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Abstract
A maximum likelihood parameter trajectory estimation based
on a Gaussian mixture model (GMM) has been successfully
implemented for acoustic-to-articulatory inversion mapping. In
the conventional method, GMM parameters are optimized by
maximizing a likelihood function for joint static and dynamic
features of acoustic-articulatory data, and then, the articulatory
parameter trajectories are estimated for given the acoustic data
by maximizing a likelihood function for only the static features,
imposing a constraint between static and dynamic features to
consider the inter-frame correlation. Due to the inconsistency
of the training and mapping criterion, the trained GMM is not
optimum for the mapping process. This inconsistency problem
is addressed within a trajectory training framework, but it be-
comes more difficult to optimize some parameters, e.g., covari-
ance matrices and mixture component sequences. In this paper,
we propose an inversion mapping method based on a latent tra-
jectory GMM (LT-GMM) as yet another way to overcome the
inconsistency issue. The proposed method makes it possible
to use a well-formulated algorithm, such as EM algorithm, to
optimize the LT-GMM parameters, which is not feasible in the
traditional trajectory training. Experimental results demonstrate
that the proposed method yields higher accuracy in the inversion
mapping compared to the conventional GMM-based method.
Index Terms: Gaussian mixture model, inversion mapping, la-
tent trajectory model, EM algorithm, inter-frame correlation

1. Introduction
Speech can be characterized not only by the acoustic spec-
trum of the vocal tract but also by the more slowly vary-
ing parameters, such as articulatory movements [1]. Indeed,
utilization of underlying articulatory movements from speech
sounds has been studied in many applications, e.g. speech
analysis/synthesis [2, 3], speech coding [4], speech recognition
[5, 6], speech pathology [7, 8], speech visualization [9, 10], etc.
Hence, the need of a robust system to convert acoustic data into
articulatory data, so called inversion mapping, grows rapidly.

Lately, the advancement in recording devices that enable
a simultaneous recording procedure of acoustic-articulatory
data has been inducing many works on statistical methods of
acoustic-to-articulatory inversion mapping. Codebook based
inversion mapping has been proposed in [11, 12]. Moreover, in
[12], it has been reported that the accuracy of inversion mapping
is significantly improved by introducing dynamic constraints.
Neural network based inversion mapping has been proposed in
[13], stating the importance of multiple mixtures of probabil-

ity density of articulatory parameters. Hidden Markov model
(HMM) based inversion mapping has been proposed in [14],
incorporating dynamic constraints and also linguistic contexts.

In this paper, we focus on the study of Gaussian mixture
model (GMM) based inversion mapping [15], capable of repre-
senting multiple mixtures of probability density and incorporat-
ing dynamic constraints without textual input. Albeit, in terms
of dynamic constraints, this method bears an inconsistency is-
sue. In its training phase, the model parameters are optimized
with respect to the likelihood of joint static and dynamic fea-
tures of acoustic-articulatory data. While in the mapping phase,
given a sequence of acoustic parameters, a sequence of articula-
tory parameters is estimated with respect to the conditional like-
lihood of their static features, where the inter-frame correlation
is considered by imposing a constraint between static and dy-
namic features. Because of the inconsistency of optimized fea-
ture space between the training and mapping phases, the trained
GMM is not optimum for the mapping phase.

To overcome this inconsistency problem, a trajectory train-
ing method has been proposed, known as the trajectory HMM
[16]. To train the trajectory model, optimization is performed
with respect to the likelihood of the static features of the train-
ing data. This likelihood is obtained by imposing a constraint
between static and dynamic features, making it possible to in-
corporate inter-frame correlation in the training phase. It has
been reported that this method can be further extended to in-
corporate additional constraints, e.g. global variance [17] and
modulation spectrum [18]. However, in this standard trajec-
tory training method, it is somewhat difficult to optimize several
model parameters, e.g. 1) it is not straightforward to optimize
the covariance matrices due to the difficulties of obtaining their
analytical ML estimates and 2) it is basically difficult to include
all possible mixture component sequences or even to decide the
best mixture component sequence to maximize the likelihood.

