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ABSTRACT

This paper proposes an extension of non-negative matrix facto
ization (NMF), which combines the shifted NMF model with the
source-filter model. Shifted NMF was proposed as a powerful ap
proach for monaural source separation and multiple fundamental fre | ‘ ; ‘
quency Eo) estimation, which is particularly unique in that it takes J\ A A aan
account of the constant mter-harmomc spacings of a h_armonlc strui 76 85 151 269 480 855 1523 2714 4336
ture in log-frequency representations and uses a shifted copy of Log—Frequency [Hz]

spectrum template to represent the spectrafédidintF,s. However,

for those sounds that follow the source-filter model, this assumption  Fig. 1: Two spectra of clarinet sounds afferent pitches.

does not hold in reality, since the filter spectra are usually invariant

underF, changes. A more reasonable way to represent the spec-

trum of a diferentF, is to use a shifted copy of a harmonic struc-

ture template as the excitation spectrum and keep the filter spectrute particularly well suited to music data in the sense that the fun-
fixed. Thus, we can describe the spectrogram of a mixture signalamental frequencies-¢s) of the tones in music are geometrically

as the sum of the products between the shifted copies of excitatiggpaced [2-7]. In particular, shifted NMF [2], also known as the
spectrum templates and filter spectrum templates. Furthermore, tisgift-invariant probabilistic latent component analysis (PLCA) [3],
time course of filter spectra represents the dynamics of the timbréjas proved successful for monaural source separation and multiple
which is important for characterizing the feature of an instrumento estimation tasks [8-10]. The uniqueness of this method lies in
sound. Thus, we further incorporate the non-negative matrix facthat it takes account of the constant inter-harmonic spacings of a
tor deconvolution (NMFD) model into the above model to describeharmonic structure in log-frequency representations and uses shifted
the filter spectrogram. We derive a computationalfficeent and ~ copies of a spectrum template to represent the spectrafefefit
convergence-guaranteed algorithm for estimating the unknown pd=os where the shape of each spectrum template is assumed to be as-
rameters of the constructed model based on the auxiliary functiogociated with an individual instrument. It should be noted that this
approach. Experimental results revealed that the proposed methitea was first introduced in [11, 12] to develop a method for multi-
outperformed shifted NMF in terms of the source separation accuple Fo estimation. However, the above assumption does not hold in
racy. real situations. Fig. 1 shows two examples of the spectra produced
by the same instrument withftérentFys. As Fig. 1 shows, the rel-
ative energies of the harmonic partials of the two spectra appear to
be completely dferent, so that it is diicult to represent them only

with a single template. To address this mismatch, previous work pro-
posed using multiple templates to represent the spectra of the same

1. INTRODUCTION instrument [2,8-10].
To construct a more reasonable model, we focus on the fact that

One major approach to monaural source separation involves appljde generating processes of many instrument sounds can be ex-
ing non-negative matrix factorization (NMF) to an observed magni-lained fairly well by the source-filter theory. Specifically, we as-
tude (or power) spectrogram interpreted as a non-negative matrix [13ume that the spectrum of an instrument sound is given by the prod-
While many variants and extensions of NMF have been applied ttict of the excitation and filter spectra, where the “excitation” source
spectrograms with linear frequency resolution given by the shorttepresents a vibrating object such as a violin string and “filter” refers
time Fourier transform (STFT), spectrograms with log-frequencyto the resonance structure of the instrument body, which is usually
resolution obtained with the continuous wavelet transform (CWT)nvariant under, changes. While most of the NMF variants in-
corporating the source-filter model such as [13-17] were designed

This study was supported by JSPS KAKENHI Grant Number 15J099920 model STFT spectrograms, we consider modeling CWT spectro-
and JSPS Grant-in-Aid for Young Scientists B Grant Number 26730100. grams so as to utilize the shift-invariant property of the excitation
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spectrum. We can thus describe the spectrum of each instrumentlag-frequency. The kernéb,, for n > 1 is identical to a normal
a particular time as the product of a shifted copy of an excitatiordistribution of a normalized angular frequency with megnand
spectrum template and a filter spectrum. variancey?.

