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ABSTRACT
This paper proposes a variational autoencoder (VAE)-based method
for voice conversion (VC) on arbitrary source-target speaker pairs
without parallel corpora, i.e., non-parallel any-to-any VC. One typi-
cal approach is to use speaker embeddings obtained from a speaker
verification (SV) model as the condition for a VC model. However,
converted speech is not guaranteed to reflect a target speaker’s char-
acteristics in a naive combination of VC and SV models. Moreover,
speaker embeddings are not designed for VC problems, leading to
suboptimal conversion performance. To address these issues, the
proposed method, JSV-VC, trains both VC and SV models jointly.
The VC model is trained so that converted speech is verified as the
target speaker in the SV model, while the SV model is trained in or-
der to output consistent embeddings before and after the VC model.
The experimental evaluation reveals that JSV-VC outperforms con-
ventional any-to-any VC methods quantitatively and qualitatively.

Index Terms— Voice conversion, speaker verification, parallel-
data-free, any-to-any mapping, joint learning

1. INTRODUCTION

Voice conversion (VC) is the process of converting the non-linguistic
or the para-linguistic information of an input speech while preserv-
ing the linguistic information. VCs are helpful in a wide variety of
applications, such as speaker identity modification in text-to-speech
(TTS) [1], synthetic data augmentation in automatic speech recog-
nition (ASR) [2], and speaking-aid or -assistant systems [3, 4]. De-
pending on the limitation of the training corpus, VC models fall into
either parallel VCs or parallel-data-free (i.e., non-parallel) VCs.

In parallel VCs, the training corpus is restricted to parallel cor-
pora in which both source and target speakers utter each sentence.
One widely studied approach to parallel VCs involves training a fea-
ture mapping function, represented by a Gaussian mixture model
(GMM) [5–7] or a deep neural network (DNN) [8, 9]. In particu-
lar, parallel VCs using sequence-to-sequence (S2S) models [10–13]
have been shown to provide impressive performance.

On the other hand, non-parallel VCs have also attracted atten-
tion due to the ease of data collection, where two main approaches
have been proposed; generative adversarial network (GAN) [14]-
based approach, and variational autoencoder (VAE) [15]-based ap-
proach. A typical GAN-based non-parallel VC employs a Cycle-
GAN [16–20] or a many-to-many extension called StarGAN [21–
24]. The conversion network (generator) is adversarially trained
with a spoofing detection network (discriminator), where a cycle-
consistency loss plays an essential role in preserving the linguistic
context. VAE-based non-parallel VCs typically employ a condi-
tional VAE (CVAE) [25–29]. Encoder and decoder networks are
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trained so that the encoder outputs latent features independent from
an input condition while the decoder reconstructs acoustic features
conditioned on the given condition. A conversion process can be
performed by simply changing the condition. There has been pro-
posed several extensions such as vector quantization (VQ) in a latent
space [30], cycle-consistency loss as CycleGAN [31], autoencoder
(AE)-based training criterion [32].

Motivated by the great success of non-parallel VCs, recently,
various methods [32–35] have attempted to a more general situation,
where arbitrary source-target pairs can be applicable, i.e., any-to-
any situation. As one of the non-parallel any-to-any VC baselines,
AutoVC has been proposed [32]. AutoVC improves VAE-based
non-parallel approaches and includes an AE-based VC model with
a carefully-designed bottleneck and a pre-trained speaker recogni-
tion (SR) model, namely the speaker verification (SV) model. In
AutoVC, the SV model is trained using a well-established criterion
called generalized end-to-end (GE2E) loss [36] in advance. Then,
the VC model is trained using the AE-based training criterion by
combining the speaker embeddings obtained from the SV model as
the condition. This framework of using both VC and SV models
allows us to handle non-parallel any-to-any VCs, demonstrating the
conversion performance. However, one drawback in AutoVC would
be that since AutoVC uses self-reconstruction loss only in the VC
model training, the VC model is trained not considering the conver-
sion process. As a result, the converted speech is not guaranteed to
reflect a target speaker’s characteristics well. Another limitation is
that the speaker embeddings are optimized for the SV model, not the
VC model, leading to suboptimal performance.

