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ABSTRACT
This paper studies some formulations and algorithms for the mul-
tichannel extension of nonnegative matrix factorization (NMF). We
model the inter-channel characteristics of each NMF basis, including
both the amplitude ratios and the phase differences on a channel pair.
The learned inter-channel characteristics provide useful information
for binding each NMF basis to each source component in such a
situation that multiple sources are mixed in a convolutive manner
and observed at multiple microphones. Effective optimization algo-
rithms based on majorization are derived by using properly designed
auxiliary functions. Experimental results show that the algorithms
converged favorably regardless of the initialization.

Index Terms— Nonnegative matrix factorization, Complex
phase, Inter-channel characteristic, Majorization, Auxiliary function

1. INTRODUCTION

Extracting or identifying frequent sound patterns in recorded sounds
is an important task in various kinds of audio signal applications, in-
cluding sound separation and music transcription. Nonnegative ma-
trix factorization (NMF) [1], which was originally applied to learn-
ing parts-based representations of images and to the analysis of doc-
uments [2], is also a widely-used technique for such audio appli-
cations (e.g., [3]). When we analyze a time-domain single-channel
audio signal x(t) with NMF, the signal is typically transformed into
the representation xij in the time-frequency domain by a short-time
Fourier transform (STFT), where i and j represent time and fre-
quency, respectively. Then the amplitude |xij | is used to construct a
nonnegative matrix for the NMF analysis.

Some extensions of NMF have been proposed to improve the
capabilities for audio applications. Complex NMF [4] takes account
of the phase information xij/|xij |, which is discarded with stan-
dard NMF. It improves the analysis accuracy by faithfully obeying
the mixing process in the complex domain. Another avenue for ex-
tension is to take advantage of multichannel recordings (typically
stereo). Research effort has been devoted to considering an instan-
taneous mixing case [5, 6] and a convolutive mixing case [7]. In
this paper, we study a convolutive mixing case, with particular focus
on extracting the inter-channel characteristics, including the phase
information, of the NMF decomposed components.

2. PRELIMINARIES

2.1. NMF and Complex NMF

Let us start with a single channel case before moving on to a multi-
channel case in Sect. 3. Let x(t) be a microphone observation for a
specific time duration, say t = 1, . . . , T . By applying an STFT to
the observation, we have a complex matrix X whose (i, j)-element
is denoted by xij ∈ C. Again, i and j represent time and frequency,
respectively. Let the matrix size be I × J .

When we employ the standard NMF [1] for the analysis, we only
consider the amplitudesY = |X|, or equivalently yij = |xij |, ∀i, j.
The generative model can be written as

p(Y|T,V) =
Q

i,j N (yij |PK
k=1 tikvkj ,

1
2
) (1)

where N represents a Gaussian distribution, and K is the number
of rank-1 basis matrices. Nonnegative matrices T and V, whose
elements are tik ≥ 0 and vkj ≥ 0, have sizes of I × K and K × J ,
respectively.

If we preserve the phase information of X, complex NMF [4]
can be applied. The generative model can be written as

p(X|T,V,G) =
Q

i,j Nc(xij |PK
k=1 gijktikvkj , 1) (2)

whereNc is a complex Gaussian distribution, andG is a third-order
tensor whose (i, j, k)-element is a complex gijk ∈ C with a unit
amplitude constraint |gijk| = 1.

2.2. Iterative optimization

The negative log likelihood of (1) or (2) can be minimized in an iter-
ative manner by majorization [8] with a properly designed auxiliary
function. This section briefly explains the procedure for standard
NMF. A similar procedure can be derived for complex NMF as pre-
sented in [4].

The negative log-likelihood of (1) is given by

L(T,V) =
P

i,j |yij −PK
k=1 tikvkj |2 . (3)

Now, we introduce an auxiliary function

L+(T,V,R) =
P

i,j

»
y2

ij − 2yij(
P

ktikvkj) +
P

k

t2ikv2
kj

rijk

–
(4)

that satisfies
1. L(T,V) ≤ L+(T,V,R) ,
2. L(T,V) = minRL+(T,V,R) .

