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Abstract—This paper presents new formulations and algorithms
for multichannel extensions of non-negative matrix factorization
(NMF). The formulations employ Hermitian positive semidefinite
matrices to represent a multichannel version of non-negative
elements. Multichannel Euclidean distance and multichannel
Itakura-Saito (IS) divergence are defined based on appropriate
statistical models utilizing multivariate complex Gaussian distri-
butions. To minimize this distance/divergence, efficient optimiza-
tion algorithms in the form of multiplicative updates are derived
by using properly designed auxiliary functions. Two methods are
proposed for clustering NMF bases according to the estimated
spatial property. Convolutive blind source separation (BSS) is
performed by the multichannel extensions of NMF with the clus-
tering mechanism. Experimental results show that 1) the derived
multiplicative update rules exhibited good convergence behavior,
and 2) BSS tasks for several music sources with two microphones
and three instrumental parts were evaluated successfully.

Index Terms—Blind source separation, clustering, convolutive
mixture, multichannel, non-negative matrix factorization.

I. INTRODUCTION

N ON-NEGATIVE matrix factorization (NMF) is an unsu-
pervised learning technique with a wide range of appli-

cations such as parts-based image representation [3], document
clustering [4], and music transcription [5]. As the top part of
Fig. 1 shows, NMF decomposes a given non-negative matrix
into two smaller non-negative matrices and . When we an-
alyze an audio/music signal with NMF, we typically employ a
short-time Fourier transform (STFT) to obtain complex-valued
representations in the time-frequency domain. Then, we make
them non-negative by calculating the (squared) absolute values
(see (1)) in order to apply NMF. The bottom part of Fig. 1 shows
that NMF extracts frequent sound patterns as five NMF bases
from an audio clip containing five different notes.
A typical issue with NMF-based audio signal analysis is how

to cluster the extracted NMF bases for a higher-level interpre-
tation of the audio signal. Various NMF models have been pro-
posed for that purpose. Temporal continuity [6] is considered
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Fig. 1. Formulation of NMF (top) and its application to a music signal
(bottom). Frequent sound patterns are identified in matrix along with their
activation periods and strengths shown in matrix .

on activation gains . The sequential modeling of bases
is conducted with convolutive NMF [7] and hidden Markov
models [8], [9]. Shifted NMF [10], [11] identifies the bases that
correspond to the notes played by an identical instrument. All
these methods are related to single-channel (monaural) source
separation.
As humans/animals have two ears, multichannel processing

is a way of realizing a more general source separation capa-
bility because the spatial properties (directions or locations) of
source signals can be exploited [12]. Specifically with an NMF-
based method, the bases can be clustered according the spatial
property, as Fig. 2 shows. With that in mind, multichannel ex-
tensions of NMF have been studied with the aim of realizing
sound source separation and localization. In an instantaneous
mixture case, the authors of [13], [14] were interested in the
gain of each source to each microphone. Thus, all the values
are still non-negative, and the notion of non-negativity remains
clear. However, in a convolutive mixture case, the phase dif-
ference between different microphones is crucial information
for source localization and separation. Thus, we need to handle
complex-valued multichannel observations for these purposes,
but the notion of non-negativity is not obvious. In [15], [16], the
power spectrums of source signals are modeled with non-neg-
ative values, but there is no explicit description regarding non-
negativity for mixing matrices or covariance matrices. In this
paper, we propose that the Hermitian positive semidefiniteness
of a matrix is a multichannel counterpart of non-negativity, and
extend NMF to a multichannel case in a more generic way.
There are several choices available for the distance/diver-

gence measures used in the NMF cost function including the
Euclidean distance [17], the generalized Kullback-Leibler (KL)
divergence [17], and the Itakura-Saito (IS) divergence [18]. In
this paper, we define multichannel extensions of the Euclidean
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Fig. 2. Multichannel extensions of NMF associate the spatial property with
each NMF basis. This enables us to cluster NMF bases according to the source
location, and thus perform a source separation task.

