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Abstract
Preserving the linguistic content of input speech is essential
during voice conversion (VC). The star generative adversarial
network-based VC method (StarGAN-VC) is a recently devel-
oped method that allows non-parallel many-to-many VC. Al-
though this method is powerful, it can fail to preserve the lin-
guistic content of input speech when the number of available
training samples is extremely small. To overcome this prob-
lem, we propose the use of automatic speech recognition to
assist model training, to improve StarGAN-VC, especially in
low-resource scenarios. Experimental results show that using
our proposed method, StarGAN-VC can retain more linguistic
information than vanilla StarGAN-VC.
Index Terms: voice conversion, speech recognition, linguistic
information

1. Introduction
Non-parallel many-to-many voice conversion (VC) is a power-
ful and useful framework for building VC systems [1–3]. VC
is the task of converting the para-linguistic characteristics con-
tained in a given speech signal without changing the linguistic
content (transcription) [4]. Conventionally, most VC systems
have been developed based on a parallel dataset, consisting of
pairs of utterances in the source and target domains reading
the same sentences [4–6]. However, preparing a large-scale
parallel dataset is very expensive, and this poses a potential
limitation to both the flexibility and performance of VC sys-
tems. Recently, non-parallel VC methods have been proposed
and have attracted much attention [7–9]. StarGAN-VC [2] is
a non-parallel many-to-many VC method based on a variant
of the generative adversarial network (GAN) [10] called Star-
GAN [11]. This method is particularly attractive in that it can
generate converted speech signals fast enough to allow real-time
implementation and can generate reasonably realistic sounding
speech even with limited training samples.

In StarGAN-VC, the use of cycle consistency and identity
mapping losses along with adversarial and domain classifica-
tion losses encourages the generator to preserve the linguistic
content of input speech. However, this function can still fail
when the number of available training utterances is extremely
small. In such cases, the linguistic content of converted speech
can often be corrupted, resulting in inaudible speech. Although
non-parallel data are easier to prepare than parallel data, they
can be expensive, as in applications such as emotional voice
conversion [12, 13]. Hence, there is a need for a method that
can overcome this problem that can arise under limited data re-
sources. A possible solution would be to design StarGAN-VC
such that it can make explicit use of linguistic information for
model training.

VC systems may benefit from being used in combination
with automatic speech recognition (ASR) systems owing to the
recent advances in ASR performance. One successful exam-
ple involves the use of phonetic posteriorgrams (PPGs) [14–16].
Similar to the PPG-based approach, the method proposed in this
paper improves the ability of StarGAN-VC to preserve the lin-
guistic content of input speech by using ASR to assist model
training. Specifically, we propose using the ASR results applied
to each training utterance to construct phoneme-dependent reg-
ularization terms for the latent vectors generated from the en-
coder in StarGAN-VC. These penalty terms are derived based
on a Gaussian mixture model (GMM); therefore, the latent
vectors become more phonetically distinct, resulting in more
intelligible speech. We call the proposed method StarGAN-
VC+ASR.

The main contributions of this study are as follows. We
propose a non-parallel many-to-many VC method (StarGAN-
VC+ASR) that combines StarGAN-VC and ASR. We exper-
imentally demonstrate that StarGAN-VC+ASR can produce
more intelligible speech than the original StarGAN-VC.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly introduces StarGAN-VC, which is the basis of the
proposed method. Section 3 describes the proposed method,
StarGAN-VC+ASR. Section 4 describes an experiment that
demonstrates the performance of StarGAN-VC+ASR. Finally,
Section 5 concludes the paper.

2. Preliminaries: StarGAN-VC
StarGAN-VC is based on a model consisting of a generator,
G, real/fake discriminator, D, and domain classifier, C. Let
o ∈ RQ×T be an acoustic feature sequence, where Q is the
feature dimension, and T is the length of the sequence. Let
c ∈ {1, . . . ,N} be a target domain code, where N is the num-
ber of domains. G is a neural network (NN) that takes an
acoustic feature sequence, o, in an arbitrary domain and the
target domain code, c, as inputs and generates an acoustic fea-
ture sequence, ô′ = G(o,c). The network is trained such that
G(o,c) becomes indistinguishable from the real speech feature
sequence in the domain c. This is made possible by using D
and C to train G, whose roles are to discriminate fake samples,
G(o,c), from real samples, o′, and identify the class to which
G(o,c) is likely to belong. Figure 1 shows the overview of
StarGAN-VC training. D is designed to produce a sequence
of probabilities D(o′,c), each of which indicates the likelihood
that a different segment of input o′ is real, whereas C is de-
signed to produce a sequence of class probabilities pC(c|o′),
each of which indicates the likelihood that a different segment
of o′ belongs to a particular class.