These are guaranteed according to the following equation, which is
derived from Jensen’s inequality“PK

k=1 tikvkj

”2

≤PK
k=1

(tikvkj)2

rijk
(5)

where rijk ≥ 0 and
PK

k=1 rijk = 1.
The negative log likelihood L is indirectly minimized by repeat-

ing the following updates, each of which corresponds to the mini-
mization of the auxiliary function L+

1. with respect toR: rijk ← tikvkjP
k tikvkj

2. with respect to T: tik ←
P

j yijvkj
P

j v2
kj

/rijk

3. with respect toR: rijk ← tikvkjP
k tikvkj

4. with respect toV: vkj ←
P

i yijtikP
i t2

ik
/rijk

.
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TheR update is derived from the equality condition of the Jensen’s
inequality, and the T and V updates are derived from the partial
derivative of L+ with respect to tik or vkj . By substituting rijk

in the T and V updates and rearranging them, we obtain the well-
known multiplicative updates for NMF [1].

3. MULTICHANNEL COMPLEX NMF

This section proposes two types of multichannel extensions of NMF.
One is from complex NMF and the other is from standard NMF. For
the sake of simplicity, we consider a stereo case here. Generalization
to more channels is straightforward. LetX(1) andX(2) be complex
matrices representing time-frequency domain observations of the 1st
and 2nd microphone. Both extensions basically model multichannel
observations with common nonnegative matricesT andV, together
with a newly introduced complex matrixH that represents the inter-
channel characteristics corresponding to the matrixT.

3.1. Extension from Complex NMF

3.1.1. Model

Let us start with the extension from complex NMF. Without loss
of generality, let the 1st channel be the reference channel, where all
the inter-channel characteristics are normalized to one. Then, the 1st
channel is modeled exactly by complex NMF (2):

p(X(1)|T,V,G) =
Q

i,j Nc(x
(1)
ij |Pk gijktikvkj , 1) . (6)

The 2nd channel is modeled by introducing an I × K matrix H
whose elements are complex hik ∈ C and by using the same
T,V,G matrices commonly:

p(X(2)|T,V,G, H) =
Q

i,j Nc(x
(2)
ij |Pk gijkhiktikvkj , 1) .

(7)
It should be emphasized that the inter-channel characteristic hik is a
complex number and thus contains information on the phase differ-
ence as well as the amplitude ratio between the 1st and 2nd channels.
When we use a microphone array whose microphone inter-distances
are not very large, e.g., 4 cm, the phase information is more impor-
tant than the amplitude information for distinguishing sources com-
ing from different directions. The introduction of hik in this manner
is the main contribution of this paper over the previous work on mul-
tichannel NMF [5, 6, 7].

3.1.2. Negative log-likelihood and its auxiliary function

What we want to maximize is the multichannel likelihood

p(X(1),X(2)|T,V,G,H) =

p(X(1)|T,V,G) · p(X(2)|T,V,G, H) (8)

whose negative log-likelihood is given by

Lmc(T,V,G, H) = (9)X
i,j

 
|x(1)

ij −
X

k

gijktikvkj |2 + |x(2)
ij −

X
k

gijkhiktikvkj |2
!

.

To follow the iterative optimization procedure explained in Sect. 2.2,
we define an auxiliary function

L+
mc(T,V,G,H,S(1),S(2)) = (10)
X
i,j

 X
k

|s(1)
ijk − gijktikvkj |2

rijk
+
X

k

|s(2)
ijk − gijkhiktikvkj |2

rijk

!

where S(1) and S(2) are newly introduced tensors of size I ×J ×K

whose elements are complex s
(1)
ijk, s

(2)
ijk ∈ C satisfyingP

k s
(1)
ijk = x

(1)
ij ,

P
k s

(2)
ijk = x

(2)
ij (11)

and rijk, ∀i, j, k are parameters satisfying
P

k rijk = 1, rijk ≥ 0.