distance and the IS divergence, and extend the NMF model
with these two definitions. We show that minimizing these dis-
tance/divergence is equivalent to maximizing the log-likelihood
of the observations with appropriate statistical models utilizing
multivariate complex Gaussian distributions.
The wide popularity of standard single-channel NMF comes

from the fact that the algorithm is very easy to implement and
works efficiently. In particular, multiplicative update rules [17]
provide rapid convergence and have the attractive property of
guaranteeing the non-negativity of all the matrix elements once
they are initialized with non-negative values. In previous work
on multichannel NMF [15], [16], however, expectation-maxi-
mization (EM) algorithms have been derived. It was reported
that the algorithms were sensitive to parameter initialization,
and thus they used the original source information for perturbed
oracle initializations. This paper presents multiplicative update
rules for multichannel extensions of NMF, and shows experi-
mentally that their convergence behavior is similar to that of
single-channel NMFs.
With the multichannel extensions of NMF presented in this

paper, we have the estimations of the spatial properties for each
basis. To perform a source separation task, we need to cluster
the NMF bases for a source according to the similarity of the
spatial properties. This paper proposes an automatic clustering
mechanism that is built into the NMF model with cluster-indi-
cator latent variables. The update rules are slightly changed but
still multiplicative in form.
The main contributions of this paper are summarized as

follows.
1) The notion of non-negativity is defined for a complex-
valued vector (Section III-A).

2) Multiplicative update rules are derived for multichannel
extensions of NMF (Section III-C). These updates pro-
vide faster convergence than the previous EM algorithms
(Fig. 9).

3) Multichannel extensions are found for the Euclidean dis-
tance and IS divergence (Section III).

4) Methods for clustering NMF bases are proposed for a
source separation task (Section IV).

In our previous work [1], [2], we succeededmerely in separating
two sources and found it difficult to separate more sources.
This paper newly proposes a bottom-up clustering method and
a source separation procedure, in which redundant spatial prop-
erties are allowed. Consequently, we have succeeded in sepa-
rating three sources for a variety of music sources. In addition,

we changed the update rules for the multichannel Euclidean
NMF from those shown in [1] to make the link to the standard
single-channel Euclidean NMF clearer.
This paper is organized as follows. Section II explains the

basics of the existing single-channel NMF. The proposed multi-
channel extensions and the clustering techniques are described
in Sections III and IV, respectively. Section V reports experi-
mental results on the convergence behavior of the algorithms
and source separation performance. Section VI concludes this
paper.

II. NON-NEGATIVE MATRIX FACTORIZATION

This section reviews the formulation and algorithm of stan-
dard single-channel NMF [17]–[19]. Let us assume that we have
a single-channel audio observation, to which we apply a short-
time Fourier transform (STFT).

A. Formulation

Let be the STFT coefficient at frequency bin and
time frame . To apply NMF, we need to convert to a non-
negative value via preprocessing. Typically, we take
the absolute value or its squared value as

(1)

where represents a complex conjugate. Then, a matrix ,
, is constructed with all the preprocessed values

for and .
NMF factorizes the matrix into the product of an

matrix and a matrix . The parameter
specifies the number of NMF bases, and is generally determined
empirically by the user. All the elements of the two matrices,

, should be non-negative, i.e.,
and .
NMF algorithms are designed to minimize the distance/diver-

gence between the given matrix and its factored form .
Let

(2)

be the factorization approximation of . Then the distance/
divergence can be defined in a general form

(3)

where specifies an element-wise distance/divergence. The
following three types of distance/divergence are widely used:
Squared Euclidean distance

(4)

Generalized Kullback-Leibler (KL) divergence

(5)
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Fig. 3. Three types of distance/divergence with : squared Euclid dis-
tance, generalized KL divergence and IS divergence.

