace θk(t) and ak,n(t) with
zero- and first-order approximations around time t:

ak,n(u) ≃ ak,n(t), θk(u) ≃ θk(t) + θ̇k(t)(u − t). (4)

Note that the variable θ̇k(u) corresponds to the instanta-
neous fundamental frequency (F0). By undertaking the
above approximations, applying the Parseval’s theorem,
and putting x = log(1/α) and Ωk(t) = log θ̇k(t), we can
further write Eq. (3) as

Wk(x, t) =
N∑

n=1

ak,n(t)Ψ∗(ne−x+Ωk(t))e j(nθk(t)+φk,n), (5)

where x denotes log-frequency andΨ the Fourier transform
of ψ. Since the function Ψ can be chosen arbitrarily, as
with [8], we employ the following unimodal real function
whose maximum is taken at ω = 1:

Ψ(ω) =

e−
(logω)2

4σ2 (ω > 0)
0 (ω ≤ 0)

. (6)

Eq. (5) can then be written as

Wk(x, t) =
N∑

n=1

ak,n(t)e−
(x−Ωk (t)−log n)2

4σ2 e j(nθk(t)+φk,n). (7)

If we now assume that the time-frequency components are
sparsely distributed so that the partials rarely overlap each
other, |Wk(x, t)|2 is given approximately as

|Wk(x, t)|2 ≃
N∑

n=1

|ak,n(t)|2e−
(x−Ωk (t)−log n)2

2σ2 . (8)

This assumption means that the power spectra of the par-
tials can approximately be considered additive. Note that
a cutting plane of the spectrogram model given by Eq. (8)

at time t is expressed as a harmonically-spaced Gaussian
mixture function. If we assume the additivity of power
spectra, the power spectrogram of a superposition of K
pitched sounds is given by the sum of Eq. (8) over k. It
should be noted that this model is identical to the one em-
ployed in the HTC approach [8].

Although we have defined the spectrogram model above
in continuous time and continuous log-frequency, we ac-
tually obtain observed spectrograms as a discrete time-
frequency representation through computer implementa-
tions. Thus, we henceforth use Yl,m := Y(xl, tm) to de-
note an observed spectrogram where xl (l = 1, . . . , L) and
tm (m = 1, . . . , M) stand for the uniformly-quantized log-
frequency points and time points, respectively. We will
also use the notation Ωk,m and ak,n,m to indicate Ωk(tm) and
ak,n(tm).

2.2 Incorporating source-filter model
The generating processes of many sound sources in real
world can be explained fairly well by the source-filter the-
ory. In this section, we follow the idea described in [12] to
incorporate the source-filter model into the above model.
Let us assume that each signal fk(u) within a short-time
segment is an output of an all-pole system. That is, if
we use fk,m[i] to denote the discrete-time representation
of fk(u) within a short-time segment centered at time tm,
fk,m[i] can be described as

βk,m[0] fk,m[i] =
P∑

p=1

βk,m[p] fk,m[i − p] + ϵk,m[i], (9)

where i, ϵk,m[i], and βk,m[p] (p = 0, . . . , P) denote the
discrete-time index, an excitation signal, and the autore-
gressive (AR) coefficients, respectively. As we have al-
ready assumed in 2.1 that the F0 of fk,m[i] is eΩk,m , to make
the assumption consistent, the F0 of the excitation signal
ϵk,m[i] must also be eΩk,m . We thus define ϵk,m[i] as

ϵk,m[i] =
N∑

n=1

vk,n,me jneΩk,m iu0 , (10)

where u0 denotes the sampling period of the discrete-time
representation and vk,n,m denotes the complex amplitude of
the nth partial. By applying the discrete-time Fourier trans-
form (DTFT) to Eq. (9) and putting Bk,m(z) := βk,m[0] −
βk,m[1]z−1 · · · − βk,m[P]z−P, we obtain

Fk,m(ω) =

√
2π

Bk,m(e jω)