3.1.3. Update rules

The negative log-likelihood Lmc is minimized in the same manner
as that explained in Sect. 2.2. The minimization updates for the aux-
iliary function L+

mc with respect to S(1) and S(2) are given by

s
(1)
ijk = gijktikvkj + rijk(x

(1)
ij −Pk gijktikvkj) (12)

s
(2)
ijk = gijkhiktikvkj + rijk(x

(2)
ij −Pk gijkhiktikvkj) (13)

It is easily verified that with the above assignment the equality
Lmc(T,V,G,H) = L+

mc(T,V,G, H,S(1), S(2)) and condition
(11) holds. We can interpret this to mean that s(1)

ijk is a decompo-
sition of x

(1)
ij mainly with the k-th component gijktikvkj plus a

fraction of the error term x
(1)
ij −Pk gijktikvkj .

Regarding the parameter rijk, it can be specified arbitrarily as
long as

P
k rijk = 1 and rijk ≥ 0. However, we specify them

using a specific form

rijk =
tikvkjP
k tikvkj

=
tikvkj

x̂ij
(14)

that was suggested in [4].
The minimization updates for L+

mc with respect to T,V,H,G
are derived from the partial derivatives of L+

mc (see appendix), and
given by

tik =

P
j x̂ijRe[g∗

ijk(s
(1)
ijk + s

(2)
ijkh∗

ik)]

(1 + |hik|2)
P

j x̂ijvkj
(15)

vkj =

P
i x̂ijRe[g∗

ijk(s
(1)
ijk + s

(2)
ijkh∗

ik)]P
i x̂ijtik(1 + |hik|2) (16)

hik =

P
j x̂ijs

(2)
ijkg∗

ijk

tik

P
j x̂ijvkj

(17)

gijk =
s
(1)
ijk + s

(2)
ijkh∗

ik

|s(1)
ijk + s

(2)
ijkh∗

ik|
(18)

where x̂ij =
P

k tikvkj , and Re[·] extracts the real part.
In summary, the negative log-likelihood Lmc is iteratively min-

imized by repeating (12)-(13) and one of the four updates (15)-(18).

3.1.4. Discussion

In our preliminary experiments, the multichannel extension of com-
plex NMF proposed here did not work very well, in the sense that
hik did not successfully reflect the inter-channel characteristics. The
reason is that the complex phases have too much freedom to model
the observations precisely, as both gijk and hik can have any phase.
There are two possible approaches to overcoming this problem. The
first is to impose some prior or structural constraints to lower the
freedom, for instance, a sparsity constraint on the excitation vkj as
we did in [4], or a clustering constraint on hik . However, this line of
study will constitute our future work. The second approach is to ig-
nore the phase gijk of each component tikvkj , and consider only the
inter-channel characteristic hik . This leads to another type of mul-
tichannel extension of NMF, which is an extension from standard
NMF that we detail in the next subsection.
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3.2. Extension from standard NMF

3.2.1. Preprocessing and model

When we apply standard NMF, we only consider the amplitudes of
the time-frequency domain observations. This can be performed on
the 1st channel (reference channel) by

x
(1)
ij ← x

(1)
ij ·

„
x
(1)
ij

|x(1)
ij |

«∗
, ∀i, j , (19)

where ∗ denotes the complex conjugate. To preserve the inter-
channel characteristics, we apply the same operation to the 2nd
channel as

x
(2)
ij ← x

(2)
ij ·

„
x
(1)
ij

|x(1)
ij |

«∗
, ∀i, j . (20)

Please note that with the above preprocessing X(1) becomes a non-
negative matrix butX(2) remains a complex matrix.

Thus, the 1st channel is modeled exactly by (1):

p(X(1)|T,V) =
Q

i,j N (x
(1)
ij |Pk tikvkj ,

1
2
) (21)

and the 2nd channel is modeled by using an I ×K matrixH, whose
elements are complex hik ∈ C, and the same T,V matrices as the
1st channel:

p(X(2)|T,V,H) =
Q

i,j Nc(x
(2)
ij |Pk hiktikvkj , 1) . (22)

The difference between the model shown in Sect. 3.1.1 and the above
model lies only in the existence of the complex coefficients gijk .

3.2.2. Negative log-likelihood and update rules

Along with the derivations similar to those described in Sect. 3.1.2
and 3.1.3, we have the following results.

The negative log-likelihood to be minimized is given by

Lm(T,V,H) =X
i,j

 
|x(1)

ij −
X

k

tikvkj |2 + |x(2)
ij −

X
k

hiktikvkj |2
!

