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ABSTRACT

In this paper, we investigate two algorithms for variational au-
toencoder (VAE)-based underdetermined multichannel source sep-
aration. We previously extended the multichannel VAE (MVAE)
method for determined multichannel source separation and proposed
the generalized MVAE (GMVAE) method for underdetermined
multichannel source separation. The GMVAE method employs
a conditional VAE (CVAE) as the source model representing the
power spectrograms of the underlying sources present in a mixture.
While we developed a convergence-guaranteed parameter estima-
tion algorithm using a majorization-minimization/minorization-
maximization (MM) algorithm, an expectation-maximization (EM)
algorithm also allows us to design another algorithm with the same
property. However, a comparison of the MM-based and EM-based
algorithms has not yet been revealed. To elucidate this, we inves-
tigate the MM-based and EM-based algorithms for the GMVAE
method, using an improved CVAE variant called auxiliary classifier
VAE (ACVAE). The experimental results suggest that the EM-based
algorithm takes less computational cost, achieving comparable sep-
aration performance with the MM-based algorithm.

Index Terms— Underdetermined multichannel source separa-
tion, variational autoencoder, convergence-guaranteed algorithm

1. INTRODUCTION

Source separation refers to the problem of separating underlying
source signals present in a mixture signal observed by a microphone
array. Source separation can contribute to helping other tasks, e.g.,
automatic speech recognition under a multi-speaker conversation sit-
uation and speaker diarization of an over-lapped speech.

Source separation is typically tackled using a frequency-domain
approach with the various source signal and/or array responses
models. As one of the popular approaches for source separation
problems, independent component analysis (ICA) [1] is a well-
established method where the separation system is assumed to exist.
While ICA employs an assumption that a mixing process generat-
ing a multichannel mixture signal from source signals is invertible,
full-rank spatial covariance analysis (FCA) [2] is known as one of
the more flexible methods. Unlike ICA, FCA assumes the mixing
system instead of the separation system and can deal with an un-
derdetermined case where the sources outnumber the microphones.
Since both ICA and FCA perform frequency-wise source separation
and all the model parameters are independent among frequencies,
it is necessary to solve permutation indeterminacy that occurred in
frequency-domain approaches [3].

This work was partly supported by JST, CREST Grant Number JP-
MJCR19A3, Japan.

To address the permutation indeterminacy, several methods at-
tempting to have part of model parameters shared among frequencies
have been developed [4, 5], and non-negative matrix factorization
(NMF) [6] is regarded as the generalization. NMF was originally
applied for a music transcription task [7], where the power spectrum
of a mixture signal observed at each time frame is approximated by
the sum of a fixed number of basis spectra scaled by time-varying
magnitudes. Multichannel NMF (MNMF) is an FCA variant that
incorporates the NMF concept into the power spectrogram model-
ing of each source [8–10], and independent low-rank matrix analysis
(ILRMA) is the determined version that introduces the NMF source
model on ICA [11,12]. Using spectral templates as acoustical clues,
MNMF and ILRMA jointly perform frequency-wise source sepa-
ration and permutation alignment. However, they can fail to work
when encountering sound sources with spectrograms that do not fol-
low the NMF source model, resulting in performance limitations.

Recently, generative approaches using deep neural networks
(DNNs) have been proposed to model source spectrograms more
flexibly than the NMF source model [13–20], where a variational
autoencoder (VAE) [21] plays a central role. For determined mul-
tichannel source separation, a method called the multichannel VAE
(MVAE) method using a conditional VAE (CVAE) [22] as the source
model has been proposed [18]. The MVAE method demonstrated
that the CVAE source model is better than the NMF source model at
expressing the spectrogram of each source and correctly discriminat-
ing the spectrogram of one source from that of another. Motivated
by the great success of the MVAE method, underdetermined coun-
terpart, the generalized MVAE (GMVAE) method, was subsequently
proposed [19].