N∑
n=1

vk,n,mδ(ω − neΩk,m u0), (11)

where Fk,m denotes the DTFT of fk,m, ω the normalized an-
gular frequency, and δ the Dirac delta function. The inverse
DTFT of Eq. (11) gives us another expression of fk,m[i]:

fk,m[i] =
N∑

n=1

vk,n,m

Bk,m(e jneΩk,m u0 )
e jneΩk,m iu0 . (12)

By comparing Eq. (12) and the discrete-time representa-
tion of Eq. (1), we can associate the parameters of the
source filter model defined above with the parameters in-
troduced in 2.1 through the explicit relationship:

|ak,n,m| =
∣∣∣∣∣∣ vk,n,m

Bk,m(e jneΩk,m u0 )

∣∣∣∣∣∣ . (13)

2.3 Constraining model parameters
The key assumption behind the NMF model is that the
spectra of the sound of a particular pitch is expressed as
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a multiplication of time-independent and time-dependent
factors. In order to extend the NMF model to a more rea-
sonable one, we consider it important to clarify which fac-
tors involved in the spectra should be assumed to be time-
dependent and which factors should not. For example, the
F0 must be assumed to vary in time during vibrato or porta-
mento. Of course, the scale of the spectrum should also be
assumed to be time-varying (as with the NMF model). On
the other hand, the timbre of an instrument can be consid-
ered relatively static throughout an entire piece of music.

We can reflect these assumptions in the present model in
the following way. For convenience of the following anal-
ysis, we factorize |ak,n,m| into the product of two variables,
wk,n,m and Uk,m

|ak,n,m| = wk,n,m
√

Uk,m. (14)
wk,n,m can be interpreted as the relative power of the nth
harmonic and Uk,m as the time-varying normalized ampli-
tude of the sound of the kth pitch such that

∑
k,m Uk,m = 1.

In the same way, let us put vk,n,m as

vk,n,m = w̃k,n,m
√

Uk,m. (15)

Since the all-pole spectrum 1/|Bk,m(e jω)|2 is related to the
timbre of the sound of the kth pitch, we want to constrain
it to be time-invariant. This can be done simply by elimi-
nating the subscript m. Eq. (13) can thus be rewritten as

wk,n,m =

∣∣∣∣∣∣ w̃k,n,m

Bk(e jneΩk,m u0 )

∣∣∣∣∣∣ . (16)

We can use Ωk,m as is, since it is already dependent on m.
To sum up, we obtain a spectrogram model Xl,m as

Xl,m =

K∑
k=1

Ck,l,m, Ck,l,m =

 N∑
n=1

w2
k,n,me−

(xl−Ωk,m−log n)2

2σ2

︸                         ︷︷                         ︸
Hk,l,m

Uk,m,

(17)
where Ck,l,m stands for the spectrogram of the kth pitch. If
we denote the term inside the parenthesis by Hk,l,m, Xl,m
can be rewritten as Xl,m =

∑
k Hk,l,mUk,m and so the relation

to the NMF model may become much clearer.

2.4 Formulating probabilistic model

Since the assumptions and approximations we made so far
do not always hold exactly in reality, an observed spectro-
gram Yl,m may diverge from Xl,m even though the param-
eters are optimally determined. One way to simplify the
process by which this kind of deviation occurs would be to
assume a probability distribution of Yl,m with the expected
value of Xl,m. Here, we assume that Yl,m follows a Poisson
distribution with mean Xl,m

Yl,m ∼ Pois(Yl,m; Xl,m), (18)

where Pois(z; ξ) = ξze−ξ/Γ(z). This defines our likelihood
function

p(Y|θ) =
∏
l,m

Pois(Yl,m; Xl,m), (19)

where Y denotes the set consisting of Yl,m and Θ the entire
set consisting of the unknown model parameters. It should
be noted that the maximization of the Poisson likelihood
with respect to Xl,m amounts to optimally fitting Xl,m to Yl,m
by using the I-divergence as the fitting criterion.