In this paper, as an alternative approach for solving the in-
consistency issue, inspired by the latent trajectory HMM [19],
we propose a novel inversion mapping method based on latent
trajectory GMM (LT-GMM). In the proposed method, a time
sequence of joint static and dynamic features is treated as a la-
tent variable, while a time sequence of static features is treated
as an observed variable. A likelihood function of the observed
variable is obtained through marginalizing out the latent vari-
able by imposing a soft constraint between static and dynamic
features. Based on such likelihood function, parameters are eas-
ily optimized by using the EM algorithm. Experimental results
indicate that the proposed LT-GMM gives higher accuracy for
the inversion mapping compared with the conventional GMM.
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2. Conventional GMM-based
acoustic-to-articulatory inversion mapping

Let us assume a time sequence of Dx-dimensional static
acoustic feature vectors as x = [x>1 , · · · .x>T ]> and that
of Dy-dimensional static articulatory feature vectors as y =
[y>1 , · · · ,y>T ]>. At frame t, a 2Dx-dimensional acoustic
feature vector is denoted as Xt = [x>t ,∆x

>
t ]>, a 2Dy-

dimensional articulatory feature vector is denoted as Y t =
[y>t ,∆y

>
t ]>, where ∆xt and ∆yt denote the dynamic fea-

ture vector of acoustic parameters and that of articulatory pa-
rameters, respectively, and their joint feature vector is denoted
as Zt = [X>t ,Y

>
t ]>. Then, time sequences of acoustic fea-

ture vectors, articulatory feature vectors, and their joint fea-
ture vectors are denoted as X = [X>1 , · · · ,X>T ]>, Y =
[Y >1 , · · · ,Y >T ]>, and Z = [Z>1 , · · · ,Z>T ]>, respectively.

2.1. Training phase

The joint probability density of the acoustic and articulatory
feature vectors is modeled by a GMM as follows:

P (Z|λ(Z)) =

T∏
t=1

M∑
m=1

αmN (Zt;µ
(Z)
m ,Σ(Z)

m ), (1)

where the Gaussian distribution with mean µ and covariance Σ
is denoted as N (·;µ,Σ). The mixture component index is m.
The total number of mixture components is M . The weight of
the mth mixture component is αm. The set of GMM parame-
ters is λ(Z), consisting of weights, mean vectors and covariance
matrices of all mixture components. The mean vector µ(Z)

m and
covariance matrix Σ

(Z)
m of themth mixture component are writ-

ten as

µ(Z)
m =

[
µ(X)

m

µ(Y )
m

]
,Σ(Z)

m =

[
Σ

(XX)
m Σ

(XY )
m

Σ
(Y X)
m Σ

(Y Y )
m

]
, (2)

where the mean vectors of the acoustic parameters and that of
the articulatory parameters for the mth mixture component are
denoted as µ(X)

m and µ(Y )
m , respectively. The covariance ma-

trices of the acoustic parameters and that of the articulatory pa-
rameters for themth mixture component are denoted as Σ(XX)

m

and Σ
(Y Y )
m , respectively. The cross covariance matrices of the

acoustic and the articulatory parameters for the mth mixture
component are denoted as Σ

(XY )
m and Σ

(Y X)
m . These model

parameters are optimized with EM algorithm [20].

2.2. Mapping phase

In the conventional GMM-based mapping, given an acoustic pa-
rameter sequence X , the estimated articulatory parameter se-
quence ŷ is determined as follows:

ŷ = arg max
y

P (Y |X,λ(Z)), s.t. Y = W yy, (3)

where W y is a transformation matrix to expand a sequence of
static feature vectors into its sequence of joint static and dy-
namic feature vectors. The ML estimate can be determined with
EM algorithm [15].

In this paper, an approximation of the above conditional
probability density is employed by using a single mixture com-
ponent sequencem = {m1, · · · ,mT }. First, the sub-optimum
mixture component sequence m̂ is determined as follows:

m̂ = arg max
m

T∏
t=1

P (mt|Xt,λ
(Z)). (4)

Then, the estimated articulatory parameter sequence ŷ is deter-
mined as follows:

ŷ = arg max
y

P (Y |X, m̂,λ(Z)), s.t. Y = W yy, (5)

where the ML estimate can be analytically determined [21].
Note that, in this mapping phase, the inter-frame correlation

is taken into consideration, thanks to the usage of the constraint
between static and dynamic features, i. e. Y = W yy. On
the other hand, this constraint is neglected while optimizing the
GMM parameters in the training phase.