Similar to the MVAE method, a convergence-guaranteed param-
eter estimation algorithm of the GMVAE method was developed, us-
ing an majorization-minimization/minorization-maximization (MM)
algorithm [23]. On the other hand, an expectation-maximization
(EM) algorithm [24] is also known as an iterative algorithm that
keeps increasing a log-likelihood function. Hence, an EM algorithm
allows us to design another convergence-guaranteed parameter esti-
mation algorithm. A comparison of different algorithms for a same
objective typically help in choosing the suitable approach and in con-
sidering further developments. Although comparisons of MM-based
and EM-based algorithms for FCA and MNMF have been reported
in [10] and in [25], such comparison for the GMVAE method has not
yet been revealed.

To elucidate this, we study the MM-based and EM-based
convergence-guaranteed parameter estimation algorithms for the
GMVAE method. These algorithms are investigated from the per-
spectives of computational cost and source separation performance.
Through the investigation, we employs an improved CVAE vari-
ant called auxiliary classifier VAE (ACVAE), which has achieved
success in several tasks [20, 26].
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2. PROBLEM FORMULATION

Suppose that there are J source signals and that I microphones
receive a mixture signal. Let sj(f, n) and xi(f, n) be the short-
time Fourier transform (STFT) coefficients of the j-th source signal
and the mixture signal at i-th microphone, where f and n are the
frequency and time indices, respectively. We denote the vectors
composed of the STFT coefficients of all the sources and the micro-
phones as s(f, n) = [s1(f, n), s2(f, n), . . . , sJ(f, n)]

T ∈ CJ and
x(f, n) = [x1(f, n), x2(f, n), . . . , xI(f, n)]

T ∈ CI , where (·)T
represents the transpose and C denotes the set of complex numbers.
We begin by employing the local Gaussian modeling (LGM) [27],
which assumes that sj(f, n) independently follows a zero-mean
complex Gaussian distribution with variance, i.e., power spectral
density (PSD), vj(f, n)(= E[|sj(f, n)|2]):

sj(f, n) ∼ NC(0, vj(f, n)). (1)

When sj(f, n) and sj′(f, n) are mutually independent for j 6= j′,
s(f, n) follows a complex Gaussian distribution:

s(f, n) ∼ NC(0,V(f, n)), (2)

where V(f, n) is a diagonal matrix whose diagonal entries are
v1(f, n), v2(f, n), . . . , vJ(f, n). In a general situation where J can
outnumber I , a mixing system is given by:

x(f, n) = A(f)s(f, n), (3)

where A(f) = [a1(f),a2(f), . . . ,aJ(f)] ∈ CI×J is referred to as
a mixing matrix. From Eqs. (2) and (3), x(f, n) is shown to follow
the complex Gaussian distribution with a zero-mean vector 0 and a
covariance A(f)V(f, n)AH(f, n), where (·)H represents the con-
jugate transpose. We further employ a full-rank spatial covariance
matrix (SCM) [2] on the outer product of a steering vector aj(f):

Rj(f) = aj(f)a
H
j (f). (4)

x(f, n) can be rewritten as follows:

x(f, n) ∼ NC(0,
∑

j
vj(f, n)Rj(f)). (5)

Thus, the log-likelihood function L is given by:

L c
= −

∑
f,n

[
tr
(
X(f, n)X̂−1(f, n)

)
+ log detX̂(f, n)

]
, (6)

where c
= represents the equality up to constant, and X(f, n) =

x(f, n)xH(f, n) and X̂(f, n) =
∑
j vj(f, n)Rj(f).

Once PSDs {vj(f, n)}j,f,n and SCMs {Rj(f)}j,f are esti-
mated, the j-th separated signal is obtained by applying a multi-
channel Wiener filter Mj(f, n):

ŝj(f, n) = vj(f, n)Rj(f)
(∑

j
vj(f, n)Rj(f)

)−1

︸ ︷︷ ︸
Mj(f,n)

x(f, n), (7)

followed by applying the inverse STFT.

