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ABSTRACT

An important challenge in speech processing involves extracting
non-linguistic information from a fundamental frequency (F0) con-
tour of speech. We propose a fast algorithm for estimating the model
parameters of the Fujisaki model, namely, the timings and magni-
tudes of the phrase and accent commands. Although a powerful
parameter estimation framework based on a stochastic counterpart
of the Fujisaki model has recently been proposed, it still had room
for improvement in terms of both computational efficiency and
parameter estimation accuracy. This paper describes our two con-
tributions. First, we propose a hard expectation-maximization (EM)
algorithm for parameter inference where the E step of the conven-
tional EM algorithm is replaced with a point estimation procedure
to accelerate the estimation process. Second, to improve the param-
eter estimation accuracy, we add a generative process of a spectral
feature sequence to the generative model. This makes it possible
to use linguistic or phonological information as an additional clue
to estimate the timings of the accent commands. The experiments
confirmed that the present algorithm was approximately 16 times
faster and estimated parameters about 3% more accurately than the
conventional algorithm.

Index Terms— voice fundamental frequency contour, Fujisaki
model, prosodic information processing, EM algorithm

1. INTRODUCTION

Various speech recognition and synthesis systems have become
widespread in our daily lives, and the importance of non-linguistic
information in spoken communication has been highlighted in recent
years [1]. Voice fundamental frequency (F0) contours constitute one
of the most important physical entities correlated with socially es-
sential information, such as the speaker’s identity, intention, attitude,
and mood.

An F0 contour typically consists of relatively long-term fre-
quency variations over the duration of a phrase and short-term
variations such as those found in accented syllables. The Fujisaki
model [2] describes a log F0 contour as the sum of these two com-
ponents, which are called phrase and accent components, respec-
tively. These components are modeled as the responses of critically
damped second-order linear systems to impulse and step inputs,
called commands. The basic underlying parameters consist of the
timing and magnitudes of the impulse inputs (phrase commands)
and the onset/offset times and magnitudes of the step inputs (accent
commands).

The Fujisaki model allows us to approximate actual F0 contours
fairly well using a relatively small number of parameters when the
parameters are appropriately chosen and has been applied to various
languages in multiple application areas. Although the parameters are

Fig. 1. HMM generating phrase/accent command functions.

generally difficult to estimate automatically from a raw F0 contour
[3], a powerful parameter estimation framework based on a stochas-
tic counterpart of the Fujisaki model has recently been proposed [4].
This method has been reported to yield reasonably good results by
taking advantages of powerful statistical inference and training tech-
niques for the estimation. However, when we consider the various
applications that must be run in real time or faster under realistic
circumstances, its computational efficiency and accuracy need to be
further improved.

On the basis of the generative model described above, we pro-
pose an efficient algorithm for parameter inference where the E step
of the conventional EM algorithm is replaced with a point estima-
tion procedure. We also propose using spectral information as an
additional clue to accurately estimate the parameters, assuming that
accents appearing in F0 contours are related to linguistic or phono-
logical information. In the rest of this paper, Section 2 describes
the addressed problem, and Section 3 introduces the proposed al-
gorithm. Section 4 reports the experimental results, and Section 5
concludes this paper.

2. GENERATIVE MODEL APPROACH TO
F0 PARAMETER ESTIMATION

2.1. Generative Model of F0 Command Functions

Several researchers have addressed the automatic parameter estima-
tion of the Fujisaki model [3]. Our method is based on the generative
model approach introduced by Kameoka et al. [4]. We briefly review
its framework.

The Fujisaki model assumes that an F0 contour y[t] on a loga-
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Fig. 2. State splitting to flexibly assign probabilities to state dura-
tions.

rithmic scale is given as the sum of three components:

y[k] = xp[k] + xa[k] + µb, (1)

where xp[k] and xa[k] respectively are a phrase component and an
accent component at time frame k, and µb is a constant value. The
phrase and accent components are assumed to be the outputs of dif-
ferent second-order critically damped filters, Gp[k] and Ga[k], ex-
cited with pulse sequence up[k] (phrase commands) and rectangular
pulse sequence ua[k] (accent commands), respectively:

xp[k] = Gp[k] ∗ up[k], (2)

xa[k] = Ga[k] ∗ ua[k], (3)

where ∗ is convolution over time. The key idea of Kameoka’s ap-
proach [4] is that a phrase/accent command pair sequence is modeled
as an output sequence of the path-restricted hidden Markov model
(HMM) with Gaussian state emission densities shown in Fig. 1.