3. Proposed LT-GMM-based
acoustic-to-articulatory inversion mapping

Let the observed variable be a time sequence of joint static fea-
ture vectors z = [z>, · · · ,z>T ]>, where zt = [x>t ,y

>
t ]>, and

the latent variable be a time sequence of joint static and dynamic
feature vectorsZ. The observed and latent variables are related
through a soft constraint as follows:

Z 'Wz = [W x,W y][x>,y>]>. (6)

Employing the above soft constraint, the conditional prob-
ability density of the latent variable Z given the observed vari-
able z is written as

P (Z|z,Σ) = N (Z;Wz,Σ)

∝ exp

{
−1

2
(Z −Wz)>Σ−1(Z −Wz)

}
, (7)

where its covariance matrix (Σ = diag [Σx,Σy]) represents
the variations of margin errors, compensating the soft con-
straint. By completing the square in the exponent of the above
pdf, the conditional probability density of the observed variable
z given the latent variable Z is written as

P (z|Z,Σ) = N (z;Λ−1W>Σ−1Z,Λ−1), (8)

where
Λ = W>Σ−1W . (9)

3.1. Training phase

The joint probability density of the acoustic and articulatory
feature vector sequences is modeled by an LT-GMM as follows:

P (z|λ(z)) =

∫
P (z|Z,Σ)P (Z|λ(Z))dZ, (10)

where λ(z) is the set of LT-GMM parameters, consisting of the
covariance matrix Σ and model parameters λ(Z). Note that the
covariance matrix Σ depends on only dimension of Zt, i. e. in-
dependent of both time frames and mixture components. The
model parameters can be optimized with variational EM algo-
rithm [19].

In this paper, an approximation of the above joint pdf is em-
ployed by using the sub-optimum mixture component sequence
m̂. The approximated joint pdf is then written as follows:

P (z|m̂,λ(z)) =

∫
P (z|Z,Σ)P (Z|m̂,λ(Z))dZ

=

∫
N

([
z
Z

]
;

[
µ

(z|Z)
m̂

µ
(Z)
m̂

]
,

[
Σ

(zz)
m̂ Σ

(zZ)
m̂

Σ
(Zz)
m̂ Σ

(ZZ)
m̂

])
dZ, (11)
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where the mean vectors are written as

µ
(z|Z)
m̂ = Λ−1W>Σ−1µ

(Z)
m̂ , (12)

µ
(Z)
m̂ =

[
µ

(Z)>

m̂1
, · · · ,µ(Z)>

m̂T

]>
, (13)

and the covariance matrices are written as

Σ
(zz)
m̂ = Λ−1W>(Σ−1 + Σ−1Σ

(ZZ)
m̂ Σ−1)WΛ−1, (14)

Σ
(zZ)
m̂ = Λ−1W>Σ−1Σ

(ZZ)
m̂ , (15)

Σ
(Zz)
m̂ = Σ

(ZZ)
m̂ Σ−1WΛ−1, (16)

Σ
(ZZ)
m̂ = Σ

(Z)
m̂ = diag

[
Σ

(Z)
m̂1
, · · · ,Σ(Z)

m̂T

]
. (17)

Using the likelihood in Eq. (10), we maximize an auxiliary
function defined as

Q(λ(Z), λ̂
(Z)

)

=

∫
P (Z|z,λ(z)) log

[
P (z|Z,Σ)P (Z|λ̂

(Z)
)
]
dZ. (18)

Considering both the terms that depend on only the model pa-
rameters λ(Z) and the use of the sub-optimum mixture compo-
nent sequence m̂, the auxiliary function can be written as

Q(λ(Z), λ̂
(Z)