3. THE GMVAE METHOD

3.1. CVAE and ACVAE Source Model

The original GMVAE method represents the source power spectro-
grams as the decoder outputs of the CVAE that is trained in advance
using labeled training examples. Given a normalized source spec-
trogram S̃ and the one-hot encoded label c, the encoder and decoder
distributions are assumed to follow a Gaussian distribution and a
zero-mean complex Gaussian distribution:

qφ(Z|S̃, c) = N (µφ(S̃, c),diagσ
2
φ(S̃, c)), (8)

pθ(S̃|Z, c) = NC(0, diagσ
2
θ(Z, c)), (9)

where µφ(S̃, c), σ
2
φ(S̃, c), and σ2

θ(S̃, c) denote the encoder and
decoder outputs. For CVAE, both encoder and decoder network pa-
rameters φ and θ are trained by maximizing the following training
criterion:

I(φ, θ) = E(S̃,c)∼pD(S̃,c)[EZ∼qφ(Z|S̃,c)[log pθ(S̃|Z, c)]

−DKL[qφ(Z|S̃, c)||p(Z)], (10)

where E(S̃,c)∼pD(S̃,c)[·] denotes the sample mean over a dataset,
DKL[·||·] is the Kullback-Leivler (KL) divergence, and p(Z) is a
standard Gaussian distributionN (0, I).

ACVAE is a CVAE variant that incorporates the expectation of
the mutual information I(c; S̃|Z) into the training criterion with the
aim of making the decoder output S̃ ∼ pθ(S̃|Z, c) as correlated as
possible with the class label c. Since it is difficult to use the mutual
information directly, ACVAE uses the following variational lower
bound instead:

J (φ, θ, ψ) =E(S̃,c)∼pD(S̃,c),Z∼qφ(Z|S̃,c)[

Ec′∼pD(c),S̃∼pθ(S̃|Z,c′)[log rψ(c
′|S̃)]], (11)

where rψ(c|S̃) is an auxiliary classifier distribution with the network
parameter ψ. ACVAE also incorporates the cross-entropy:

K(ψ) = E(S̃,c)∼pD(S̃,c)[log rψ(c|S̃)]. (12)

Thus, the whole training criterion of ACVAE is given by:

I(φ, θ) + λJJ (φ, θ, ψ) + λKK(ψ), (13)

where λJ ≥ 0 and λK ≥ 0 are weight parameters.
Since the decoder distribution is given in the same form as the

LGM, using the trained decoder, Eq. (1) is reformulated as follows:

vj(f, n) = gjσ
2
θ(f, n;Zj , cj), (14)

where σ2
θ(f, n;Z, c) represents the (f, n)-th element of the decoder

output σ2
θ(Z, c). gj is the global scale of j-th source signal, which

compensates for the energy gap between the training and test time.

3.2. MM-based Parameter Estimation Algorithm

An MM algorithm refers to an iterative algorithm that searches for
a stationary point of an objective function by iteratively maximizing
an auxiliary function called “minorizer” that is guaranteed to never
become above the objective function. Applying an MM algorithm
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to the log-likelihood function in Eq. (6), the following minorizer
LMM(≤ L) can be constructed [19]:

LMM
c
= −

∑
f,n,j

[
tr(X(f, n)Pj(f, n)R

−1
j (f)Pj(f, n))

vj(f, n)

+ vj(f, n)tr(K
−1(f, n)Rj(f))

]
, (15)

where Pj(f, n) and K(f, n) are auxiliary variables defined by:

Pj(f, n)←Mj(f, n), (16)

K(f, n)← X̂(f, n). (17)

An MM-based parameter estimation algorithm consists of up-
dating auxiliary variables {Pj(f, n)}j,f,n and {K(f, n)}f,n, and
maximizing the minorizer with respect to {gj}j , {Zj}j , {cj}j , and
{Rj(f)}j,f . The decoder inputs {Zj}j and {cj}j can be updated
by backpropagation:

{Zj , cj}j ← {Zj , cj}j − η∇{Zj ,cj}jLMM, (18)

where η represents a learning rate. Note that, to take a sum-to-one
constraint on cj into account, we design a softmax layer that output
cj , and the layer input is treated as the parameter to be estimated
instead. The optimal updates of {gj}j {Rj(f)}j,f are obtained as:

gj ← gj

×

√√√√∑f,n
1

σ2
θ
(f,n;Zj ,cj)

tr(X(f, n)Pj(f, n)R
−1
j (f)Pj(f, n))∑

f,n σ
2
θ(f, n;Zj , cj)tr(K

−1(f, n)Rj(f))
,

(19)

Rj(f)← Ψ−1
j (f)#Ωj(f), (20)

where # denotes the geometric mean of two positive semidefinite
matrices [28], and Ψj(f) =

∑
n gjσ

2
θ(f, n;Zj , cj)K

−1(f, n) and
Ωj(f) =

∑
n

Pj(f,n)X(f,n)Pj(f,n)

gjσ
2
θ
(f,n;Zj ,cj)

.