To address these issues, this paper proposes a non-parallel any-
to-any VC method called JSV-VC, jointly-trained speaker verifica-
tion and voice conversion models. JSV-VC not only uses a self-
reconstruction loss but also uses a training objective that considers
the conversion process. Furthermore, JSV-VC employs a joint learn-
ing approach, where the VC model is trained so that the converted
speech is verified as a target speaker in the SV model. Meanwhile,
the SV model is trained in order to output consistent speaker em-
beddings between the utterances before and after the VC model. It
is noteworthy that JSV-VC can be viewed as an any-to-any exten-
sion of the non-parallel many-to-many VC using an auxiliary clas-
sifier variational autoencoder (ACVAE) called ACVAE-VC [29]. In
ACVAE-VC, the VC model is trained considering the conversion
process through a speaker identification (SI) model represented by
the auxiliary classifier. On the other hand, in the proposed JSV-VC,
an auxiliary classifier is treated as the SV model and applied for any-
to-any settings.

2. CONVENTIONAL METHOD: AUTOVC

Let the acoustic feature and the attribute class label, e.g., speaker
identity, be X and y, respectively. AutoVC is an AE-based VCIC
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method that can handle any-to-any VC problems, and consists of
three modules: a content encoder, a decoder, and a pre-trained style
encoder. Using network parameters of the content encoder ϕ′, the
decoder θ′, and the style encoder ψ′, the VC model is trained by
minimizing the following self-reconstructions losses:

H1 =E
y∼p(y),X1,X2

i.i.d.∼ p(X|y)
[

||fθ′(fϕ′(X1), fψ′(X2))−X1||22], (1)

H2 =E(X,y)∼p(X,y)[||gθ′(fϕ′(X), fψ′(X))−X||22], (2)
H3 =E

y∼p(y),X1,X2
i.i.d.∼ p(X|y)

[

||fψ′(fθ′(fϕ′(X1), fψ′(X2)))− fψ′(X1)||1], (3)

where fϕ′(·), fθ′(·), and fψ′(·) are outputs of the content encoder,
the decoder, and the style encoder, respectively, and gθ′(·) is the de-
coder’s intermediate output. Eqs. (1-(3) represent the reconstruction
losses in feature and embedding spaces.

3. PROPOSED METHOD: JSV-VC

The proposed JSV-VC employs the same framework as ACVAE-
VC [29]. The relationship between the SI model in ACVAE-VC
and the SV model in the proposed JSV-VC is described, and then
an SV model using GE2E loss is introduced. Furthermore, the joint
learning approach for the VC model and the SV model is presented.

3.1. General framework

JSV-VC assumes that the encoder distribution qϕ(Z|X, y) and the
decoder distribution pθ(X|Z, y) follow Gaussian distributions:

qϕ(Z|X, y) = N (µϕ(X, y),diagσ
2
ϕ(X, y)), (4)

pθ(X|Z, y) = N (µθ(Z, y),diagσ
2
θ(Z, y)), (5)

where µϕ(X, y) and σ2
ϕ(X, y) are the encoder outputs, and µθ(Z, y)

and σ2
θ(Z, y) are the decoder outputs. Similar to ACVAE-VC [29],

using both encoder and decoder network parameters ϕ and θ, the
following variational lower bound to be maximized is used for the
training criterion:

I = E(X,y)∼p(X,y)[EZ∼qϕ(Z|X,y)[log pθ(X|Z, y)]
−DKL[qϕ(Z|X, y)||p(Z)]], (6)

where DKL[·||·] is the Kullback-Leibler (KL) divergence. We as-
sume the prior distribution p(Z) as a standard Gaussian distribution.

