CONVERGENCE-GUARANTEED MULTIPLICATIVE ALGORITHMS FOR
NONNEGATIVE MATRIX FACTORIZATION WITH  B-DIVERGENCE

Masahiro Nakanb, Hirokazu Kameokl Jonathan Le Roux Yu Kitand, Nobutaka Onb, Shigeki Sagayania

fGraduate School of Information Science and Technology, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
INTT Communication Science Laboratories, NTT Corporation,
3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan

ABSTRACT gence is not guaranteed in general.

Another way to derive optimization algorithms for NMF
is through a statistical approach. The minimization gf-a
divergence can indeed be shown to be equivalent, for spe-
cific gs, to a Maximum-Likelihood (ML) estimation prob-
lem, due to the reproductive properties of some probabilis-
tic distributions. Update equations for NMF with EUC dis-
tance (3 = 2), KL divergence § = 1) and IS divergence
(6 = 0) have been obtained under this framework in [13]
based on the expectation maximization (EM) algorithm. Al-
though convergence to a stationary point is then guaranteed,
this approach is currently limited to the casges 0, 1, and
1. INTRODUCTION 2.

This paper presents a new multiplicative algorithm for non-
negative matrix factorization witl#-divergence. The de-
rived update rules have a similar form to those of the con-
ventional multiplicative algorithm, only differing through
the presence of an exponent term depending.ofhe con-
vergence is theoretically proven for any real-valgdohsed

on the auxiliary function method. The convergence speed
is experimentally investigated in comparison with previous
works.

This paper proposes a new multiplicative algorithm for
Nonnegative matrix factorization (NMF) [1] has recently NMF with S-divergence, for which the monotonic decrease
become a very popular technique in signal processing, andof the objective function at each iteration is theoretically
has been succesfully applied to various problems such agjuaranteed for al3. The derivation of this algorithm is
source separation [2, 3, 4], feature extraction, music tran-based on the careful design of a so-called auxiliary func-
scription [5] or dimension reduction. Given a nonnegative tion [10] for each term of the objective function.
matrix Y, the goal of NMF is to find two nonnegative ma- The remainder of this paper is organized as follows. We
tricesH andU such thaty ~ HU. To measure how close  will first briefly review the formulation of NMF withs-
Y andHU are, the Euclidean (EUC) distance, the gener- divergence in Section 2, and give a survey of the previous
alized Kullback-Leibler (KL) divergence and the Itakura- methods in Section 3. We will then derive the proposed
Saito (IS) divergence are often chosen. The three of themmultiplicative algorithm in Section 4, and finally present in
are enclosed in the more general framework-afivergence  Section 5 basic experimental results validating our method
[6, 7]. Since the choice of an appropriate divergence de-and comparing it to previous works.
pends on the application and the data [2, 8, 9], an algorithm
stable for a wide range gf is desired. 2. NONNEGATIVE MATRIX FACTORIZATION

Multiplicative gradient descent [7, 10] is one of the most WITH B-DIVERGENCE

popular approaches for NMF witb-divergence. A proof of
the convergence of the algorithms for= 2 (EUC distance)  Gjyen a matrixy = (You)axr € RZ02XT and an integer
andj = 1 (KL divergence) was given in [10], and it has i NMF is the problem of finding a factorization:
been extended td < 8 < 2 [11]. However, convergence
for 3 < 1 andg > 2 remains to be proven. A generalized Y ~ HU, (1)
multiplicative algorithm, which introduces an exponent step
size, has also recently been proposed in [12], discussing irwhereH = (H,, x)axx € RZ%*K andU = (Uy;)kxr €
particular the local and stable convergence, in the sense ofR=%5*T" are nonnegative matrices of dimensidds< K
Lyapunov’s theory, of this algorithm when initialized in a and K x T, respectively. K is usually chosen such that
given neighborhood of a local minimum. However, conver- QK + KT < QT, hence reducing the data dimension. This



problem can be formulated as the minimization of an objec- the objective function will be decreasing if the coefficients

tive function

DY [HU) =3 d(Yor | D Hoplis), ()
w,t k

whered is a scalar divergence.
A common way to measure how closeandHU are is
to use a so-called-divergence [14], defined by
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It can be shown to be continuous in termsdothrough the
following identities:
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1w,k are all set equal to a sufficiently small positive number,
as this corresponds to the conventional gradient descent. If
we now set