As regards the filter spectrum, if it can be assumed to be constant Multiple excitation and filter spectra can be used for an instru-
over time, we can use a single spectrum template for each instrurent to describe complex spectral changes, but we hereafter as-
ment. However, for some instruments such as a singing voice, th&ign an excitation spectrum and a filter spectrum to each instrument
time course of the filter spectrum represents the dynamics of thfr the simplicity. By puttingUypm. = U9 US| and treat-
timbre, which is important for characterizing the feature of an in-ing Uy, pm-. itself as a parameter, the spectrogram of an instrument
strument. We thus consider it reasonable to represent the filter spessund associated with source excitatioand filterr can be written
trogram using a short-range spectrogram rather than a single-franaes
spectrum as the template. This can be achieved by introducing the N
convolutive NMF model [18] to express the filter spectrogram of Ximkr =Z Fr1-Ski-pUkr.pm-r- 3)
each instrument. p.T

In summary, this paper proposes modeling the CWT SpECtrc’gr"’m,&ssuming the additivity of magnitude spectrograms as with conven-

of a polyphonic music as the sum of components each described £
the product of the excitation and filter spectrogram, where the e)?_%)nal NMFs, the observed spectrogram can be represented as

citation and filter spectrograms are respectively expressed using the S

shifted NMF model and the convolutive NMF model. We further de- Aim = Z Kimir- “)
rive a convergence-guaranteed iterative algorithm for minimizing the ke

difference between an observed spectrogram and the present mogiglavoid the indeterminacy in scaling, we pitS,; = 1 for all k.

based on the auxiliary function approach [19, 20]. Although a model similar to the above has been mentioned in
[21], the temporal dynamics was not incorporated into the source-

2. SHIFTED AND CONVOLUTIVE SOURCE-FILTER filter model in the literature. Any experimental evaluation was not
NON-NEGATIVE MATRIX FACTORIZATION given in the literature and the incorporation of the source-filter model

into shifted NMF has yet been validated. We will thus confirm the
2.1. Spectrogram Model efficacy of the incorporation of the source-filter model in Sec. 4.
Let us denote the indices of log-frequency and timé £y0, ..., L—
1andm = 0,...,M — 1, respectively. A spectrogram of an audio
signal that follows the source-filter model can be described as thEor a given magnitude spectrogram:= {Y|m}i.m, We would like
product of an excitation spectrogram and a filter spectrogram. By ude find the parameterS := {Syplkp, W = (Winhinr @andU =
ing the fact that the inter-harmonic spacings of a harmonic structur@Jy m}r..m Of the proposed model such that minimizes

are constant in the log-frequency domain, we use a shifted copy of

an excitation spectrum template to represent the excitation spectrum L.(SSWU) = Z D.(MimllXim) + R (V). (5)
of eachF,. The excitation spectrogram(ﬁ)k > 0 of source excita- Lm

tionk(=0,--- ,K—1)is modeled as the convolution of an excitation

spectrum templat&,, > 0 and time-varying gaing®) > 0, i.e.

X = ¥pep S-pUE, wherep is the frequency shift index and

2.2. Formulation

The first term of Eq. (5) is a goodness-of-fit measure betvieand

= {X.mhm- How to define the measure is very important since
m 3 - : it corresponds to an assumption to the statistical nature of observed
#is the set of possible frequency shifts. By abuse of notation, Wgat4 £ we defind, as the generalized Kullback-Leibler divergence

understand they, =Ounless O< | - p< L -1 a.k.a | divergence), it implicitly assumes théat, follows a Poisson
On the other hand, we describe the filter spectrogram in a Simgiétr.ibution vgith mg’am m? y han

ilar manner to NMFD [18] and NMF-2D [4] to capture the dy-
namics of the timbre, which is important for characterizing the fea-
ture of an instrument sound. The spectrogrﬁm) > 0 of filter

r(= 0,---,R— 1) is represented by a time convolution of a short-
range spectrograrft,, > 0 with time-varying gaindJ® > 0,  From this fact, it is known that minimizing, m D (Y mlXim) with re-
e, X _ ZM(‘ap’—l Fr UM wherer = 0,--- , M@ _ 1 isthe  SPecttoX,n amounts to the maximum likelihood estimation)gf..