Different from AutoVC [32] and conventional VAE-based
VCs [16, 30, 31], the proposed framework incorporates the expecta-
tion of the mutual information I(y;X|Z) into the training criterion.
This makes the decoder output X ∼ pθ(X|Z, y) as correlated as
possible with the attribute class label y. Since it is difficult to use the
mutual information directly, the following variational lower bound
instead is used:

J =E(Xs,ys)∼p(X,y),Z∼qϕ(Z|Xs,ys)[

E(Xt,yt)∼p(X,y),X∼pθ(X|Z,yt)[log rψ(yt|X)]], (7)

where rψ(y|X) is an auxiliary classifier distribution with the net-
work parameter ψ. In eq. (7), the auxiliary classifier only takes
converted features obtained through the encoder network and the
decoder network, resulting in insufficient performance. Thus, the
following cross-entropy is also incorporated in the training:

K = E(X,y)∼p(X,y)[log rψ(y|X)]. (8)

3.2. Introduction of speaker verification using GE2E loss

While ACVAE-VC deals with many-to-many VC problems, JSV-VC
handles any-to-any VC problems, where source speakers and target
speakers can be known or unknown. AutoVC and its variants [35]
successfully handle this by introducing speaker representation, i.e.,
speaker embeddings obtained from SV models using GE2E loss.
Following the same methodology, JSV-VC extends the ACVAE-VC
framework by introducing an SV model. The connection between
the SI model in ACVAE-VC and the SV model in JSV-VC can be
derived as follows.

Assume that the auxiliary classifier is composed of a feature ex-
traction network and a linear classifier and a dataset containsK-class
samples. Given M training samples {(Xm, ym)}m at each training
step, eq. (8) can be approximated as follows:

K =
1

M

∑
m
log rψ(ym|Xm)

=
1

M

∑
m
[rm,ym − log

∑
k
exp rm,k], (9)

where rm,k denotes the unnormalized log probability referred to as
“logit”, and is defined as:

rm,k = wT
kem + bk, (10)

where wk ∈ [wT
1 , . . . ,w

T
K ]T(= W), bk ∈ [b1, . . . , bK ](= b) are

learnable weight and bias. em = fψ(Xm) is the intermediate output
of the auxiliary classifier, i.e., speaker embedding.

Since eq. (9) takes the same form as [36], GE2E loss can be
introduced by modifying the minibatch building way and the logit.
First, M training samples can be constructed by collecting I utter-
ances from J different speakers: M = IJ . When the m-th training
sample corresponds to the sample from the i-th utterance of the j-th
speaker, the index m can be represented as (i, j). Next, the logit
rm,k(= ri,j,k) in eq. (9) is modified as follows:

ri,j,k =

{
w cos(ei,j , c

\i
j ) + b (k = j)

w cos(ei,j , ck) + b (otherwise)
, (11)

where w and b are learnable parameters, and ck = 1
I

∑
i ei,k and

c
\i
j = 1

I−1

∑
i′,i′ ̸=i ei′,j are the centroids including and exclud-

ing i-th utterance, respectively. Note that K represents the number
of speakers in each minibatch. Similarly, eq. (7) can also be ap-
proximated in the same fashion. Thus, the auxiliary classifier can
be treated as the SV model in JSV-VC, where speaker embedding
fψ(X) is used instead of y as the condition of the VC model.

3.3. Joint learning scheme

Since JSV-VC uses speaker embeddings as the condition of the VC
model, training criteria eqs. (6, 7) are modified as follows:

I =EX∼p(X)[EZ∼qϕ(Z|X,fψ(X))[log pθ(X|Z, fψ(X))]

−DKL[qϕ(Z|X, fψ(X)))||p(Z)]], (12)
J =E(Xs,ys)∼p(X,y),Z∼qϕ(Z|Xs,fψ(Xs))[

E(Xt,yt)∼p(X,y),X∼pθ(X|Z,fψ(Xt))[log rψ(yt|X)]]. (13)

Eq. (12) is currently the training criterion for both the VC model
and the SV model, and the speaker embeddings are trained by con-
sidering a VC problem. Furthermore, in order to make the speaker
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embeddings of before and after the VC model more consistent, JSV-
VC maximizes the following cosine similarity criterion:

L = EXb∼p(X)[EZ∼qϕ(Z|Xs,fψ(Xb))[

EXa∼pθ(X|Z,fψ(Xb))[cos(fψ(Xb), fψ(Xa))]]].