, (23)

and its auxiliary function can be defined by

L+
m(T,V,H,S(1),S(2)) =

X
i,j

 X
k

|s(1)
ijk − tikvkj |2

rijk
+
X

k

|s(2)
ijk − hiktikvkj |2

rijk

!
(24)

where S(1) and S(2) are tensors of size I × J × K whose elements
are real s(1)

ijk and complex s
(2)
ijk ∈ C and satisfying (11).

The updates with respect to S(1) and S(2) are given by

s
(1)
ijk = tikvkj + rijk(x

(1)
ij −Pk tikvkj) (25)

s
(2)
ijk = hiktikvkj + rijk(x

(2)
ij −Pk hiktikvkj) (26)

and those with respect to T,V,H are given by

tik =

P
j x̂ijRe(s

(1)
ijk + s

(2)
ijkh∗

ik)

(1 + |hik|2)
P

j x̂ijvkj
(27)

vkj =

P
i x̂ijRe(s

(1)
ijk + s

(2)
ijkh∗

ik)P
i x̂ijtik(1 + |hik|2) (28)

hik =

P
j x̂ijs

(2)
ijk

tik

P
j x̂ijvkj

(29)

Table 1. Experimental conditions
Sampling rate 16 kHz
STFT frame size and shift 1024 (64 ms) and 256 (16 ms)
Reverberation time RT60 = 130 ms
Source signals 6 s of simple instrumental music
Direction of sources 70◦ and 150◦ (2 sources)
Microphone distance 4 cm
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Fig. 1. Convergence behavior

where x̂ij =
P

k tikvkj , and Re(·) extracts the real part.
In summary, the negative log-likelihood Lm is iteratively mini-

mized by repeating (25)-(26) and one of the three updates (27)-(29).
The set of these updates (25)-(29) can be considered a special case
of the set of updates (12)-(18) shown in Sect. 3.1.3 where gijk is
always fixed at 1 for all i, j, k.

4. EXPERIMENTAL RESULTS

We performed experiments to observe the behavior of the proposed
multichannel NMF. As mentioned in Sect. 3.1.4, the multichannel
extension from complex NMF did not work well so far. Therefore,
we report here the experimental results obtained by the extension
from standard NMF shown in Sect. 3.2.

The experimental conditions are summarized in Table 1. We
considered a situation where two sounds of instruments coming
from different directions were mixed and observed at two micro-
phones. The mixtures were made by convolving measured impulse
responses, whose reverberation time was 130 ms, and the sound
sources. With the application of STFT, we had two matrices X(1)

andX(2) both 513×404 in size. Then, we applied the preprocessing
(19) and (20), followed by the multichannel NMF updates (25)-(29).
The number K of rank-1 basis matrices was set at 10.

Figure 1 shows the convergence behavior in minimizing the neg-
ative log-likelihood (23). We have examined three ways to initialize
T,V matrices. The first was to initialize them with random ma-
trices. The other two involved initializing them with the result of
standard NMF applied toX(1). The second and third were different
as regards the number of standard NMF iterations. The H matrix
was initialized randomly in all cases. We see that the proposed up-
dates (25)-(29) successfully minimized the negative log-likelihood
regardless of the initial matrices.

Figure 2 shows the spectrogram reconstructed by the learned T,
Vmatrices, and Fig. 3 details theTmatrix. Although these two ma-
trices were learned appropriately, there was no explicit information
on which basis corresponds to which source. The learned H ma-
trix provided useful information for solving the basis-source binding
problem. Figure 4 shows the phase hik/|hik | of each element. We

231



Time frame index

Fr
eq

ue
nc

y 
bi

n 
in

de
x

100 200 300 400

100

200

300

400

500

Fig. 2. Spectrogram reconstructed by learned T,V matrices

0 200 400
0

20
40

t i1

0 200 400
0

20
40

t i2

0 200 400
0

20
40

t i3

0 200 400
0

20
40

t i4

0 200 400
0

20
40

t i5

0 200 400
0

20
40

t i6

0 200 400
0

20
40

t i7

0 200 400
0

20
40

t i8

0 200 400
0

20
40

Frequency bin index

t i9

0 200 400
0

20
40

Frequency bin index

t i1
0

Fig. 3. Each column of T matrix

can see that the 1st and 2nd column bases have a tendency to neg-
ative phases whereas the others tend towards positive phases. By
clustering those column bases, it was automatically decided that the
1st and 2nd bases belonged to the 1st source and the others belonged
to the 2nd source. As a result of the source separation, the signal-to-
distortion ratios [9] were improved from (−12.04, 12.04) dB at the
mixture to (4.22, 16.21) dB at the separated sounds.