3.3. EM-based Parameter Estimation Algorithm

An EM algorithm maximizes a log-likelihood function by iteratively
maximizing the conditional expectation of the log-likelihood func-
tion for complete data called “Q-function” through iterative updates
called E- and M-steps. Regarding the mixture and source spectro-
grams {x(f, n)}f,n and {s(f, n)}f,n as observed and unobserved
data, the following Q-function LEM(≤ L) can be obtained:

LEM
c
= −

∑
f,n,j

[
tr(R−1

j (f)Λj(f, n))

vj(f, n)
+ log detvj(f, n)Rj(f)

]
.

(21)

Λj(f, n) is the conditional expectation of the outer product of
s(f, n) defined by:

Λj(f, n)←Mj(f, n)x(f, n)x
H(f, n)MH

j (f, n)

+ (I−Mj(f, n))vj(f, n)Rj(f), (22)

which amounts to conducting the E-step. The M-step consists of
maximizing the Q-function with respect to {gj}j , {Zj}j , {cj}j , and

{Rj(f)}j,f . Similar to the MM-based algorithm, we can update the
decoder inputs {Zj}j and {cj}j by backpropagation:

{Zj , cj}j ← {Zj , cj}j − η∇{Zj ,cj}jLEM. (23)

The optimal updates of {gj}j and {Rj(f)}j,f are obtained as:

gj ←
1

FNI

∑
f,n

1

σ2
θ(f, n;Zj , cj)

tr(R−1
j (f)Λj(f, n)), (24)

Rj(f)←
1

N

∑
n

1

gjσ2
θ(f, n;Zj , cj)

Λj(f, n). (25)

3.4. Discussion

We analyze the MM-based and EM-based algorithms in terms of ma-
trix inversion and multiplication, ignoring the common backpropa-
gation part. At each iteration, the MM-based algorithm is required
to repeat updating auxiliary variables Pj(f, n) and Kj(f, n) for up-
dating each parameter, and multiple matrix inversions and multipli-
cations are also required for updating {Rj(f)}j,f , which amounts
(3N + 2J)F matrix inversions and (5N + 2)JF matrix multipli-
cations. On the other hand, the EM-based algorithm updates an aux-
iliary variable Λj(f, n) once at each iteration, and {Rj(f)}j,f is
simply updated by weighted sum, resulting in (N + J)F matrix in-
versions and 2NJF matrix multiplications at each iteration. Thus,
the EM-based parameter estimation algorithm takes less computa-
tional cost and it is expected to reduce computational time.

4. EXPERIMENTAL EVALUATION

4.1. Experimental Settings

The proposed method was experimentally evaluated under an under-
determined multichannel speech separation scenario where the task
is to separate out three sources from their mixtures captured by two
microphones.

We used audio samples from the Voice Conversion Challenge
(VCC) 2018 dataset [29], which contains recordings of six female
and six male U.S. English speakers and includes 116 utterances of
individual speakers. We used 100 utterances of two female and two
male speakers for training and another 10 utterances of different two
female and two male speakers for the test. Similar to [19], we gener-
ated 40 mixtures of three speakers by randomly choosing the utter-
ances from the test dataset, where a reverberation time T60 was set
to 78 ms. All the speech signals were sampled at 16 kHz, and STFT
analysis was conducted with a 128-ms window length with a 64-ms
shift length.