Eq. (16) implicitly defines the conditional distribution
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Figure 1. Power spectrogram of a violin vibrato sound.

p(w|w̃,β,Ω) expressed by the Dirac delta function

p(w|w̃,β,Ω) =
∏
k,n,m

δ

(
wk,n,m −

∣∣∣∣∣∣ w̃k,n,m

Bk(e jneΩk,mu0 )

∣∣∣∣∣∣
)
. (20)

The conditional distribution p(w|β,Ω) can thus be obtained
by defining the distribution p(w̃) and marginalizing over
w̃. If we now assume that the complex amplitude w̃k,n,m
follows a circular complex normal distribution

w̃k,n,m ∼ NC(w̃k,n,m; 0, ν2), n = 1, . . . ,N, (21)

whereNC(z; 0, ξ2)=e−|z|
2/ξ2

/(πξ2), we can show, as in [12],
that wk,n,m follows a Rayleigh distribution:

wk,n,m ∼ Rayleigh(wk,n,m; ν/|Bk(e jneΩk,m u0 )|), (22)

where Rayleigh(z; ξ) = (z/ξ2)e−z2/(2ξ2). This defines the
conditional distribution p(w|β,Ω).

The F0 of stringed and wind instruments often varies
continuously over time with musical expressions such as
vibrato. For example, the F0 of a violin sound varies pe-
riodically around the note frequency during vibrato, as de-
picted in Fig. 1. Let us denote the standard log-F0 cor-
responding to the kth note by µk. To appropriately de-
scribe the variability of an F0 contour in both the global
and local time scales, we design a prior distribution for
Ωk := (Ωk,1,Ωk,2, . . . ,Ωk,M)T by employing the product-
of-experts (PoE) [6] concept using two probability distri-
butions. First, we design a distribution qg(Ωk) describ-
ing how likely Ωk,1, . . . ,Ωk,L stay near µk. Second, we
design another distribution ql(Ωk) describing how likely
Ωk,1, . . . ,Ωk,L are locally continuous along time. Here we
define qg(Ωk) and ql(Ωk) as

qg(Ωk) = N(Ωk; µk1M , υ
2
k IM), (23)

ql(Ωk) = N(Ωk; 0M , τ
2
k D−1), (24)

D =



1 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −1 2 −1
0 · · · 0 0 −1 1


, (25)

where IM denotes an M × M identity matrix, D an M × M
band matrix, 1M an M-dimensional all-one vector, and 0M
an M-dimensional all-zero vector, respectively. υk denotes
the standard deviation from mean µk, and τk the standard
deviation of the F0 jumps between adjacent frames. The
prior distribution of Ωk is then derived as

p(Ωk) ∝ qg(Ωk)αg ql(Ωk)αl (26)
where αg and αl are the hyperparameters that weigh the
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contributions of qg(Ωk) and ql(Ωk) to the prior distribution.

2.5 Relation to other models
It should be noted that the present model is related to other
models proposed previously.

If we do not assume a parametric model for Hk,l,m and
treat each Hk,l,m itself as the parameter, the spectrogram
model Xl,m can be seen as an NMF model with time-
varying basis spectra, as in [14]. In addition to this as-
sumption, if we assume that Hk,l,m is time-invariant (i.e.,
Hk,l,m = Hk,l), Xl,m reduces to the regular NMF model [19].
Furthermore, if we assume each basis spectrum to have
a harmonic structure, Xl,m becomes equivalent to the har-
monic NMF model [16, 21].

If we assume thatΩk,m is equal over time m, Xl,m reduces
to a model similar to the ones described in [17, 22]. Fur-
thermore, if we describe Uk,m using a parametric function
of m, Xl,m becomes equivalent to the HTC model [8, 10].

With a similar motivation, Hennequin et al. developed
an extension to the NMF model defined in the short-time
Fourier transform domain to allow the F0 of each basis
spectrum to be time-varying [4].

