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1 Introduction
Gaussian mixture model (GMM)-based statisti-

cal feature mapping method, using trajectory-based
conversion process [1], has been reported to per-
form effectively in an acoustic-to-articulatory inver-
sion mapping task [2]. However, in the training, the
model parameters are optimized with different like-
lihood criterion compared to in the conversion.
To address this inconsistency issue, the trajectory

training method has been proposed [3]. Nonetheless,
it still has several limitations in terms of param-
eter optimization due to the difficulties in finding
analytical solution. Based on the latent trajectory
model [4], in our previous work [5], we have pro-
posed a latent trajectory Gaussian mixture model
(LT-GMM) that is capable of addresing the incon-
sistency issue while allowing convenient parameter
optimization with EM algorithm. However, we still
use an approximation of a fixed suboptimum mix-
ture component sequence to train the model.
In this report, we propose a variational LT-GMM

to allow the inclusion of all possible mixture compo-
nent sequences in training the model. To investigate
the effectiveness of the approximation in our previ-
ous work, we compare the accuracy on the inver-
sion mapping task between the proposed variational
LT-GMM and the LT-GMMs with a suboptimum
mixture component sequence. The experimental re-
sult demonstrates that such approximation resem-
bles the performance of the variational method.

2 Conventional GMM for acoustic-
to-articulatory inversion mapping

Let x = [x⊤
1 , · · · ,x⊤

T ]
⊤ be a time sequence of

Dx-dimensional static acoustic feature vectors and
y = [y⊤

1 , · · · ,y⊤
T ]

⊤ be that of Dy-dimensional
static articulatory feature vectors. At frame t,
2Dx/2Dy-dimensional acoustic/articulatory feature
vectors are denoted as Xt = [x⊤

t ,∆x⊤
t ]

⊤ and
Y t = [y⊤

t ,∆y⊤
t ]

⊤, consisting ofDx/Dy-dimensional
joint static and dynamic features. Their joint vec-
tor is denoted as Zt = [X⊤

t ,Y
⊤
t ]

⊤. Moreover,
their time sequences are written respectively as
X = [X⊤

1 , · · · ,X
⊤
T ]

⊤, Y = [Y ⊤
1 , · · · ,Y

⊤
T ]

⊤, and
Z = [Z⊤

1 , · · · ,Z
⊤
T ]

⊤.
The joint probability density of the acoustic and

articulatory feature vectors is modeled by a GMM
as follows:

P (Z|λ(Z)) =

T∏
t=1

M∑
m=1

αmN (Zt;µ
(Z)
m ,Σ(Z)

m ), (1)
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where λ(Z) is a set of model parameters consisting

of a mixture weight αm, a mean vector µ
(Z)
m and a

covariance matrix Σ(Z)
m for the mth mixture compo-

nent with M total number of mixture components.
These parameters are optimized for training data
with EM algorithm.
In this report, in the conversion process, given an

acoustic feature sequence X, the estimated articu-
latory feature sequence ŷ is determined by

ŷ = argmax
y

P (Y |X, m̂,λ(Z)) s.t. Y =W yy, (2)

where W y is a linear transform to append dy-
namic features to a static feature sequence and
m̂ = {m̂1, . . . , m̂T } is a suboptimum mixture com-
ponent sequence determined as follows:

m̂ = argmax
m

T∏
t=1

P (mt|Xt,λ
(Z)). (3)

3 Variational LT-GMM for the inver-
sion mapping

Let the observed variable be a time sequence
of joint static feature vectors z = [z⊤

1 , · · · , z⊤
T ]

⊤,
where zt = [x⊤

t ,y
⊤
t ]

⊤. The following soft constraint
is used in the LT-GMM:

Z ≃ W zz = [W x,W y][x
⊤,y⊤]⊤. (4)

The joint probability density of the acoustic and
articulatory feature vector sequences is modeled
with an LT-GMM as follows:

P (z|λ) =
∫ ∑

all m

P (z|Z,Σ)P (Z,m|λ(Z))dZ, (5)

where m = {m1, . . . ,mT } is a mixture component
sequence, and

P (z|Z,Σ) = N (z;HZ,Λ−1) (6)

H = Λ−1W⊤
z Σ

−1 (7)

Λ = W⊤
z Σ

−1W z. (8)

A functional lower bound F(q,λ), corresponding
to the log-likelihood of Eq. (5), by following the
Jensen’s inequality, can be written as follows:

F(q,λ) =

∫ ∑
all m

q(Z,m) log
P (z,Z,m|λ)

q(Z,m)
dZ, (9)

where q(Z,m) is a variational posterior distribu-
tion, which is further approximated as follows:

P (Z,m) ≃ P (Z)P (m). (10)
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In the expectation step (E-step), the variational
posterior distribution P (Z) is calculated as follows:

E[Z] = µ(Z) +Σ(Zz)Σ(zz)1(z −Hµ(Z)) (11)

E[ZZ⊤] = Σ(Z) −Σ(Zz)Σ(zz)−1

Σ(zZ), (12)

and the variational posterior distribution P (m) as:

γm,t =
αmN (E[Z]t;µ

(Z)
m ,Σ(Z)

m )Cm,t∑M
n=1 αnN (E[Z]t;µ

(Z)
n ,Σ(Z)

n )Cn,t

(13)

Cm,t = exp
{
− 1

2
Tr(E[ZZ⊤]tΣ

(Z)−1

m )
}
. (14)

Note that, an overline in Eqs. (11) and (12) denote
a sequence of mean vectors or covariance matrices,
where at each time-frame t, they are marginalized
over all mixture components using the occupancy
γm,t. Hence, to optimize these distributions, i.e.,
P (Z) and P (m), the values in one must be kept
while refining the values in the other one.
Then, in the maximization step (M-step), the

model parameters λ are optimized by using the func-
tional lower-bound in Eq. (9) and the approximated
variational posterior distribution q(Z,m).
In the conversion, given an acoustic feature se-

quence x, the estimated articulatory parameter se-
quence ŷ is determined as in [5] by

ŷ = argmax
y

P (y|x, m̂,λ), (15)

where the suboptimum mixture component se-
quence m̂ is given by Eq. (3).

4 Experimental evaluation

4.1 Experimental conditions

A set of speech and articulatory data of a British
male speaker in MOCHA [6] was used. As the acous-
tic parameters, we used the first through 24th mel-
cepstral coefficients extracted using STRAIGHT [7].
As the articulatory parameters, we used the 14-
dimensional EMA data.
The error-covariance matrix Σ was fixed to the

initial values of weighted covariance over all mixture
components. We trained three models of LT-GMM:
with a fixed suboptimum mixture component se-
quence m̂ (LT-GMM fixseq), as in [5]; by updating
the suboptimum mixture component sequence in the
M-step of each iteration (LT-GMM updseq); and
with all possible mixture component sequences, i.e.,
using the variational method, (LT-GMM allseqs).
The trained conventional GMM was used as the ini-
tial model for training the LT-GMMs.

4.2 Experimental results

The result of the experiment is shown in Table 1.
It can be observed that the three LT-GMMs gives
higher accuracy for the inversion mapping compared
to the conventional GMM by yielding lower values
of RMSE and higher values of correlation coeffi-
cient. Furthermore, the LT-GMM with variational

Table 1 Average of root-mean-square error
(RMSE) and correlation coefficient for inversion
mapping using GMM and three models of LT-GMM

Avg. RMSE Avg. Corr.

GMM 1.609 0.756
LT-GMM fixseq 1.554 0.756
LT-GMM updseq 1.554 0.756
LT-GMM allseqs 1.548 0.758

method, i.e., to consider all possible mixture com-
ponent sequences (LT-GMM allseqs), gives slightly
better accuracy than its two counterparts, i.e., by
using a fixed suboptimum mixture component se-
quence (LT-GMM fixseq) and by updating the sub-
optimum sequence (LT-GMM updseq). Specifically,
the observed difference of values between the LT-
GMM allseqs and the other two are 0.006 for the
average RMSE and 0.002 for the average correla-
tion coefficient. This result suggests that, even-
though the variational technique is capable of giv-
ing the best accuracy through exhaustive consider-
ation of all possible mixture component sequences,
the approximation of a suboptimummixture compo-
nent sequence can still rival that performance with
a marginal difference in the accuracy.

5 Conclusion
In this report, we have presented a variational

method for the latent trajectory Gaussian mixture
model (LT-GMM). The variational technique allows
us to optimize the coupled latent variables, i.e., the
sequence of joint static and dynamic features and
the mixture component sequence. The experimental
result demonstrated that by considering all possible
mixture component sequences, i.e., using the varia-
tional method, a marginal improvement was yielded
compared to using only a suboptimum sequence.
This implies that, through the low-cost approxima-
tion of a suboptimum mixture component sequence,
similar performance can be achieved to avoid the
high-cost variational LT-GMM procedure.
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