1, - =0 rm-7» . . . . .
time sﬁrﬁ index andV®@ is the tap size of the short-range spectro-Th's measure is frequently used in conventional NMF algorithms
i and has been confirmed to work well for audio source separation

grams. By abuse of notation, we understand &P . = 0 unless o 8 .

O<m-7<M-—1. ’ empmcally. Another commonly-used measure is the Itakura-Saito
As we want the magnitude spectra of filters to be smooth andVergenceis:

non-negative in the log-frequency domain, we parametétjzeby y2 2

Y
Di(YimlXim) = YimIn ﬁ ~Yim + Xim. (6)
,m

N envelope kernel§, , > 0 and their mixture weighté/ . > 0 that Dis(Y2IX.m) = M n ﬁ —1 (7)
satisfiesy,, Wipn, = 1: ’ Xi.m Xim
Frir= Z Win:Gins (1) This corresponds to the assumption that an observed complex spec-
- trogram follows a circularly-symmetric complex normal distribution
(@1-pn)? with mean zero and variane&n,, in which X, ,, can be interpreted as
Gip:= e 22 (2)  amodel of a power spectral density of the observed signal.
2rv? The second ternR.(U) is a regularizer folJ. In popular and
wheren = 0,--- ,N — 1 is the index of envelope kernel ang € classical western music, the number of pitches occurred in a musical

(0, n] is the normalized angular frequency corresponding toltine piece and the number of times each note is performed are usually
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limited, and so inducing the sparsity dfwould facilitate the source where = denotes the equality up to constant terms and:=

. . . . . [
separation. To reflect it, we can design the regularizer in analogy toy, mkr.penllmkr.pn: By setting the partial derivatives of
the Bayesian modeling. The conjugate prior of the Poisson distrizi(s' WU ’A)’ with respect toS, W andU at zeros and substitut-

bution is a gamma distribution Gamr, 5) o< x*"*e** and thus we g Eq. (11) intoA, we can derive the following update equations:
design the regularizer,(U) for D, as

Yim

RI(U) = Z {~(@" = 1)INUkrpm + BOUkr pm} (8) Zim X Sre FraeUkriormer
Sk Sk . R 13
kr.pm k|7 €Ok Zl.m,r,r Fr,I,TUk,r,I—I’,m—r ( )
wherea® > 0 ands® > 0 are associated with the shape and rate Yim G S U
parameters of a gamma distribution, respectively. Similarly, the con- Zim Xim Lok GrnSwi-pUicr.pm-r
jugate prior of a circularly-symmetric complex normal distribution Wine «Win, 5 : G5 UL , (14)
with known mean and unknown variance is an inverse gamma distri- hmpk b Acl-plenpmer
][autign InvGamg; a,8) « x*"*e#/*, and we design the regularizer Sim % % ok Framom Ski—pUkrpar + a® -1
or Pis 8s Ui e ——— . (15)
P.

Zl,mp,k Fr,l,nan' Sk,I—p +ﬁ(l)

The update rules & andW are followed by nhormalization such that
Sk = 1forallkand),, W, = 1 forallr. Itis important to
wherea!®) > 0 andB!® > 0 are associated with the shape and scalenote that once the initial values'¥f andS are set to be non-negative,
parameters of an inverse gamma distribution, respectively. The legbe multiplicative update equations ensures the non-negativity of the
¥ (a09), the more sparsé tends to become. entries of W andS. Since the non-negativity df does not hold,
we can ensure it by simply performingi pm < maxo, Uy, om}
at each update. One may think that the update equations contain
3. PARAMETER ESTIMATION ALGORITHMS BASED ON time-consﬁming convolutigns and correlatioFr)ls and \?vould require a
AUXILIARY FUNCTION APPROACH long computation time. However, we can invoke the fast Fourier
transform (FFT) to calculate the convolutions and correlations, and
“they are not time-consuming in practice.