Hw,k (5)
Nw,k = — 3
S () HopUt)” ™ Uk
we obtain the following update rule fd{,, ;:
Y, Ho U )’ 72U
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A similar update rule can be obtained 0 .. Altogether,
the algorithm can be summarized as follows:
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where the symbol and the fraction bar denote entrywise

matrix product and division respectively, and the exponen-
tiations are also performed entrywise. Nonnegativity of the

: (8)

~ The choice ofj should be driven by the type of data be- - h3rameters is preserved through the updates, provided they
ing analyzed and the application considered. In the NMF- 2.« initialized with nonnegative values.

related literaturei = 1 is for example often used for sound
source separation [2], whil§ = 0.5 is used for the es-
timation of time-frequency activations [8] antl = 0 for
multipitch estimation [9]. How to choose for multipitch

The convergence of the conventional multiplicative up-
dates have been proven only for< g < 2, i.e, when
dg(y|z) is convex w.r.tz [10, 11].

estimation and musical source separation is discussed in [5]

and [3], respectively.

3. CONVENTIONAL ALGORITHMS

3.1. Multiplicative algorithms

The multiplicative gradient descent approach [10, 7] con-
sists in updating each parameter by multiplying its value at

the previous iteration by a certain coefficient. Here,dlet
denote the set of all parameteld., 1 )axx, (Uk.t) kK x1}-
The derivative with respect t,, ;, of the objective function

Tp(0) = >0 ds (Yot| 2ok HokUp) is
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Considering the following simple additive update 8y, .,
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Hw,k — Hw,k: -1
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3.2. EM-based algorithms

In [13], NMF with EUC distance § = 2), KL divergence
(8 = 1) and IS divergenceA = 0) is shown to be implicit
in the following generative model of superimposed compo-

nents,
YwA,t = E Cw,t,k:~
k

The component§’,, ; ;. act as latent variables and may be
used as complete data in the EM algorithm. We briefly
review here the update rules obtained through this method
successively fof = 2, 3 =1 andg = 0.

9)

3.2.1. EUC-NMF

NMF with EUC distance § = 2) is equivalent to con-
strained ML estimation for the generative model (9) with

2o?\ — 3% 1 K
Cot e~ ( % ) “exp (— §(Cw,t,k —Hw,kUk,t)Qﬁ)-
(10)
“Constrained” means here that the parametéendU are
estimated under the assumption that they are non-negative.



Thereby, the following update rules are obtained based on
the EM algorithm:
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3.2.2. KL-NMF

NMF with the generalized KL divergencg & 1) is equiv-
alent to ML estimation for the model (9) with

(Hyy 3 Ug ¢)Cortor
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wherel" denotes the Gamma function. Thereby, the follow-
ing update rules are obtained based on the EM algorithm:
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which coincide with the classical multiplicative updates.

3.2.3. IS-NMF

NMF with IS divergence § = 0) is equivalent to con-
strained ML estimation for the model (9) with

Cootte ~ |THo 1 U t) ™" exp (—|Cu et || Hoo 1 Uit

17)
Thereby, the following update rules are obtained based on

the EM algorithm:
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4. NEW MULTIPLICATIVE ALGORITHMS

We consider the following optimization problem:

Minimize J3(0) = >_,, ; dg (Yo,t| >op Huo kUk,t)
subjectto Vw,k,H, 1, >0, Vk,t,Up: > 0,

wheref denotes the s€{(H,, x)ax i, (Uk,t) k x7} of all pa-

rameters. The main result of this paper can be summarized
in the following

Theorem 1. The objective functiof¥z(#) is non-increasing
under the following updates:

(Y . (HU)sz)UT v(B)
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with

1/2-p) (B<1)

p(B) =41 (1<p<2). (24)
1/(6=1) (8>2)

The proof of the above theorem will be based on the aux-
iliary function approach, similarly to [10]. In the follow-
ings, we first explain the principle of the auxiliary function
method. Next, we prepare Lemma 1 and Lemma 2 for the
construction of an auxiliary function. Lemma 3 gives an
auxiliary function of the objective functiofz(6). Finally,
Theorem 1 is proven based on the principle of the auxiliary
function method and Lemma 3.