Itakura-Saito (IS) divergence

(6)

Fig. 3 shows examples of these distance/divergences with
. We observe that KL and IS divergences are less sensitive to
over-approximation than under-approximation. And from (6),
we observe that IS divergence depends only on the ratio .
Thus, for instance, . This property
is favorable when analyzing most audio signals such as music
and speech, where low frequency components havemuch higher
energy than high frequency components. This is because low
and high frequency components are treated equally with similar
importance according to the property.

B. Algorithm: Multiplicative Update Rules

We can minimize the distance/divergence according to (3)
together with (4), (5), or (6) in the following manner. First, the
elements of and are randomly initialized with non-negative
values. Then, the following update rules [17], [19] are iteratively
applied until convergence.
Squared Euclidean distance

(7)

KL divergence

(8)

IS divergence

(9)

These update rules are called multiplicative, since each element
is updated by multiplying a scalar value, which is guaranteed to
be non-negative.

C. Probability Distributions Related to Distance/Divergence

There are relations between the three distance/divergences
(4)–(6) and specific probability distributions [18], [20], namely
a Gaussian distribution , a complex Gaussian distribution
and a Poisson distribution as shown below. Studying these
relationships helps us to consider multichannel extensions of
NMF in the Section III.
Minimizing the distance/divergence is

equivalent to maximizing the log-likelihood or
, where , , is a matrix of STFT

coefficients.
Squared Euclidean distance

(10)

KL divergence

(11)

where is the Gamma function.
IS divergence

(12)

Regarding IS divergence, the likelihood is calcu-
lated not for the matrix of preprocessed non-negative values
but for the matrix of complex-valued STFT coefficients, and
it is thus necessary to specify in a preprocessing
step for the connection to (6).
When , the distance/divergence (4), (5) or (6) be-

comes 0 and each -term of the log-likelihood defined above is
maximized. Therefore, the distance/divergence can be derived
as the difference between the log-likelihoods of and . We
show the IS divergence case as an example:

(13)

III. MULTICHANNEL EXTENSIONS OF NMF

This section presents our multichannel extensions of NMF.
Fig. 4 shows an overview of the multichannel extensions (in
red), in contrast with standard single-channel NMF (in blue).
We begin with the multichannel extension of IS divergence
(6), since this extension is the most natural. We then extend
Euclidean distance (4) to a multichannel case. Unfortunately,
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Fig. 4. Variations of NMF presented in this paper. Items that correspond to
standard single-channel NMF are shown in blue. Three distance/divergences
are discussed, and their corresponding probability distributions are presented.
Items that correspond to multichannel extensions of NMF are shown in red.
Two distance/divergence are extended to multichannel.

we have not found a multichannel counterpart for generalized
KL divergence (5).

A. Formulation (IS Divergence)

Let be the number of microphones, and
be a complex-valued vector for a

time-frequency slot, with being the STFT coefficient at the
-th microphone. Let be such a vector at frequency bin

and time frame . Now, let us introduce a multivariate complex
Gaussian distribution that extends (12)

(14)

where is an covariance matrix that should be Her-
mitian positive definite. Let or

...
. . .

... (15)

be the outer product of a complex-valued vector. We then define
the multichannel IS divergence similarly to (13)

(16)

where is the trace of a square matrix .
We assume that the source locations are time-invariant in a

source separation task (see Fig. 2). Therefore, we introduce a
matrix that models the spatial property of the -th NMF
basis at frequency bin . The matrix is of size to be
matched with the size of . Also, the matrix is Hermitian
positive semidefinite to possess the non-negativity in a multi-
channel sense. Then, we model with a sum-of-product form

(17)

Fig. 5. Illustrative example of multichannel NMF: , , ,
. Non-negative values are shown in gray and complex values are shown

in red.

where and are non-negative scalars as in the single-
channel case. To solve the scaling ambiguity between and
, let have a unit trace .
In a matrix-wise notation, let and be and

hierarchical matrices whose elements are matrices, i.e.,
and . Fig. 5 provides an illustrative

example in which multichannel NMF factorizes a hierarchically
structured matrix into the product of and , where
represents the Hadamard product, i.e., . The
multichannel NMF is formulated to minimize the total multi-
channel divergence similar to (3)

(18)

where is the element-wise multichannel divergence such as
(16) in the IS divergence case.