Similarly to the above, we can construct an auxiliary function for
the IS divergence as with [23]. We here omit details of the deriva-
tion of an auxiliary function due to limitations of space. Update
tequations can be derived as

Ris(U) = Z {(G(IS) +1)InUgrpm + U[J’('S) }’ 9

Kr.p.m kr.p.m

We first derive a parameter estimation algorithm for the | diver
gence. Sincefi(S, W, U) involves summations ovek,r, p,7 and

n in the logarithmic function, the current minimization problem is
difficult to solve analytically. However, we can develop a com-
putationally dficient algorithm for finding a locally optimal solu-
tion based on the auxiliary function approach [19, 20, 22]. The firs

step to apply the auxiliary function approach, is to define an up- v
per bound function for the objective functiof(S, W, U), arranged Simes ﬂFrlrUkr pm
as £L*(S,W.U,A), such that£(S,W.U) = miny £*(S,W.U,A). X, T 1
We call A an auxiliary variable andC*(S,W U, A) an auxiliary Str Skr FrieUkrpm (16)
function. If we can construc*(S,W, U, A), £(S, W, U) is non- Zimrr T X
increasing under the updat&s W, U} «— argminZ*(S, W, U, A) and ; m
SWU Y
A« arg/\minL+ (S, WU, A). Simkp %SK.I—pGLnUkJ,p,m
Since the logarithmic function is a concave function, we can ob- Winr «Win- 'g G U , 7)
tain an upper bound function by invoking the J s lity: KlZp2nTkrpm
pper bound function by invoking the Jensen'’s inequality: Simkp X
m
“YimINXim <= Yim Z Almkr.pon (In Ski—p + INWi -
kr.p,,n U ~ AkJ,p,m’ (18)
+1In Gin+ In Uk‘r‘p,nrkr —In /ll,mk.r.p,r,n) (10) krpam = (IS) 2
™ +1 oS 4+ 1
where Amkrpen = O is an auxiliary variable such that ( 2 ) + Burp Akrp + 2
Ykr.pen Amkrprn = 1 for alll andm. The equality holds if and
only if where
Sk.I—pWr,n,rGI,nUk,r,p,m—r Y|2
Almicr.pen = Xim : (11) Acrpm = Zm Té:lzr.l,rwm’ Sii-pUkr.pnr2 +:8(IS)~ (19)
The auxiliary function can thus be written as Ski-pFrimnm
Bk,r,p,m’ = —_—. (20)
LISWUA) == Yim > Amkrpen (INSkip+INW, %:‘ Kim
1 , VV, U, . | ,mk ,mkr,p,r,n kl-p rnT
.m Lr,p,T.N

+INUgrpmr —In /llmk,r,pm,n) + Z Xim 4. EXPERIMENTS
I,m

| | To evaluate the proposed algorithms, we conducted a supervised
- Z {(0() = 1)InUyrom —ﬁ()Uk_r.p,m} (12)  source separation experiment. For the convenience, we call the pro-
kr.pm posed algorithm with the | divergence criterion (the IS divergence
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Table 1. Average SDR improvements, SIR improvements and Violin ———+— Clarinet :--3%---
SARs with standard errors obtained with the proposed algorithms ( Saxophone Bassoon i

SNMFwSFandIS-SNMFwSJand the shifted NMFsI{SNMF and 11

IS-SNMH. 10

SDR SIR g°

Algorithm . . SARs = 8

improvements improvements g 7

I-SNMFwWSF 5 6

>

(06,10 101) 6.01+058 1106+1.09 3.91+0.64 S s

IS-SNMFWSF E 4
477+02 +0.4 46 0.

(10.06) £029 898+040 346+ 050 % 3

I-SNMF “ 2

(10.04) 396+044 958+069 179+0.85 1

IS-SNMF ‘ 20 40 60 80 100 120 140 160 180 200
(04.10) 281+051 600+0.61 4.09+0.94 SNMF o

Fig. 22 Average SDR improvements and standard errors obtained
criterion) I-SNMFwSF(IS-SNMFwSFrespectively). For compari- Wwith the proposed algorithm-SNMFwSH and I-SNMF for each
son, we employed shifted NMF with the | divergence criteribn ( musical instrument. “SNMF” correspondsIitSNMF.