3. INCORPORATION OF AUXILIARY
INFORMATION

3.1 Use of musically relevant information
We consider using side-information obtained with the
state-of-the-art methods for MIR-related tasks including
key detection, chord detection and beat tracking to assist
source separation.

When multiple types of side-information are obtained
for a specific parameter, we can combine the use of the
mixture-of-experts and PoE [6] concepts according to the
“AND” and “OR” conditions we design. For example,
pitch occurrences typically depend on both the chord and
key of a piece of music. Thus, when the chord and key in-
formation are obtained, we may use the product-of-experts
concept to define a prior distribution for the parameters
governing the likeliness of the occurrences of the pitches.
In the next subsection, we describe specifically how to de-
sign the prior distributions.

3.2 Designing prior distributions
The likeliness of the pitch occurrences in popular and clas-
sical western music usually depend on the key or the chord
used in that piece. The likeliness of the pitch occurrences
can be described as a probability distribution over the rel-
ative energies of the sounds of the individual pitches.

Since the number of times each note is activated is usu-
ally limited, inducing sparsity to the temporal activation of
each note event would facilitate the source separation. The
likeliness of the number of times each note is activated can
be described as well as a probability distribution over the
temporal activations of the sound of each pitch.

To allow for designing such prior distributions, we de-
compose Uk,m as the product of two variables: the pitch-
wise relative energy Rk =

∑
m Uk,m (i.e.

∑
k Rk = 1), and

the pitch-wise normalized amplitude Ak,m = Uk,m/Rk (i.e.∑
m Ak,m = 1). Hence, we can write

Uk,m = RkAk,m. (27)
This decomposition allows us to incorporate different
kinds of prior information into our model by separately
defining prior distributions over R = (R1, . . . ,RK)T and

Ak = (Ak,1, . . . , Ak,M)T. Here we introduce Dirichlet dis-
tributions:

Ak ∼ Dir(Ak;γ(A)
k ), R ∼ Dir(R;γ(R)), (28)

where Dir(z; ξ) ∝ ∏
i zi

ξi , γ(A)
k := (γ(A)

k,1 , . . . , γ
(A)
k,M)T, and

γ(R) := (γ(R)
1 , . . . , γ(R)

K )T. For p(R), we set γ(R)
k at a reason-

ably high value if the kth pitch is contained in the scale and
vice versa. For p(Ak), we set γ(A)

k,m < 1 so that the Dirichlet
distribution becomes a sparsity inducing distribution.

4. PARAMETER ESTIMATION ALGORITHM

Given an observed power spectrogram Y := {Yl,m}l,m,
we would like to find the estimates of Θ :=
{Ω,w,β,V, R, A} that maximizes the posterior density
p(Θ|Y) ∝ p(Y|Θ)p(Θ). We therefore consider the prob-
lem of maximizing

L(Θ) := ln p(Y|Θ) + ln p(Θ), (29)
with respect to Θ where

ln p(Y|Θ)=
c

∑
l,m

(
Yl,m ln Xl,m − Xl,m

)
(30)

ln p(Θ) = ln p(w|β,Ω) +
∑

k

ln p(Ωk)

+ ln p(R) +
∑

k

ln p(Ak). (31)

=c denotes equality up to constant terms. Since the first
term of Eq. (30) involves summation over k and n, an-
alytically solving the current maximization problem is in-
tractable. However, we can develop a computationally effi-
cient algorithm for finding a locally optimal solution based
on the auxiliary function concept, by using a similar idea
described in [8, 12].