B. Formulation (Squared Euclidean Distance)

In this subsection, we consider a multichannel extension of
Euclidean NMF. Thanks to the versatility of a univariate com-
plex Gaussian distribution , we can model the preprocessed
observations , , as

(19)

where is the squared Frobenius
norm of matrix . Maximizing the log of the likelihood (19)
is equivalent to minimizing the distance (18) with the element-
wise multichannel distance

(20)

Therefore, multichannel Euclidean NMF has been formulated
as minimizing (18) with (20).
When applying standard single-channel Euclidean NMF, it

is typical that the absolute value in (1) is employed
rather than the squared value to prevent some observations from
being unnecessarily enhanced. In the same sense, an amplitude
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square-rooted version of the outer product (15) would be useful
in the multichannel Euclidean NMF:

...
. . .

...

(21)
where .

C. Algorithm: (Multiplicative Update Rules)

As shown in the next two subsections, the following mul-
tiplicative update rules are derived to minimize the total dis-
tance/divergence (18) with (16) or (20). These update rules re-
duce to their single channel counterparts (9) and (7) if ,

and . Therefore, sets of these updates consti-
tute multichannel extensions of NMF.
IS-NMF (IS divergence)

(22)

(23)

To update , we solve an algebraic Riccati equation (see
Appendix I)

(24)

with

where is the target matrix before the update.
EU-NMF (Squared Euclidean distance)

(25)

(26)

(27)

Post-processing is needed to make Hermitian and pos-
itive semidefinite. This can be accomplished by

and then by performing eigenvalue decom-
position as , setting all the negative elements
of at zero, and updating with the new .
We confirmed empirically that the update (27) followed by the
post-processing always decreases the squared Euclidean dis-
tance. However, we have not yet found a theoretical guarantee.

For both the IS and Euclidean cases, unit-trace normalization
should follow.

D. Derivation of Algorithm (IS-NMF)

This subsection explains the derivation of the multiplicative
update rules (22)–(24) for IS divergence. For a given observa-
tion , the total distance (18) together with (16) can be written
as

(28)

where constant terms are omitted. To minimize this function
, we follow the optimization scheme of majoriza-

tion [21], [22], in which an auxiliary (majorization) function is
used. Let us define an auxiliary function

(29)

where and are auxiliary variables that satisfy positive
definiteness, with being an identity matrix of
size , and (Hermitian). It can be verified that the
auxiliary function has two properties:
1)
2)
and the equality is satisfied when

(30)

(see Appendix II for the proof).
The function is indirectly minimized by repeating the fol-

lowing two steps:
1) Minimizing with respect to and by (30), which
makes .

2) Minimizing with respect to , or , which also
minimizes .

For the second step, we calculate the partial derivatives of
w.r.t. the variables and . Setting these derivatives at
zero, we have the following equations.

(31)

(32)

(33)

By substituting (30) into these equations, we obtain the multi-
plicative update rules (22)–(24).
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E. Derivation of Algorithm (EU-NMF)

The EU-NMF updates (25)–(27) can be derived in a similar
manner. For a given observation , the total distance (18) to-
gether with (20) and (17) can be written as

(34)

where constant terms are omitted. To minimize this function
, we again follow the optimization scheme of ma-

jorization [21], [22]. Let us define an auxiliary function

(35)

with auxiliary variables that satisfy Hermitian positive def-
initeness and . It can be verified that the auxiliary
function has two properties:
1)
2)
and the equality is satisfied when

(36)

(see Appendix III for the proof).
The function is indirectly minimized by repeating the fol-

lowing two steps:
1) Minimizing with respect to by (36), which makes

.
2) Minimizing with respect to , or , which also
minimizes .