For training, StarGAN-VC uses adversarial, cycle consis-
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Figure 1: Concept of StarGAN-VC training. GE and GD repre-
sent the encoder and decoder in G, respectively.

tency, identity mapping, and domain classification losses.
Adversarial Loss: The adversarial losses are defined for dis-
criminator D and generator G as

L D
adv(D) =−Ec∼p(c),o′∼p(o′|c)

[
logD(o′,c)

]
−Eo∼p(o),c∼p(c) [log(1−D(G(o,c),c))] , (1)

L G
adv(G) =−Eo∼p(o),c∼p(c) [logD(G(o,c),c)] , (2)

where o′ ∼ p(o′|c) denotes a training sample of acoustic feature
sequences of real speech belonging to domain c, and o ∼ p(o)
denotes an arbitrary domain. Equation 1 takes a small value
when D correctly identifies G(o,c) as fake and o′ as real. By
contrast, Equation 2 takes a small value when D misclassifies
G(o,c) as real. Thus, the subgoals of D and G are to minimize
Equations 1 and 2, respectively.
Domain Classification Loss: The domain classification losses
for classifier C and generator G are defined as

L C
cls(C) =−Ec∼p(c),o′∼p(o′|c)

[
log pC(c|o′)

]
, (3)

L G
cls(G) =−Eo∼p(o),c∼p(c) [log pC(c|G(o,c))] . (4)

Equations 3 and 4 have small values when o′ ∼ p(o′|c) and
G(o,c) are correctly classified as belonging to domain c by C.
Thus, the subgoals of C and G are to minimize Equations 3 and
4, respectively.
Cycle-Consistency Loss: The adversarial and classification
losses encourage G(o,c) to become realistic and classifiable,
respectively. However, using these losses alone does not guar-
antee that G preserves the linguistic content of the input speech.
To promote content-preserving conversion, the cycle consis-
tency loss

Lcyc(G)

= Ec′∼p(c),o∼p(o|c′),c∼p(c)
[
||G(G(o,c),c′)−o||ρ

]
, (5)

is used, where o ∼ p(o|c′) denotes a training sample of acoustic
feature sequences of real speech belonging to the source domain
c′, and ρ is a positive constant.
Identity-Mapping Loss: To ensure that G keeps its input, o,
unchanged if o already belongs to the target domain, the identity
mapping loss is defined as

Lid(G) = Ec′∼p(c),o∼p(o|c′)
[
||G(o,c′)−o||ρ

]
. (6)
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Figure 2: The network architecture of generator G. In input
and latent features, “h,” “w,” and “c” represent height, width,
and number of channels, respectively. In addition, “k,” “c, ”
and “s” denote kernel size, number of channels, and stride size,
respectively. “Conv,” “Batch norm,” “GLU,” “Deconv,” “Sig-
moid,” “Softmax,” and “Product” denote convolution, batch
normalization, gated linear unit, transposed convolution, sig-
moid, softmax, and product pooling layers, respectively.

The full loss function is given as

IG(G) =L G
adv(G)+λclsL

G
cls(G)

+λcycLcyc(G)+λidLid(G), (7)

ID(D) =L D
adv(D), (8)

IC(C) =L C
cls(C), (9)

λcls ≥ 0, λcyc ≥ 0, and λid ≥ 0 are regularization parameters
that weigh the importance of the domain classification, cycle-
consistency, and identity-mapping losses.

Regarding network architectures, we assume an encoder-
decoder type architecture for G, as shown in Figure 2. The en-
coder is responsible for extracting a speaker-independent latent
feature sequence y, which is expected to correspond to the lin-
guistic content of the input utterance. The decoder, on the other
hand, is responsible for reconstructing an acoustic feature se-
quence using both target domain codes c and y.