When applying an auxiliary function approach to a cer-
tain maximization problem, the first step is to define a
lower bound function for the objective function. As men-
tioned earlier, the difficulty with the current maximization
problem lies in the first term in Eq. (30) . By using the fact
that the logarithm function is a concave function, we can
invoke the Jensen’s inequality

Yl,m ln Xl,m ≥ Yl,m

∑
k,n

λk,n,l,m ln
w2

k,n,me−
(xl−Ωk,m−log n)2

2σ2 Uk,m

λk,n,l,m
,

(32)
to obtain a lower bound function, where λk,n,l,m is a positive
variable that sums to unity:

∑
k,n λk,n,l,m = 1. Equality of

(32) holds if and only if

λk,n,l,m =
w2

k,n,me−
(xl−Ωk,m−log n)2

2σ2 Uk,m

Xl,m
. (33)

Although one may notice that the second term in
Eq. (30) is nonlinear in Ωk,m, the summation of Xl,m
over l can be approximated fairly well using the integral∫ ∞
−∞ X(x, tm)dx, since

∑
l Xl,m is the sum of the values at the

sampled points X(x1, tm), . . . , X(xL, tm) with an equal inter-
val, say ∆x. Hence,∑

l

Xl,m ≃
1
∆x

∫ ∞

−∞
X(x, tm)dx

=
1
∆x

∑
k,n

w2
k,n,mUk,m

∫ ∞

−∞
e−

(x−Ωk,m−log n)2

2σ2 dx
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=

√
2πσ
∆x

∑
k

Uk,m

∑
n

w2
k,n,m. (34)

This approximation implies that the second term in Eq.
(30) depends little on Ωk,m.

An auxiliary function can thus be written as

L+(Θ, λ)=
c

∑
l,m

Yl,m

∑
k,n

λk,n,l,m ln
w2

k,n,me−
(xl−Ωk,m−ln n)2

2σ2 Uk,m

λk,n,l,m

−
√

2πσ
∆x

∑
m

∑
k

Uk,m

∑
n

w2
k,n,m + ln p(Θ). (35)

We can derive update equations for the model parameters,
using the above auxiliary function. By setting at zero the
partial derivative of L+(Θ, λ) with respect to each of the
model parameters, we obtain

w2
k,n,m ←

∑
l Yl,mλk,n,l,m + 1/2

√
2πRkAk,mσ/∆x + ν2/(2|Bk(e jneΩk,m u0 )|2)

, (36)

Ωk ←
αl

τ2 D +
αg

υ2
k

IM +
∑
n,l

diag(pk,n,l)

−1

×
µk

αg

υ2
k

1M +
∑
n,l

(xl − ln n)pk,n,l

 , (37)

Rk ∝
∑

l,m Yl,m
∑

n λk,n,l,m + γ
(R)
k − 1∑

m,n Ak,mw2
k,m,n

, (38)

Ak,m ∝
∑

l Yl,m
∑

n λk,n,l,m + γ
(A)
k,m − 1

Rk
∑

n w2
k,m,n

, (39)

pk,n,l :=
1
σ2

[
Yl,1λk,n,l,1,Yl,2λk,n,l,2, · · · , Yl,Mλk,n,l,M

]⊤
, (40)

where diag(p) converts a vector p into a diagonal matrix
with the elements of p on the main diagonal.

As for the update equations for the AR coefficients β,
we can invoke the method described in [23] with a slight
modification, since the terms in the auxiliary function that
depend on β has the similar form as the objective function
defined in [23]. It can be shown that L+ can be increased
by the following updates (the details are omitted owing to
space limitations):

hk ← Ĉk(βk)βk, βk ← C−1
k hk, (41)

where Ck and Ĉk(βk) are (P+1)× (P+1) Toeplitz matrices,
whose (p, q)-th elements are

Ck,p,q =
1

MN

∑
m,n

w2
k,m,n

2ν
cos[(p − q)neΩk,m u0],

Ĉk,p,q(βk) =
1

MN

∑
m,n

1

|Bk(e jneΩk,m u0 )|2
cos[(p − q)neΩk,m u0].

(42)

5. EXPERIMENTS
In the following preliminary experiments, we simplified
HTFD by omitting the source filter model and assuming
the time-invariance of wk,m,n.