For the second step, we calculate the partial derivatives of
w.r.t. the variables and . Setting these derivatives at
zero, we have the following equations.

(37)

(38)

(39)

By substituting (36) into these equations, we obtain the multi-
plicative update rules (25)–(27).

F. Interpretation of Learned Matrices

The multichannel NMF algorithm, (22)–(24) or (25)–(27),
learns matrices , and . The interpretation of the matrices
and is the same as with standard single-channel NMF. This

subsection provides an interpretation of the matrices , which
are particular to the multichannel NMF.

Fig. 6. An example of learned spatial properties. They are represented as
, the phase difference between the first and second microphones,

for each frequency bin and NMF basis .

To understand and interpret , we detail it by using the
rank-1 convolutive model [23] as

where is a mixing vector whose
-th element is the Fourier transform of a windowed im-

pulse response from the source to the -th microphone, is a
small positive scalar, and is an identity matrix. Then,
we see that the diagonal elements of represent the power
gain of the -th basis at the -th frequency bin to each micro-
phone. And the off-diagonal elements represent the phase dif-
ferences between microphones.
With a small microphone array, phase differences among

microphones are typically more visible than gain differences.
Fig. 6 shows an example of phase differences that appeared
on learned matrices . We interpret that the bases of number

have similar spatial properties, and thus these
are coming from the same direction. There is another group
of NMF bases regarding that constitute another
source coming from a different direction. How to cluster NMF
bases according to such spatial properties will be discussed in
Section IV.

IV. CLUSTERING NMF BASES

This section presents two techniques for clustering NMF
bases for a source separation task. The first is a top-down
approach whose clustering mechanism is built in the NMF
model. The second is a bottom-up approach that performs
sequential pair-wise merges. Later, in Section V-C, we describe
a robust source separation procedure that combines these two
techniques.

A. Top-Down Approach With Modified NMF Model

Let us consider clustering matrices into
classes , and let indicate whether the -th

matrix belongs to the -th cluster or not .
Then, in the NMFmodel can be replaced with ,
and the sum-of-product form (17) is changed to

(40)
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Fig. 7. The matrices shown in Fig. 6 are clustered into two sets of matrices.
They are represented as . Latent variables show that -th basis
belongs to the first or second cluster in a soft sense.

The multichannel Euclidean distance (20) and IS divergence
(16) can still be employed in the NMF model.
Now, we want to optimize the cluster-indicator latent vari-

ables , , in the same manner as and . For that
purpose, let us allow to have a continuous value such that

and . We consider that this relaxation
corresponds to estimating the expectation of according to
the posterior probability instead of the value
itself. But for simplicity, we do not change the notation of
in (40) even with this relaxation. Fig. 7 shows an example,

where ten sets of matrices shown in Fig. 6 are clustered into two
sets of matrices.
The algorithms to minimize

(41)

with the element-wise distance/divergence (20) or (16) and with
the model (40) can be derived in a similar manner as explained
in Section III-E. The update rules are in the following forms.
IS-NMF (IS divergence)

(42)

(43)

(44)

For , we solve an algebraic Riccati equation

(45)

with

(46)

(47)

where is the target matrix before the update.
EU-NMF (Squared Euclidean distance)

(48)

(49)

(50)

(51)

For both the IS and Euclidean cases, unit-trace normaliza-
tion and unit-sum normalization

should follow.
The clustering result obtained with the top-down approach

heavily depends on the initial values of the cluster-indicator la-
tent variables . To prevent an important cluster from disap-
pearing by chance, it is a good idea to have some redundant
clusters by setting the cluster number at a larger than expected.
Then later, the redundant clusters can be merged by employing
the bottom-up clustering shown in Section IV-B.