3. StarGAN-VC+ASR
Here, we present the idea of StarGAN-VC+ASR. Figure 3 shows
the overview of the StarGAN-VC+ASR training．

3.1. GMM-based phoneme model in latent space

G has an encoder-decoder structure similar to variational au-
toencoders (VAEs) [17]. The encoder part in G is responsible
for extracting a speaker-independent latent feature sequence,
y, corresponding to the linguistic content of the input. Now,
to associate each element of y with the phoneme in the corre-
sponding frame of the input speech, we consider constructing
a prior distribution over y based on the result of applying ASR
to that speech in advance. Let P = {1,2, . . . ,K} denote a set
of phoneme indices, where K denotes the number of phonemes.
In the ASR step, the input is the acoustic feature sequence of
dth utterance, denoted as xd = xd

1:Td
= (xd

1 ,x
d
2 , . . . ,x

d
Td
), where

Td and t denote the frame length and index, respectively. The
ASR output is assumed to be a sequence of phoneme indices
ẑd = ẑd

1:Td
= ASR(xd

1:Td
) of the same length. The encoder part in

G takes the acoustic feature sequence od of the same utterance
as the input and produces a latent feature sequence yd = yd

1:Td
=

(yd
1 ,y

d
2 , . . . ,y

d
Td
). To ensure that the latent features correspond-

ing to the same phoneme are close to each other, we assign a
single Gaussian distribution to each phoneme index and model
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Figure 3: Overview of StarGAN-VC+ASR training

a prior distribution of yd according to ẑd . Given yd and ẑd , the
maximum likelihood estimates of the mean and covariance of
each Gaussian can be obtained as

µp =
1

∑D
d=1 #(Tp(ẑd))

D

∑
d=1

∑
t∈Tp(ẑd)

yd
t , (10)

Σp =
1

∑D
d=1 #(Td(ẑd))

D

∑
d=1

∑
t∈Tp(ẑd)

(
yd

t −µp

)(
yd

t −µp

)T
,

(11)

where p and D denote the phoneme index in P and the number
of training utterances, respectively. Tp(ẑd) denotes the set con-
sisting of t that satisfies ẑd

t = p, and #(·) denotes the number of
elements in a set. In the following, we use µP and ΣP to denote
the sets µP = {µ1,µ2, . . . ,µ#(P)} and ΣP = {Σ1,Σ2, . . . ,Σ#(P)},
respectively.

3.2. Phoneme-dependent regularization loss

The training process of StarGAN-VC+ASR consists of two sta-
ges. The first stage corresponds to the original StarGAN-VC
training described in Section 2. In the second stage, G is up-
dated by using µP and ΣP obtained by Equations 10 and 11 for
regularization. Specifically, we assume

p(yd
t ) = N

(
yd

t | µẑd
t
,Σẑd

t

)
, (12)

as the prior distribution of yd , and define

LASR(G) =−
D

∑
d=1

∑
t

log p(yd
t ) (13)

as the regularization term for the second stage of the training.
Although very simple, this regularization is expected to bring
each element of yd corresponding to the same phoneme closer
to each other.

To summarize, the loss function of the generator in StraGAN-
VC+ASR IG(G) is denoted as

IG(G) =L G
adv(G)+λclsL

G
cls(G)

+λcycLcyc(G)+λidLid(G)

+βLASR(G), (14)

where β ≥ 0 is the hyperparameter that weighs the importance
of the regularization term. In addition to the above, the loss
functions for D and C are the same as those in Equations 8 and
9, respectively.

4. Experiments

4.1. Experimental setup

Dataset: We evaluated our method on a multi-speaker VC task
using an ATR digital sound database [18], which consists of
recordings of five female and five male Japanese speakers. The
spoken sentences were recorded as waveforms and were sam-
pled at 20 kHz. We used a subset of speakers for training and
evaluation. We selected two female speakers, “FKN” and “FTK,”
and two male speakers, “MMY” and “MTK”, resulting in twelve
different combinations of source and target speakers. We se-
lected 24 and 20 sentences for training and evaluation, respec-
tively. Therefore, there were 12×20 = 240 test signals in total.

Conversion process: 36 Mel-cepstral coefficients (MCEPs),
logarithmic fundamental frequency (log F0), and aperiodicities
were extracted every 5 ms using the WORLD analyzer [19]
(D4C edition [20]). In these experiments, we applied the base-
line and proposed methods only to MCEP conversion. The F0
contours were converted by logarithmic Gaussian normaliza-
tion [21]. The aperiodicities were used directly without modifi-
cation. We trained the networks using the Adam optimizer [22]
with a batch size of 8. The number of iterations was set to
2×103, the learning rates for G and D were set to 0.001, and the
momentum term was set to 0.5. We set λcls = 1.0，λcyc = 1.0，
λid = 1.0 following the original paper [2]. We set β = 0.01
empirically.