We used MNMF methods with the EM-based and MM-based
optimizations (EM-MNMF, MM-MNMF) [9, 10], and the ConvTas-
Net [30] as the baseline methods, which are also used for initial-
izing the GMVAE method. The number of NMF bases was set to
10 for each speaker, and the spectral dictionaries of each speaker
were obtained using Itakura-Saito NMF (IS-NMF) [31] with 1000
iterations. At the test time, both MNMFs were run for 300 itera-
tions, where the intermideate separated signals at 200-th iteration
were used for initializing the GMVAE method. We used an aster-
oid [32] recipe and trained a ConvTasNet model, using a single-
channel three-speaker source separation dataset generated from Lib-
riSpeech [33], i.e., Libri3Mix [34]. After the training, we indepen-
dently fed the individual channels of a multichannel mixture sig-
nal to the ConvTasNet, and the separated signals at each channel
were then concatenated to construct multichannel separated signals.
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Fig. 1: Source separation performances under a speaker-open condition, where the error bars and the numbers in parentheses show the 95 %
confidence intervals and the number of backpropagation optimizations, respectively.

Table 1: Computational times per iteration for a 6.89-second speech
mixture [s], where the numbers in parentheses show the number of
backpropagation optimizations.

Optimization MNMF The GMVAE method
approach (1) (3) (9) (27)

MM (CPU) 0.95 1.41 2.07 4.16 10.15
EM (CPU) 3.34 0.89 1.55 3.64 9.46
MM (GPU) − 1.05 1.15 1.47 2.43
EM (GPU) − 0.59 0.71 1.00 1.92

These separated signals were also used for initializing the GMVAE
method.

We used three-layer convolutional, three-layer deconvolutional,
and four-layer convolutional neural networks with gated linear units
(GLUs) for the encoder, decoder, and auxiliary classifier, respec-
tively. All the weight parameters λJ and λK were set to 1. The
number of training epochs was set to 1000. We used the Adam al-
gorithm [35] with a learning rate of 0.0001 and 0.01 for the training
and test, respectively.

As the evaluation metrics, we used the signal-to-distortion ratio
(SDR), the source image-to-spatial distortion ratio (ISR), the signal-
to-inference ratio (SIR), the signal-to-artifact ratio (SAR) [36], the
perceptual evaluation of speech quality (PESQ) [37], and the short-
time objective intelligibility (STOI) [38].

4.2. Experimental Results

Table 1 shows a comparison of the computational time of each
method, where faster performances are denoted in bold fonts. We
used an Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz and a
NVIDIA Tesla K80 for the comparison. Unlike MNMF, in the GM-
VAE method, the EM-based algorithm is consistently faster than the
MM-based one. We can see that, when using a GPU, the EM-based
GMVAE methods with less than 10 backpropagations are faster than

or as fast as the MM-based MNMF. Furthermore, even when using
a CPU, the EM-based GMVAE method with one backpropagation is
as fast as the MM-based MNMF.

Fig. 1 shows a comparison of the separation performance of each
method with different initialization. We can see that, when increas-
ing the number of backpropagations, the GMVAE method consis-
tently achieves better performance and that the EM-based GMVAE
method achieves comparable performances with the MM-based GM-
VAE method. Comparing the initialization methods, we can see that,
the better initialization method is used, i.e., ConvTasNet, the larger
performance improvements the GMVAE method can gain.

These results demonstrate that 1) the EM-based GMVAE
method is as fast as the conventional MM-based MNMF while
achieving better performance, 2) the EM-based GMVAE method is
faster than the MM-based GMVAE method while achieving compa-
rable performance, and 3) better initialization methods can help the
GMVAE method achieve higher separation performances.

5. CONCLUSION

This paper developed the GMVAE method for underdetermined mul-
tichannel source separation and investigated the MM-based and EM-
based convergence-guaranteed parameter estimation algorithms. We
analyzed and compared the MM-based and EM-based algorithms
in terms of computational cost and separation performance, using
an ACVAE instead of a CVAE as the source model of the GMVAE
method. The experimental results demonstrated that the EM-based
GMVAE method consistently outperformed a conventional MNMF
and that the EM-based GMVAE was faster than the MM-based GM-
VAE method achieving comparable performance.

Future work includes use of inferences from encoder and auxil-
iary classifier [20] and jointly-diagonalizability constraint on a full-
rank SCM [39, 40] for speeding up and improving the algorithm.
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