B. Bottom-Up Clustering by Sequential Merge Operation

This subsection explains another way to cluster NMF bases.
It is based on a pair-wise merge operation, in which a pair with
the minimum distance is identified and merged. The pair-wise
distance between the -th set and the -th set is defined by
using the Frobenius norm as

(52)

Algorithm 1 shows the whole procedure. Inside the basic up-
dates for NMF, the pair-wise merge operation is interleaved at a
rate specified by a variable . In the pair-wise merge op-
eration, a pair with the minimum distance is found, and a
new set is calculated as element-wise weighted
means of the two sets. Then, the number of clusters is decreased
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by 1 as the new set is added and the -th and -th sets are re-
moved. The main loop is repeated until the number of clusters
becomes a specified number .

Algorithm 1Multichannel NMF with bottom-up clustering

1: Procedure MchNMF_BottomUpClustering

2:

3: While do

4:

5: update by (42) or (48)

6: update by (43) or (49)

7: If then

8:

9:

10: end if

11: update by (45) or (51)

12: update by (44) or (50)

13: end while

14: end procedure

15: Procedure

16:

17:

18:

19:

20:

21:

22: end procedure

C. Source Separation

If NMF bases are appropriately clustered, source separation
can be performed by using Wiener filters. Remember that
is an -dimensional complex vector representing STFT co-
efficients at frequency bin and time frame , and let be
the STFT coefficient vector for the -th separated signal. Then,
the separated signals are obtained by the single-channel Wiener
filter for the -th channel

(53)

or by the multichannel Wiener filter

(54)

where is the sum-of-product form defined in (40).

V. EXPERIMENTS

A. Experimental Setups

We examined the proposed multichannel extensions of NMF
with stereo music mixtures that contained three music

Fig. 8. Experimental setup for room impulse responses.

TABLE I
MUSIC SOURCES

parts. Sets of stereo mixtures were generated by convolving the
music parts and the impulse responses measured in a real room
whose conditions are shown in Fig. 8. The impulse responses
were measured by using a maximum length sequence generated
by a 17-th order polynomial over GF (2). We made four sets of
mixtures using the music sources listed in Table I, which can
be found at the professionally produced music recordings page
of the Signal Separation Evaluation Campaign (SiSEC 2011)
[24]. The mixtures were down-sampled to 16 kHz. The STFT
frame size was 64 ms and the frame shift was 16 ms. The algo-
rithms were coded withMatlab and run on an Intel XeonW3690
(3.46 GHz) processor.

B. Convergence Behavior

Let us first show the convergence behavior of the multi-
channel NMF algorithms proposed in Section III. For compar-
ison, we run the algorithms of single-channel NMF (7) and
(9), multichannel NMF (25)–(27) and (22)–(24), and the EM
algorithm for multichannel IS-NMF shown in Appendix IV.
We set the number of NMF bases , and used a music
mixture with .
Fig. 9 shows the convergence behavior for 1000 iterations,

and Table II shows the computational time. NMF algorithms
with IS divergence generally take more time than EU-NMF.
We observe that the convergence behavior of the single-channel
NMF algorithms is similar to that of the proposed multichannel
NMF algorithms. With respect to multichannel IS-NMF, the
proposed algorithms show faster convergence and computation
than the EM algorithm.
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Fig. 9. Convergence behavior shown in log-log plots: EU-NMF (top) and
IS-NMF (bottom), single-channel (left) and multichannel (right).