Implementation details: We used a dictation-kit (version 4.5)1

as the trained ASR system. This package contains executables
of Julius (deep neural network (DNN) version) [23], Japanese
acoustic models (AM), and Japanese language models (LM).
Julius is a high-performance, small-footprint, large-vocabulary
continuous speech recognition (LVCSR) decoder software used
by speech-related researchers and developers. The AM is a
speaker-independent triphone DNN-hidden Markov model (H-
MM) trained using the JNAS and CSJ corpora. It also has re-
gression tree classes that are required for speaker adaptation
by HTK2. The LMs are 60k-word N-gram language models
trained using the BCCWJ corpus. Moreover, we set the dictio-
nary data, which consisted of only utterances of training data,
to improve the accuracy of speech recognition.

1https://osdn.net/dl/julius/dictation-kit-4.5.zip
2Hidden Markov Model Toolkit (HTK), http://htk.eng.cam.ac.uk/
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4.2. Subjective evaluation

We conducted listening tests to analyze the performance of the
proposed method compared to StarGAN-VC [2], which is the
baseline in our proposed method. To measure the consistency
of the linguistic contents of input and converted speech, we used
the character error rate (CER) test as an evaluation metric. CER
evaluates the error rate between the correct sentence and the
sentence written by a listener after listening to the converted
speech. During the CER test, the listeners hear the same ut-
terance of a converted speech twice because they may not be
able to hear the converted speech at once. The first trial is de-
noted as “1st sound,” and the second trial is denoted as “2nd
sound” in Figure 4. To measure naturalness, we conducted a
mean opinion score (MOS) test. During the MOS test, listeners
were asked to rate the naturalness of the converted speech on a
5-point scale. To measure the clarity of linguistic information,
we conducted an AB test. “A” and “B” were the speech con-
verted by the baseline and proposed methods, respectively. For
each sentence pair, the listeners were asked to select their pre-
ferred one, “A,” “B,” or “Fair.” We conducted CER and MOS
tests as in Experiment 1, and the AB test as in Experiment 2.
Ten sentences were randomly selected for Experiments 1 and 2
from 240 synthesized speech signals. Sentences of different ut-
terances were selected between Experiment 1 and Experiment
2. Sixteen well-educated Japanese speakers participated in the
tests.

0 10 20 30 40 50 60 70 80 90 100
Preference score (%)

74.4 18.8 6.8

Proposed Fair Baseline

Figure 6: Results of the AB test for the retention of linguistic
information

Results of Experiment 1: Figure 4 and Figure 5 show the
average CER score for the retention of linguistic information
and MOS for naturalness, respectively. As shown by the re-
sults of the CER test, the proposed method significantly outper-
formed the baseline method in terms of retaining the linguistic
information of both 1st and 2nd sounds. In addition, the MOS
test shows that the proposed method outperformed the baseline
method in terms of naturalness.
Result of Experiment 2: Figure 6 shows the score of the AB
test in terms of the clarity of linguistic information. Based on
the score, the proposed method achieved the highest score in
terms of the clarity of linguistic information.

5. Conclusion
The original StarGAN-VC can fail to preserve the linguistic
content of input speech when the number of training utterances
is very small. To address this issue, in this paper, we pro-
posed StarGAN-VC+ASR, a method that exploits the result of
ASR applied to each training utterance during the training of
StarGAN-VC’s generator. Experimental results showed that
StarGAN-VC+ASR had a better ability to preserve linguistic
contents than the original StarGAN-VC.

In the present experiment, we used a small dataset for train-
ing and showed that our method outperformed StarGAN-VC.
However, as the size of the dataset increases, the performance
of StarGAN-VC is also expected to improve. In the future, we
plan to investigate how the performance of StarGAN-VC and
StarGAN-VC+ASR changes as the size of the dataset increases.

Moreover, to improve the quality of sounds converted by
the proposed method, employing a mel-spectrogram and neural
network vocoder [24–26] instead of the MCEPs and WORLD
analyzer, respectively, can be a future challenge.

In this study, we applied StarGAN-VC+ASR to speaker-
identity voice conversion. However, the application of non-
parallel voice conversion is not limited to speaker-identity voice
conversion. For example, emotional voice conversion is an im-
portant target for voice conversion. The application of StarGAN-
VC+ASR to emotional voice conversion will be our future work.
StarGAN-VC+ASR used phoneme index information as a regu-
larization term. This term improved the clarity of the converted
voice. However, this may reduce the diversity of para-linguistic
expressions in utterances and negatively affect emotional voice
conversion. Validating this point will also be part of our future
work.
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