5.1 F0 tracking of violin sound
To confirm whether HTFD can track the F0 contour of
a sound, we compared HTFD with NMF with the I-
divergence, by using a 16 kHz-sampled audio signal which
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Figure 2. Power spectrogram of a mixed audio signal of
three violin vibrato sounds (D♭4, F4 and A♭4).

were artificially made by mixing D♭4, F4 and A♭4 violin
vibrato sounds from the RWC instrument database [3]. In
this paper, the F0 of the pitch name A4 was set at 440
Hz. The power spectrogram of the mixed signal is shown
in Fig. 2. To convert the signal into a spectrogram, we
employed the fast approximate continuous wavelet trans-
form [9] with a 16 ms time-shift interval. {xl}l ranged 55
to 7040 Hz per 10 cent. The parameters of HTFD were
set at γ(A)

k = (1 − 3.96 × 10−6)1I , (τk, vk) = (0.83, 1.25)
for all k, (N,K, σ, αg, αs) = (8, 73, 0.02, 1, 1), and γ(R) =

(1−2.4×10−3)1K . {µk}k ranged A1 to A♯7 with a chromatic
interval, i.e. µk = ln(55) + ln(2) × (k − 1)/12. The number
of NMF bases were set at three. The parameter updates of
both HTFD and NMF were stopped at 100 iterations.

While the estimates of spectrograms obtained with
NMF were flat and the vibrato spectra seemed to be aver-
aged (Fig. 3 (a)), those obtained with HTFD tracked the F0
contours of the vibrato sounds appropriately (Fig. 3 (b)),
and clear vibrato sounds were contained in the separated
audio signals by HTFD.

5.2 Separation using key information
We next examined whether the prior information of a
sound improve source separation accuracy. The key of the
sound used in 5.1, was assumed as D♭ major. The key in-
formation was incorporated in the estimation scheme by
setting γ(R)

k = 1 − 2.4 × 10−3 for the pitch indices that are
not contained in the D♭major scale and γ(R)

k = 1−3.0×10−3

for the pitch indices contained in that scale. The other con-
ditions were the same as 5.1.

With HTFD without using the key information, the es-
timated activations of the pitch indices that were not con-
tained in the scale, in particular D4, were high as illus-
trated in Fig. 4 (a). In contrast, those estimated activations
with HTFD using the key information were suppressed as
shown in Fig. 4 (b). These results thus support strongly that
incorporating prior information improve the source separa-
tion accuracy.

5.3 Transposing from one key to another
Here we show some results of an experiment on automatic
key transposition [11] using HTFD. The aim of key trans-
position is to change the key of a musical piece to another
key. We separated the spectrogram of a polyphonic sound
into spectrograms of individual pitches using HFTD, trans-
posed the pitches of the subset of the separated compo-
nents, added all the spectrograms together to construct a
pitch-modified polyphonic spectrogram, and constructed a
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(a) Estimates of spectrograms and F0 contours (orange lines) obtained with HTFD
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(b) Estimates of spectrograms obtained with NMF

Figure 3. Estimated spectrogram models by harmonic-temporal factor decomposi-
tion (HTFD) and non-negative matrix factorization (NMF). In left-to-right fashion,
the spectrogram models are for D♭4, F4 and A♭4.
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Figure 4. Temporal activations of
A3–A♭4 estimated with HTFD using
and without using prior information
of the key. The red curves represent
the temporal activations of D4.

time-domain signal from the modified spectrogram using
the method described in [13]. For the key transposition,
we adopted a simple way: To transpose, for example, from
A major scale to A natural minor scale, we changed the
pitches of the separated spectrograms corresponding to C♯,
F♯ and G♯ to C, F and G, respectively.

Some results are demonstrated in http://hil.t.
u-tokyo.ac.jp/˜nakamura/demo/HTFD.html.

6. CONCLUSION
This paper proposed a new approach for monaural source
separation called the “Harmonic-Temporal Factor Decom-
position (HTFD)” by introducing a spectrogram model that
combines the features of the models employed in the NMF
and HTC approaches. We further described some ideas
how to design the prior distributions for the present model
to incorporate musically relevant information into the sep-
aration scheme.
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