TABLE II
COMPUTATIONAL TIME (IN SECONDS) FOR 1000

ITERATIONS WITH 14-SECOND SIGNALS

C. Source Separation Procedure

This subsection explains the source separation procedure
with the multichannel NMF proposed in Section IV. We
adopted the following procedure so that the spatial properties
of sources were well extracted.
1) Preprocessing: For EU-NMF: we normalized the power

of the observation vectors at each frequency bin such that
. This was to prevent the low frequency compo-

nents from being dominant in the total distance (18). Then, we
generated matrices as the amplitude square-rooted outer
products (21). For IS-NMF: we generated matrices by the
outer products (15). To prevent the determinant of multichannel
IS divergence (16) from being zero, we then added a regular-
ization term to each matrix as with
and being an identity matrix.
2) Initialization: Matrices and were randomly initial-

ized with non-negative entries. The diagonal elements of
were initially all set at , and the off-diagonal elements were
initially all set at zero. The elements of matrix were initialized
with random values around .
3) Multichannel NMF: We set the number of NMF bases
at 30 (ten times the number of sources). As for clustering the

bases for each source, we employ both top-down and bottom-up
approaches as follows.
i) 20 iterations to update and .
ii) 200 iterations to update , , and by the top-down
approach with .

iii) Bottom-up clustering with until .
iv) 200 iterations to update , , and by the top-down

approach with .

Fig. 10. Convergence behavior of two different clustering strategies. The blue
line corresponds to the procedure described in Section V-C. It
used both top-down and bottom-up approaches. The zigzag pattern (iterations
220–280) shows that the IS divergence was increased by a pair-wise merge op-
eration. The red line corresponds to using only the top-down
approach.

Having redundant spatial properties (step ii) followed
by the bottom-up clustering (step iii) contributes to robust esti-
mations of the spatial properties. Some results will be shown in
the next subsection with Fig. 12.
4) Separation: For EU-NMF, a single-channel Wiener filter

(53) was used for each channel. For IS-NMF, a multichannel
Wiener filter (54) was used. We selected these configurations
because each of these produced better results empirically.
Fig. 10 shows an example in which the IS divergence was

minimized by the procedure. The blue line shows how steps
i)–iv) work, especially when parameter is decreased from
9 to 3. The red line shows the case where only the top-down
approach was employed. In this example, the IS divergence
was better minimized by having redundant spa-
tial properties.

D. Source Separation Results

The separation performance was numerically evaluated in
terms of the signal-to-distortion ratio (SDR) [25]. We need to
know all the source images for all microphones

and sources . To calculate for the
-th source, we first decompose the time-domain multichannel
signals as

(55)

where , , and are unwanted error com-
ponents that correspond to spatial (filtering) distortion, interfer-
ences, and artifacts, respectively. These are calculated by using
a least-squares projection [25]. Then, is calculated as the
power ratio between the wanted and unwanted components

Fig. 11 shows the source separation results obtained with
the procedure described in the last subsection (EU-NMF and
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Fig. 11. Source separation performance evaluated in terms of SDRs aver-
aged over all the three sources. With NMF-based methods ( and

), ten trials were conducted for each mixture ID. The error bars
represent one standard deviation. For comparison, the results obtained with an
existing underdetermined blind source separation method [26] are
also shown.

TABLE III
COMPUTATIONAL TIME (IN SECONDS) FOR THE SEPARATION PROCEDURE

DESCRIBED IN SECTION V-C AND AN EXISTING METHOD [26]

IS-NMF). For comparison, results obtained with the Under-
determined Blind Source Separation (UBSS) method [26] are
also shown. Four sets of mixtures whose sources are listed in
Table III were examined. The source separation result obtained
with the NMF-based method depends on the initial values of
, and . Therefore, we conducted ten trials with different

initializations for each set of mixtures. Table III shows the
computational time. Sound examples can be found at our web
page [27].
From these results, we observe the following. For music

recordings with frequent sound patterns, the new NMF-based
methods generally performed better than the existing method
[26] that relies on the spatial property and simple time-wise
activity information of each source. However, the computa-
tional burden of the NMF-based methods was heavy. This
was because many operations related to matrix inversions
and eigenvalue decompositions were involved in the NMF
updates. Among the NMF-based methods, IS-NMF produced
clearly better separation results than EU-NMF with increased
computational effort. This result supports the superiority of
IS divergence for audio signal modeling [18] also in a multi-
channel scenario.
Fig. 12 show the effect of having the redundant spatial prop-

erties mentioned in the previous subsection. We observe that
even a small number of redundant spatial properties contributed
to a better separation result than not having the redundancy

. Having too much redundancy also worked well,
but the computational demands also increased. Therefore, we
employed for the experiments whose results are
shown in Fig. 11.