Let us first briefly review the concept of this approach.
Let G(#) denote an objective function to be minimized w.r.t.
a parametef. A function G+ (6, §) which satisfies

G(f) = min G*(6,6) (25)
6
is then called an auxiliary function f#(¢), andd an auxil-
iary variable. The functioriz(6) is non-increasing through
the following iterative update rules:

Hls+1) (26)

(27)

«—argmin; G+ (00, 0),
0+ — argmin, G (6, 0+Y),
wherefs+1) andg(=+1) denote the updated valuesténd
0 after thes-th step. Then by construction, we have
GOP)) = GH (), 00))
> G+(9(S), é(erl))
> G, ) =

GOBTY).  (28)



This proves thatz(6) is non-increasing. By iteratively up- If 3 now satisfies? < 1, we apply Lemma 2 and obtain
datingd andd, G(6) will thus converge to a stationary point.  the following inequality for the second term:
The auxiliary function will be suitably designed depend- 1 s

ing on the value of3. For 3 such thatl < 3 < 210, 11], *<ZHw,kUk,t)

such an auxiliary function can be constructed thanks to the s &

following lemma, refered to as Jensen’s inequality: 78
< 2001 (Y HowUss = Zus) + e

k

Lemmal. Let f : R — R be a convex function. X (k =
1,2,-- -, K) satisfiesvk, A\, > 0and)_, A\ = 1, then for

rp(k=1,2,-- K) €R, We defineRffz(G, 6) as the right-hand side of Eq. (34). The
x equality holds when
PO o) < DoMF()- (29)
k k k Zw,t = ZHw,kUk,t' (35)
Equality holds when\, = x/ >~ xy. k

Note that minimizing the auxiliary function obtained thr- - e thatQ(ﬂz(Q 6) = R(ﬂz (0,0) wheng = 1.

ough the above lemma then leads to update equations which The foIIoWing inequalities for the third term can be de-
are none other than the classical multiplicative update equayied similarly:

tions. However, Jensen’s inequality cannot be applied to

8 < 1landg > 2, becauselz(y|z) is then not convex w.r.t. 1 0.U B-1

x. We are going to alleviate this problem by decomposing 3 —1 ( Z w,k ’”)
the objective function into several terms which are going F .
to be either convex or concave depending on the value of —fot_l)(& 0) (B<2)
G, and then use adequate inequalities to build an auxiliary B=1),p 2 :
function. Indeed, if we write the objective function as —Ruy 70,0) (622)

(36)

38 . .

1 1 The equality holds when, ; , and Z,, ; satisfy Eq. (33)
Jp(0) = 36-1) d Yo+ 3 > (Z Hw,kUk,t> and Eq. (35).
w,t w,t k

We can deduce the following lemma from the above.

B-1
_ ﬁ Z Yot (Z Hw7kUk’t> ., (30) Lemma 3. The function
w,t k
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we can see that, with respect to each parameter, the second
term is convex for3 > 1 and concave fof3 < 1, while

the third term is convex fof < 2 and concave fop > 2. where
To cope with concave terms, as in [15, 4], we shall use the 5
following lemma: Surt (6,6)
Lemma 2. Let f : R — R be a continuously differentiable R 0,0) - v,, 0% 1 0,0) (B<1)
and concave function. Then, for any point ’ ) o A
= 1QU06.6) - v,,Q0 7V (0.0) (1<B<2). (39)
@) < f()@ = 2) + 1(2): (31) o o
Quit(0,0) =Y, RS, (0,0) (8>2)
If 3 satisfies6 > 1, Lemma 1 leads to the following
inequality for the second term: is an auxiliary function for7s(6). J; (6,0) is minimized

s 5 w.rt.  whend satisfies Eq. (33) and Eq. (35).
L S HowlUni| < 1 3A <HW*’“U’”> (32)
B\4 whEkE ] =3 p SRR T Aotk ’ Proof of Lemma 3. Eq. (32) and Eq. (34) show that

whereVk, A\, . x > 0and>, A,.x = 1. Letd denote Tp(0) < T (6,0). (39)

the set of auxiliary variable§ A\, ¢ k) oxTx i, (Zw.t)axT}

whereZ,, ; € R will be used later on. We defir@ffﬁ(e, é)
as the right-hand side of Eqg. (32). The equality holds when

The equality holds whed satisfies Eg. (33) and Eqg. (35).