Here the states p0, an(n = 0, · · · , N − 1), and ri(i = 0, 1),
respectively, are states where only the phrase command is being
activated, i.e., µp[k] = E[up[k]] = C(p)[k], µa[k] = E[ua[k]] =
0, only the accent command is being activated, i.e., µp[k] =

0, µa[k] = C
(a)
n , and neither command is being activated, i.e.,

µp[k] = 0, µa[k] = 0. The path constraint shown in Fig. 1
restricts µp[k] = E[up[k]] to consisting of isolated deltas and
µp[k] = E[µa[k]] to consisting of rectangular pulses. Hence,
estimating the state transition of the HMM directly amounts to esti-
mating the Fujisaki-model parameters. Furthermore, we can directly
assign probabilities to the durations of self-transition by splitting
each state (except for p0) into a certain number of sub states, as
shown in Fig. 2. Given a state sequence s = (s0, . . . , sK−1), this
HMM emits o[k] = [up[k], ua[k]]

T according to the Gaussian state
emission density:

o[k] ∼ N (o;ρ[k],Υ), (4)

where ρ[k] = [µp[k], µa[k]]
T and Υ = diag[σ2

p, σ
2
a ].

2.2. Conventional Parameter Estimation Algorithm

By using the conditional density P (y|o, µb) reflecting the con-
straints (1)-(3) of the Fujisaki model, and the HMM likelihood
P (o|s, θ), the joint probability density function is written as

P (s, θ, µb,o,y) = P (y|o, µb)P (o|s, θ)P (s)P (µb)P (θ), (5)

where θ =
{
{C(p)[k]}K−1

k=0 , {C(a)
n }N−1

n=0 , σ
2
p, σ

2
a

}
contains all the

HMM parameters except for the transition probabilities, and s =
{sk}K−1

k=0 represents the state sequence. y = {y[k]}K−1
k=0 is the ob-

served F0 contour. The statistical estimation is then summarized to
maximize P (o, θ, µb|y) for a given y. For parameter inference, we
previously proposed an algorithm based on an auxiliary function and
the EM algorithm [5] by treating s as a latent variable to be marginal-
ized out and θ and µb as the model parameters to be estimated. The
procedure is as follows:

Fig. 3. Graphical representation of proposed model.

• E step: Update P (sk = q|y, θ, µb,o) = P (sk = q|θ,o) for
each frame k and each state q using the Forward-Backward
algorithm.

• M step: Update o, θ, µb using the auxiliary function.

After convergence, MAP estimation for the state sequence s is
performed using the Viterbi algorithm to obtain the estimated com-
mand sequence oest = {[µp[k], µa[k]]}K−1

k=0 .

3. PROPOSED METHOD

We propose two improvements to the conventional method described
above: the use of the hard EM algorithm and the introduction of
spectral features.

3.1. Modified EM Algorithm

In the method described in Sec. 2.2, our analysis revealed that
more than 90% of the computation time was spent by the Forward-
Backward algorithm when computing the posterior state probabil-
ities at each frame in the E step. Each output distribution of the
HMM is a Gaussian distribution, and so a logarithm and an expo-
nential must be computed for every addition at each frame, and this
is computationally expensive. To sidestep these computations, we
propose using the joint probability density function P (s, θ, µb,o|y)
instead of the marginal distribution P (θ, µb,o|y) as the objective
function. This results in a parameter estimation algorithm in which
the Forward-Backward procedure in the conventional algorithm
is replaced with a state decoding procedure using the Viterbi al-
gorithm. Since the Viterbi algorithm is generally faster than the
Forward-Backward algorithm, we expect the entire computation
time to be reduced. This is called a hard EM algorithm.

The variables involved in this method are summarized at the
right half of Fig. 3. The estimation process using the modified EM
algorithm can be written as follows:

• E step (hard EM): Update s by maximizing P (o|s, θ)P (s)
using the Viterbi algorithm.

• M step:
Update o, θ, µb (as with the conventional method).

We conjecture that this method can also improve the estima-
tion accuracy. This can be explained in terms of the objective
functions considered in the conventional and proposed algorithms.
The conventional method can be interpreted as the optimization of
P (θ, µb,o|y), with s being integrated out. However, the parameters
we need to infer are µp[k] and µa[k] for each frame k, which are
uniquely determined by (θ, s). Therefore, the objective function
that we should actually maximize is P (θ, µb,o, s|y) rather than
that mentioned above. The conventional method [4] performs a
MAP estimation for s only at the final step, so the finally inferred
parameters (µp[k], µa[k]) are not guaranteed to correspond to the
local maximum of P (θ, µb,o, s|y).
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In contrast, our method maximizes P (θ, µb,o, s|y) directly.
This objective function can be factorized as Eq. (5) (ignoring a
constant factor) and so the modified E step can be interpreted as the
conditional maximization of this function with respect to s while
keeping the other parameters fixed.