Fig. 12. Source separation performance with various numbers of redundant
spatial properties . Ten trials were conducted for each mixture ID, and
thus the error bars represent one standard deviation over 40 averaged SDRs.

VI. CONCLUSION

We have presented new formulations and algorithms for mul-
tichannel NMF.We started with a simple model (17) where each
NMF basis , , has its own spatial properties .
Then, to cluster the NMF bases according to their spatial prop-
erties, we introduced the second model (40), which includes
cluster-indicator variables . Multiplicative update rules were
derived tominimize themultichannel IS divergence (16) or mul-
tichannel Euclidean distance (20). Experimental results show
that the derived multichannel algorithms were as efficient as the
standard single-channel algorithms in terms of the number of
iterations to converge. Multichannel NMF with IS divergence
produced better source separation results than with Euclidean
distance for several stereo music mixtures. Future work will in-
clude the automatic determination of such model complexity
parameters as the number of NMF bases and sources (spatial
properties) , for example by employing Bayesian nonparamet-
rics [28], [29]. Computationally efficient implementations of the
multichannel NMF algorithms, such as one using a general-pur-
pose graphics processing unit (GPGPU), will also constitute fu-
ture work.

APPENDIX I
SOLVING AN ALGEBRAIC RICCATI EQUATION

To solve (24), we perform an eigenvalue decomposition of a
matrix

(56)

and let be eigenvectors with negative eigenvalues.
It is theoretically guaranteed that there are exactly negative
eigenvalues. But in reality there may be computer arithmetic
errors. Thus, we actually sort the eigenvectors according to
the corresponding eigenvalues in ascending order and employ
the first eigenvectors.
Then, let us decompose the -dimensional eigenvectors

as

(57)
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with and being -dimensional vectors. The new is
calculated by

(58)

with and . Again to compen-
sate for computer arithmetic errors, we ensure is Hermitian
by .

APPENDIX II
PROOF FOR THE AUXILIARY FUNCTION (29)

Let us consider the minimization of defined in (29) with
respect to and subject to the constraint . By
introducing Lagrange multipliers of size , we have

(59)

By setting the partial derivative of with respect to at zero

(60)

we have . Adding this for

gives with the fact that .
Therefore, the minimum of the auxiliary function is obtained
when

(61)

and the minimum value is equal to defined in (28).
The partial derivative of with respect to Hermitian matrix
is given by [30]

(62)

Setting this zero gives .

APPENDIX III
PROOF FOR THE AUXILIARY FUNCTION (35)

Let us consider the minimization of defined in (35) with
respect to subject to the constraint . By intro-
ducing Lagrange multipliers of size , we have

(63)

The partial derivative of with respect to Hermitian matrix
is given by [30]

(64)

Setting this zero and introducing a matrix we have

(65)

A solution for this equation is given by

(66)

and adding this for gives

(67)

with the fact that . Therefore, the minimum of the
auxiliary function is obtained when

(68)

and the minimum value is equal to defined in (34).

APPENDIX IV
EM ALGORITHM FOR COMPARISON

This appendix shows an EM algorithm designed to minimize
the total multichannel IS divergence, (18) with (16), according
to the NMF model (17). The EM algorithm shown here is a
simplification of the EM algorithm shown in [16]. For the STFT
coefficient vectors , let be latent vectors
that satisfy .

E-step: calculate the expectation of the outer product of
by

(69)

with

(70)

M-step: update the NMF model parameters by

(71)

(72)

(73)
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