Thus, Eq. (33) and Eq. (35) minimize& (6, 0) w.r.t. 6. O
We are now ready to prove Theorem 1.

H, 1 U+ Proof of Theorem 1 Lemma 3 gives us an auxiliary func-

Aw itk = S Ho kUt (33) tion of J3(¢). According to the principle of the auxiliary



function method, we need to prove that minimiziﬁg(e, 0)

w.r.t. 6 andd iteratively lead to the update rules, Eq. (22)
and Eq. (23). R
First, we focus on minimizing]J(@,@) w.rt. 8. The

derivative of.7; (6, f) w.rt. H, 1, is

075 (0,0)

T Vs(0) — Ws(0), (40)

> 207 Uyt (B<1)
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The second derivative is
0275 (0.0)

—_— / —_— ! ’ ’
Ay~ PO = WO uwrbir, (43

whered; ; is 1 if i = j, otherwise 0 and

s 0 (B<1)
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s JB=2H S ALY, UL (B<2)
Wi(0) = {0 652

Thus,jg(e,é) is a convex function iH. Setting the first
derivative to zero, we obtain the update rule fy j:

1
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(44)
U can be discussed similarly.

Next, we consider the auxiliary variablés Eg. (33)
and Eq. (35) minimize7, (0,0) w.rt. 0. Thus, minimiz-
ing Eq. (33) and Eg. (35) into Eqg. (44) gives the following
update rule:

_ »(B)

Zt Yw,t (Zk} Hw,kUk,t)ﬂ 2 Uk,t
Et (Zk Hw,kUk,t)B_l Uk,t

The update rule fot/;, , can be obtained similarly. The up-

date rules foH andU can be simply rewritten as Eq. (22)
and Eq. (23). O

Hw,k — Hw,k <
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Fig. 1. Evolution in log-log scale of the objective function
with 8 = 0.

5. EXPERIMENTS

The convergence speed is compared with existing algorithms.
The classical multiplicative algorithm for NMF will be de-
noted as “MU", the EM-based algorithm as “EM”, and the
proposed multiplicative algorithm based on the auxiliary
function method as “AUX”. NMF is often applied to anal-
ysis of audio signals. Here, we use as input data matrix
the magnitude spectrogram of 8 second length music sig-
nal (generated from RWC-MDB-P-2001 No.25 [16]) down-
mixed to monaural and downsampled to 16kHz. It was com-
puted using the short time Fourier transform with a 32 ms
long Hanning window and with 16 ms overlap.

We compared the performances of all the algorithms for
three different values of, namelys = 0,0.5,2. Fig. 1
shows the results faf = 0. In this case, EM is the slow-
est and MU the fastest, while AUX is slightly slower than
MU. As shown in Fig. 2, for = 2, AUX (which is then
equivalent to MU) is again faster than EM. Finally, the re-
sults for3 = 0.5 are shown in Fig. 3. In all cases, MU is
slightly faster than AUX, however, the convergence of our
algorithm is theoretically proven.

6. CONCLUSIONS

In this paper, we proposed a convergence-guaranteed mul-
tiplicative algorithm for NMF with3-divergence. The form

of the updates is similar to that of the conventional multi-
plicative algorithm but with a different exponent term. We
confirmed through basic experiments that the proposed al-
gorithms converge faster than EM algorithms. Future work
willinclude the extension of our auxiliary function approach
to the stable algorithms for constrained NMF methods which
have objective function and penalty terms, such as sparsity
or smoothness.
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Fig. 2. Evolution in log-log scale of the objective function
with § = 2. MU is equivalent to AUX.
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Fig. 3. Evolution in log-log scale of the objective function
with 3 = 0.5.
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