3.2. Introduction of Spectral Features

Several researchers have addressed the use of linguistic information
to automatically estimate F0 contour parameters [6, 7, 8]. The ba-
sic idea behind these approaches is the assumption that accent com-
mand functions are somewhat related to linguistic information. More
specifically, the onsets of the accent commands tend to occur when
phoneme transitions occur. Since phoneme transitions are usually
accompanied by rapid changes in spectral feature values, we can ex-
pect the accuracy of accent command estimation to be improved if
we assume that the temporal variations of the spectral feature values
are likely to be large when an accent command is activated.

Fig. 3 shows the relationships between the variables in the pro-
posed probabilistic model comprising both spectral variations and
F0 commands.

Phoneme transition probability : z = {z[k]}K−1
k=0

(0 ≤ z[k] ≤ 1)
(6)

Output sequence : v = {v[k]}K−1
k=0 (7)

P (z[k]|sk−1, sk) =

{
f(z[k], φ) (sk−1=r1, sk=an)
1 (otherwise)

(8)

P (v[k]|z[k],Σ0,Σ1)
= (1− z[k])N (v[k]|0,Σ0) + z[k]N (v[k]|0,Σ1)

(9)

z[k] represents the probability that the kth frame corresponds
to the phoneme boundary. The prior of z[k] is given by the func-
tion f and the parameter φ. The distribution of the spectral fea-
ture vector v[k] is expressed by a two-component Gaussian mixture
distribution where z[k] is the weight. One component of this mix-
ture is intended to express the distribution of the spectral features at
phoneme boundaries and the other is intended to express that within
other segments. The norm of a ∆-spectral feature vector tends to be
large at a phoneme boundary, and our proposed probabilistic model
is designed to take this characteristic into account.

The F0 estimation process based on the EM algorithm is sum-
marized as follows:

• E step (hard EM): Update s by maximizing
P (z|s)P (o|s, θ)P (s) using the Viterbi algorithm.

• M step:

1. Update the variables of the prosody model s, θ, µb (the
same as the entire M step of the conventional method).

2. For each k ∈ [1,K − 1] that satisfies sk−1 = r1 and
sk = ai, update z[k] to 1.

3. For each k ∈ [0,K − 1] where the kth frame is judged
to be unvoiced, update z[k] to 0.

4. Update Σ0,Σ1 using the update function of the Gaus-
sian Mixture Model P (v|z,Σ0,Σ1)
(Here, we assume that Σ0 and Σ1 are diagonalized).

5. Update z by maximizing P (z|Σ0,Σ1,v).

4. EXPERIMENTS

To evaluate the speed and accuracy of the methods, experiments
were conducted using real speech data, excerpted from the ATR
Japanese sentence database B-set [9]. We used 503 sentences spo-
ken by one male speaker (MHT). For the ground truth data, we used
manually annotated Fujisaki model command function parameters.

F0 contours were estimated by using Nakatani’s method [10],
and the baseline values µb were set for each sentence by using the
minimum value of F0 in the voiced segments. The initial values of
the command functions were extracted by using Narusawa’s method
[3].

We estimated the command functions using three methods: (1)
the conventional method (C) [4], (2) the method introduced in Sec-
tion 3.1 (P1), and (3) the method described in Section 3.2 (P2). For
the distribution of z in P2, we used f(z[k], a) = C exp(az[k]),
and we empirically chose a = 10.0. For the spectral features,
we used ∆MFCC (to 12th order), ∆LPC (to 20th order), ∆power,
∆LPC+∆power.

Throughout the experiments, we fixed α = 3.0 rad/s, β = 20.0
rad/s, N = 10, t0 = 8 ms, v2p = 0.032, v2a = 0.032, v2n = 1002 for
unvoiced segments and v2n = 0.032 for voiced segments. We divided
the 503 manually annotated sentences into a training set and a test
set; that is, the transition probabilities of the HMM were obtained in
the training step using the test set comprising the first 200 sentences
from the corpus, and then the evaluation test was performed using
the remaining 303 sentences.