5. CONCLUSION

We proposed multichannel extensions of complex NMF. We started
with a general formulation where the phase gijk of each component
tikvkj is considered. We then specialized the formulation so that
gijk was always fixed at 1. Experimental results for the special-
ized version of multichannel NMF were provided to demonstrate the
effectiveness. Future work will include the design of a more sophis-
ticated model advanced from the general formulation.

6. APPENDIX

The partial derivatives of L+
mc (10) with respect to T,V,H,G are

shown below.

∂L+
mc

∂tik
=
X

j

2

rijk
[tikv2

kj − Re(s
(1)
ijkg∗

ijk)vkj

+|hik|2tikv2
kj − Re(s

(2)
ijkg∗

ijkh∗
ik)vkj ] (30)
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Fig. 4. Phase of each element ofH matrix

∂L+
mc

∂vkj
=
X

i

2

rijk
[t2ikvkj − Re(s

(1)
ijkg∗

ijk)tik

+|hik|2t2ikvkj − Re(s
(2)
ijkg∗

ijkh∗
ik)tik] (31)

∂L+
mc

∂h∗
ik

=
X

j

tikvkj

rijk
(hiktikvkj − s

(2)
ijkg∗

ijk) (32)

∂L+
mc

∂g∗
ijk

=
tikvkj

rijk
(s

(1)
ijk − gijktikvkj + s

(2)
ijkh∗

ik − gijk|hik|2tikvkj)

(33)
Setting these derivatives to zero and substituting rijk by (14) yields
the updates (15)-(17). For the G update, we use the unit amplitude
constraint |gijk| = 1 to derive (18).

7. REFERENCES

[1] D. D. Lee and H. S. Seung, “Learning the parts of objects with
nonnegative matrix factorization,” Nature, vol. 401, pp. 788–
791, 1999.

[2] W. Xu, X. Liu, and Y. Gong, “Document clustering based on
non-negative matrix factorization,” in Proc. ACM SIGIR, 2003,
pp. 267–273.

[3] P. Smaragdis and J. C. Brown, “Non-negative matrix factoriza-
tion for polyphonic music transcription,” in Proc. IEEE Work-
shop Applicat. Signal Process. Audio Acoust. (WASPAA), Oct.
2003, pp. 177–180.

[4] H. Kameoka, N. Ono, K. Kashino, and S. Sagayama, “Com-
plex NMF: A new sparse representation for acoustic signals,” in
Proc. ICASSP 2009, Apr. 2009, pp. 3437–3440.

[5] D. FitzGerald, M. Cranitch, and E. Coyle, “Non-negative tensor
factorisation for sound source separation,” in Proc. Irish Signals
Syst. Conf., Sept. 2005, pp. 8–12.

[6] R. M. Parry and I. A. Essa, “Estimating the spatial position of
spectral components in audio,” in Proc. ICA 2006. Mar. 2006,
pp. 666–673, Springer.

[7] A. Ozerov and C. Fevotte, “Multichannel nonnegative matrix
factorization in convolutive mixtures for audio source separa-
tion,” IEEE Trans. Audio, Speech and Language Processing,
vol. 18, no. 3, pp. 550–563, Mar. 2010.

[8] J. de Leeuw, “Block-relaxation methods in statistics,” in Infor-
mation Systems and Data Analysis, H. H. Bock, W. Lenski, and
M. M. Richter, Eds., pp. 308–324. Springer Verlag, 1994.

[9] E. Vincent, H. Sawada, P. Bofill, S. Makino, and J. P. Rosca,
“First stereo audio source separation evaluation campaign: data,
algorithms and results,” in Proc. ICA 2007, 2007, pp. 552–559.

232