) ∝
∫
P (Z|z, m̂,λ(z)) logP (Z|m̂, λ̂

(Z)
)dZ

= −1

2

T∑
t=1

log
∣∣Σ̂(Z)

m̂t

∣∣+ tr
(
Σ̂

(Z)−1

m̂t
Rt

)
− r>t Σ̂

(Z)−1

m̂t
µ̂

(Z)
m̂t

− µ̂(Z)>

m̂t
Σ̂

(Z)−1

m̂t
rt + µ̂

(Z)>

m̂t
Σ̂

(Z)−1

m̂t
µ̂

(Z)
m̂t
. (19)

In the expectation step (E-step), the expected values of
the latent variable, i.e. r = [r>1 , · · · , r>T ]> and R =
diag [R1, · · · ,RT ], are estimated as follows:

r = E[Z|z, m̂,λ(z)]

= µ
(Z)
m̂ + Σ

(Zz)
m̂ Σ

(zz)−1

m̂

(
z − µ(z|Z)

m̂

)
, (20)

R = E[ZZ>|z, m̂,λ(z)]

= Σ
(ZZ)
m̂ − diag

2D

(
Σ

(Zz)
m̂ Σ

(zz)−1

m̂ Σ
(zZ)
m̂ + rr>

)
, (21)

where diag2D yields a block diagonal matrix with each block
having the size of 2D = 2(Dx +Dy).

In the maximization step (M-step), by maximizing the aux-
iliary function with respect to the updated mean vector µ̂(Z)

m for
the mth mixture component, its ML estimate is given by

µ̂(Z)
m =

1

γm

T∑
t=1

δ(m̂t = m)rt, (22)

and by maximizing the auxiliary function with respect to the up-
dated covariance matrix Σ̂

(Z)

m for the mth mixture component,
its ML estimate is given by

Σ̂
(Z)

m =
1

γm

T∑
t=1

δ(m̂t = m)Rt − µ̂(Z)
m µ̂(Z)>

m , (23)

where the total number of frames γm belonging to themth mix-
ture component is given by

γm =

T∑
t=1

δ(m̂t = m), (24)

mt

Xt

t = 1...T t = 1...T t = 1...T

Conventional GMM Proposed LT-GMM
Training Mapping Training & Mapping

Yt Xt Xt Yt

y x y

mt mt

Figure 1: Simplified graph representations of the training and
the mapping phases for the conventional GMM and the pro-
posed latent trajectory GMM (LT-GMM).

and

δ(m̂t = m) =

{
1, if true
0, otherwise.

(25)

3.2. Mapping phase

In the proposed LT-GMM-based mapping, given an acoustic
feature sequence x, the estimated articulatory feature sequence
ŷ is determined as follows:

ŷ = arg max
y

P (y|x,λ(z)), (26)

where the conditional pdf is written as

P (y|x,λ(z)) =

∫
P (y|Y ,Σ)

∫
P (X,Y |x,λ(z))dXdY . (27)

This ML estimate can be determined with variational EM algo-
rithm.

In this paper, an approximation of the above conditional
pdf is employed by first determining the sub-optimum mixture
component sequence m̂. Then, the estimated articulatory fea-
ture sequence ŷ is determined as follows:

ŷ = arg max
y

P (y|x, m̂,λ(z)), (28)

where the approximated conditional pdf is written as

P (y|x, m̂,λ(z)) =

∫
P (x|Y ,Σ)

∫
P (Y |X, m̂,λ(Z))

P (X|x, m̂,λ(z))dXdY

= N (y;µ
(y|x)
m̂ ,Σ

(y|x)
m̂ ), (29)

where

µ
(y|x)
m̂ = Σ

(y|x)
m̂ W>

y Σ
−1
y µ

(Y |x)
m̂ , (30)

µ
(Y |x)
m̂ = µ

(Y )
m̂ + Σ

(Y X)
m̂ Σ

(XX)−1

m̂

(E[X|x, m̂,λ(z)]− µ(X)
m̂ ), (31)

Σ
(y|x)
m̂ = (W>

y Σ
−1
y W y)−1. (32)

Thus, it is apparent that the ML estimate of the articulatory fea-
ture sequence ŷ is the mean vector of the above conditional pdf,
i.e. µ(y|x)

m̂ , which can be analytically determined.
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Figure 2: Average root-mean-square error of estimated artic-
ulatory data. Numbers in parentheses are optimum number of
mixture components.