SNMB and that with the IS divergence criterici¢SNMF. While
the original shifted NMF [2] does not contain any terms inducing the
sparsity of parameters, we found tia{(U) improved SDRs inthe  goyrce separation accuracy in the CWT domain.
experiment and we here us&d(U). _ We also conducted an experiment to examine tiieceof N of

The experimental data was the Bach10 dataset [24], which coRne proposed algorithms. Fig. 2 displays average SDR improvements
sists of audio recordings of ten four-part chorales by J. S. Bach. Eacind standard errors obtained witBNMFwSFandI-SNMFEfor indi-
recording is a mixture of violin, clarinet saxophone and bassoon pekjgual musical instruments, where each algorithm ran with the same
formances, which correspond to the soprano, alto, tenor and bagg(ain) y(test) a5 in the abovel-SNMFwSFwith 100 < N < 160
parts of each musical piece, respectively. Audio recordings of indiproyided significantly higher SDR improvements for all musical in-
vidual parts are also contained in the dataset. All recordings wergyryments compared 16SNMF. We found that the bedt was dif-
monaural and downsampled to 16 kHz. Magnitude spectrogramgrent for each musical instrument, and so exploring the Kesbr

were computed with the fast approximate CWT algorithm [25, 26].other musical instruments and classifying them may be required for
The center frequencies ranged from2fd 7902 Hz with 1003 cent  practical use.

interval and the log-normal wavelet [27] was used as an analyzing
wavelet. The wavelet has a Gaussian shape with a common variance
in the log-frequency domain, and we set a parameter corresponding 5. CONCLUSION

to the standard deviation of the Gaussian as a one fifth of a semiton%_ . .
interval. This paper has developed a new source separation method by in-

We first trainedS andW of the proposed models and basis Spec_corporating the source-filter model into sh_ifted NMF. With the pro-
tra of the shifted NMFs with the audio recordings of individual posed_mc_)del, the_observed spectrogram Is re_pre_sented by a prod_uct
parts of the five musical pieces (training data), and then performegf exc_ltatlon_and f!lter spectrograms._The excitation spectrogram is
source separation on the audio recordings of the other five mus _escrlbed with shn‘ted. NMF to explon the constant |nter-harmon|c
cal pieces (test data). With the proposed algorithms, a pair of pacings of a harmonl_c structure in the log-frequency domain, and
source excitation and a filter was trained for each instrument, antj'® flltgr spectrogram is modeleq by_NMF_D to represent tem_poral
a total of four pairs of a source and a filter were used for the sep Jlynamics of timbre. We have derived iterative algorithms of estimat-

ration. With the shifted NMFs, one basis spectrum was assigned gparameters for the objective functions using the | divergence and

each instrument and a total of four basis spectra were used for t divergence criterions bas_ed on the auxiliary function ‘?‘ppfoaCh-
have experimentally confirmed that the proposed algorithms out-

separation. For each test data, we designed a soft time-frequen - . .
mask a§(|,mk,,/x|,m to obtain separated audio signals of the sourcesP rformed _Sh'ﬂed NMFS in the accuracy ozfpc))urce separation. In fu-
The proposed methods and the shifted NMFs ran for 100 iteraldre we will examine theféect of settingM > 1 to the source
tions both in the training and test stages. &% or o), we use separation accuracy.
@) = 10x 1071°,0.2,0.4,0.6,0.8,1.0 for the training data and
o) = 1.0x 10719,0.2,0.4,0.6,0.8, 1.0 for the test data. The other
parameters were set as follova? = 809 = 1.0x 1070, M(@P) = 1,
N =140,y = n/(2N - 2) andp, = an/(N-1) forn=10,--- ,N-1.
Table 1 shows SDR improvements, SIR improvements and SARs
obtained with all algorithms for all data. SDRs, SIRs and SARs were
computed with the BSSEval toolbox [28]. The pairs of two values
below the algorithm names are{@", (%), which provided the
highest average SDR improvement for each algorithm. These results
show that the incorporation of the source-filter model improves the
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