We used two criteria as measures of estimation accuracy: (1) the
root mean squared error (RMSE) between the observed logF0 and
the synthesized value Gp[k] ∗ µp[k] +Ga[k] ∗ µa[k] + µb using the
estimated µp and µa and the impulse responses Gp[k], Ga[k], over
the voiced segments, and (2) the deletion and insertion rates of the
phrase and accent commands. The second criterion must be used
because the objective of the estimation is not only to minimize the
RMSE but also to obtain a compact description of the F0 contours.
The deletion/insertion rates are defined as follows. First, we match
the estimated and ground truth command sequences on a command-
by-command basis with a dynamic programming algorithm. By us-
ing a predefined time difference tolerance S, the estimated com-
mands that found a match were judged “matched.” With the accent
commands, we compare the mean value of the onset time difference
and the offset time difference with S. Let N , Nest and Nmatch

be the number of commands in the ground truth data, the num-
ber of commands in the estimated result, and the number of com-
mands judged to be matched, respectively. By using these values,
the deletion/insertion rates are defined as pdel = (N −Nmatch)/N
and pins = (Nest − Nmatch)/N . The numerators in this defini-
tion mean the number of deleted and inserted commands in the esti-
mated results compared with the ground truth data. The relationship
between these rates and the detection rate pdet in [4] is written as
pdet = 1 − max(pdel, pins). Note that the magnitudes of the com-
mands are not introduced in the second criterion because the aim is
to evaluate appropriateness of estimation in terms of the number of
correctly estimated commands. We performed the evaluation using
S = 0.1 sec throughout our experiments.

Fig. 4 shows the RMSE and insertion/deletion rates of command
functions estimated with the conventional and proposed methods de-
scribed above. There were 20 iterations in the EM algorithm in this
experiment.

With all of the proposed methods, the RMSE values are im-
proved compared with the conventional method. The total dele-
tion/insertion rate, shown in the right panel, stands for the mean
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Fig. 4. RMSE and deletion/insertion rate.

Fig. 5. Number of iterations vs. RMSE and insertion/deletion rates.

value of phrase/accent deletion and insertion rate weighted by the
numbers of commands in the ground truth data. The total rates
are also improved, and the technique using ∆MFCC achieved the
best rate among the methods tested here, reducing the total inser-
tion/deletion error by 3 %.

The computation times are listed in Table 1, showing that the
proposed methods greatly increased the speed. For example, the
computation time in E step is 70 times shorter in the hard EM method
(P1) than in the conventional method (C), and the total computation
time is 16 times shorter for the proposed ∆MFCC method (P2) than
for C. This means that the real time factor of the estimation process
is less than 1 with the proposed method (P2), if there are fewer than
36 iterations.

Fig. 5 shows the dependence of the RMSE and the inser-
tion/deletion rates for phrase/accent commands on the number of
iterations. The RMSE decreases monotonically for all algorithms.
Nevertheless, the insertion/deletion rate obtains a local minimum
at around eight iterations. This phenomenon is presumed to occur
because our experiments were not conducted to fit the F0 contours
generated by the ground truth command functions but to fit the
observed F0 contours.

Fig. 6 shows an example of the observed F0 contour, the ground
truth of the commands, the estimated commands (P1 and P2 with
∆MFCC), and the ∆MFCC values. The dotted purple curve in the
graph second from the bottom visualizes the z estimated in P2. This
shows that the phonological information successfully prevents the
unnecessary switching of accent commands right after t = 3 sec.

Table 1. Computation time for command function estimation.

Method E step [s/iteration] M step [s/iteration]
C [4] 1.610 0.039
P1 (hard EM) 0.023 0.042
P2 (∆MFCC) 0.049 0.050

CPU: Core i7-6700K 4.0GHz, RAM:32GB
Windows 7 SP1, MATLAB R2016a
Length of sound data: 3.62 seconds

Fig. 6. Example of processing results. Purple dotted line overlap-
ping estimated value of command functions obtained with method
P2 represents z at each frame.

5. CONCLUSIONS

We described a way of improving the Fujisaki model parameter
estimation algorithm proposed in [4] in terms of computational
efficiency and parameter estimation accuracy. To accelerate the
algorithm, we proposed replacing the E step in the conventional al-
gorithm with a state decoding procedure using the Viterbi algorithm.
To improve the estimation accuracy, we proposed adding a ∆-
spectral feature generative process to the original generative model,
which made it possible to estimate the F0 commands from F0 and
spectral features. Experiments using real speech data showed that
the proposed method achieved an approximately 70 times shorter
computational time in Estep and an approximately 16 times shorter
whole calculation time than the conventional method. The spectral
features were also shown to be effective. The detection rate was
the best when using ∆MFCC as the spectral features, and the num-
ber of wrong F0 command insertions or deletions can be reduced
by 3 % compared with the case where no spectral features were
used. As future work, we plan a further study of the use of spec-
tral or phonological information to improve the robustness of the
estimation.
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