Note that, in the LT-GMM, the inter-frame correlation is
well considered in both training and mapping phases by incor-
porating the soft constraint in Eq. (6). Figure 1 shows the differ-
ence of consistency of the training and mapping phases between
the conventional GMM and the proposed LT-GMM.

4. Experimental evaluation
4.1. Experimental conditions

We used a set of simultaneously recorded speech and articula-
tory data provided in MOCHA [22], spoken by a single British
male speaker. The total number of utterances was 460. Speech
data was sampled at 16 kHz. EMA data was used as the articu-
latory data. The frame shift was set to 5 ms.

As the acoustic parameters, we used the 1st through 24th

mel-cepstral coefficients converted from the spectral envelope,
which was extracted at each frame by using STRAIGHT anal-
ysis method [23]. As the articulatory parameters, we used the
14-dimensional EMA data, which were converted to z-scores.
The EMA data represented the movements of seven articula-
tors, i. e. upper lip, lower lip, lower incisor, tongue tip, tongue
body, tongue dorsum, and velum, defined within x- and y- co-
ordinates on the midsagittal plane.

The constant positive-definite matrix Σ was set to the diag-
onal matrix of global variances. A trained model from the con-
ventional GMM was used as an initial model for the LT-GMM
training. In the training phase of LT-GMM, the sub-optimum
mixture component sequence m̂ was initialized using the initial
model and held fixed. In the mapping phase of LT-GMM, the
sub-optimum mixture component sequence m̂ was determined
using also the initial model.

We conducted an objective evaluation by calculating the
root-mean-square errors (RMSEs) and the correlation coeffi-
cients between the estimated articulatory parameters and the
measured ones. The number of training utterances was varied
to 50, 100, 150, 150, 200, 250, 300, 350 and 400. The num-
ber of mixture components was varied to 16, 32, 64 and 128.
Optimum number of mixture components for each number of
training utterances was determined by using the conventional
GMM, as given in both Fig. 2 and Fig. 3. The number of test-
ing utterances was 20.

In order to efficiently perform the training process of LT-

0.66

0.68

0.7

0.72

0.74

0.76

0.78

50 100 150 200 250 300 350 400

A
ve

ra
ge

 C
or

re
la

ti
on

 C
oe

ff
ic

ie
n

t

Number of training utterances

GMM
LT-GMM

(32)

(32)
(64)

(64)
(64)

(64) (128)

(16)

Figure 3: Average correlation coefficient of estimated articu-
latory data. Numbers in parentheses are optimum number of
mixture components.

GMM, we exploited the structure of banded matrix, which is
implied at the huge linear equations in Eq. (20) and Eq. (21).
Specifically, we used the multifrontal massively parallel sparse
direct solver (MUMPS) [24, 25]. The computational time for
training the LT-GMM is about 15 times slower compared to the
conventional GMM.

4.2. Experimental results

Figures 2 and 3 show the average values of the RMSE and that
of the correlation coefficient over all 14 dimensions of estimated
articulatory parameters through all 20 testing utterances. The
proposed LT-GMM method gives lower values than the conven-
tional GMM in terms of average RMSE. The LT-GMM method
gives overall higher values for also the average correlation coef-
ficient compared to the conventional GMM. These results indi-
cate that the proposed LT-GMM method improves the accuracy
of the acoustic-to-articulatory inversion mapping. Such good
performance can be achieved because of the consideration of
the inter-frame correlation while optimizing the LT-GMM pa-
rameters, whereas in the conventional GMM, this consideration
is taken into account only in the mapping phase.

5. Conclusions
This paper presents an acoustic-to-articulatory inversion map-
ping system based on latent trajectory Gaussian mixture model
(LT-GMM). In the proposed LT-GMM method, the consistency
between training and mapping phases is preserved by imposing
a soft constraint between static and dynamic features, where
the inter-frame correlation is taken into account. In the training
phase, the parameters can be conveniently optimized by using
EM algorithm. The experimental results demonstrate that the
proposed LT-GMM method improves the accuracy of the in-
version mapping compared to the conventional GMM. For the
future work, we plan to optimize also the mixture component
sequence and incorporate acoustic segment feature consisting
of multiple frames of input features.
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