(14)

3.4. Conversion procedure

At the conversion, a source feature X can be converted by using the
source and target speaker embeddings es and et:

X̂ = µθ(µϕ(X, es), et). (15)

The speaker embeddings of source and target speakers can be ob-
tained in various ways. In particular, in a one-shot situation in which
one source utterance Xs and one target utterance Xt are only avail-
able, the source and target speaker embeddings es and et can be ob-
tained using the SV model. Converted feature are then reconstructed
to time-domain signals with a neural vocoder [37, 38].

4. EXPERIMENTAL EVALUATION

4.1. Experimental configurations

The experimental evaluation was conducted under an any-to-any
and one-shot scenario, where source speakers and/or target speakers
are known and/or unknown. The experiment used the CMU Arctic
database [39], which consists of recordings of 18 speakers reading
phonetically balanced English sentences. Since part of the sentences
were not read, the same 592 sentences all the speakers read were
used in the experiment, which amounts to 10656 utterances. The
sentences were divided into 16, 64, and 512 for testing, validation,
and training. For testing, male speaker “rms” and female speaker
“slt” were selected as the unknown speakers, and different male
speaker “bdl” and female speaker “clb” were selected as the known
speakers. For training, “bdl”, “clb,” and the rest of the 14 speakers,
including nine male speakers and file female speakers, were used.
This resulted in 8192 training utterances from 16 speakers and 64
test utterances from 4 speakers. All the speech signals were sampled
at 16 kHz, and 80-dimensional log mel-spectrograms were extracted
with a 64 ms frame length and an 8 ms frameshift.

For comparison, we used as the baseline and compared with
JSV-VC. We also investigated AutoVC and JSV-VC with and with-
out joint learning of the SV model. Table. 1 shows a summary of the
methods in the experimental evaluation. The VC model in JSV-VC
was based on the official implementation of ACVAE-VC1, which
consists of a convolutional neural network (CNN)-based encoder-
decoder architecture. The encoder and decoder networks consisted
of three-layer convolutional and decovolutional architectures with
gated linear units (GLUs) [40], where the dimensions of hidden and
latent features were set to 64 and 16, respectively. Similarly, the

Table 1: Categorization of methods for comparison.

Method Training objective
AutoVC [32] minϕ′,θ′ H1 +H2 +H3

AutoVC w/ SV minϕ′,θ′,ψ′ H1 +H2 +H3 −K
JSV-VC w/o SV maxϕ,θ I + J + L
JSV-VC (proposed) maxϕ,θ,ψ I + J +K+ L

1https://github.com/kamepong/ACVAE-VC
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Fig. 1: MCDs with 95 % confidence intervals, where “K2K”,
“K2U”, “U2K”, “U2U” represents known-to-known, known-to-
unknown, unknown-to-known, and unknown-to-unknown VC set-
tings, respectively.

VC model of AutoVC was prepared using official implementation2.
Note that the VC model of AutoVC was initialized with a distributed
pre-trained model to make the training stable. Following [36], the
same SV model was prepared for both AutoVC and JSV-VC (ψ′ =
ψ), which is composed of a three-layer long-short term memory with
projection (LSTMP) followed by a fully connected layer and an L2
normalization layer. The dimensions of hidden features, projections,
and embeddings were set to 768, 256, and 256, respectively.

For the VC model trainings, the Adam optimizers [41] were
used, where the learning rates were set at 1.0 × 10−4 for AutoVC
and 1.0 × 10−3 for JSV-VC. Each SV model was trained using a
stochastic gradient descent (SGD), where the learning rate was set
at 1.0 × 10−2. The gradient norm of the VC model in JSV-VC and
the SV models were clipped, where the clipping values were set to
1.0 for the VC model and 3.0 for the SV models. In the SV models,
the gradient scalings for the projection node in LSTMP and GE2E
loss were also applied, and the scaling values were set at 0.50 and
0.01, respectively. The weight and bias parameters in GE2E loss
were set to 10 and -5, respectively. Each minibatch was built using
four utterances from 16 different speakers, where each utterance was
trimmed to a clip with a random frame length of 0.8-1.2 seconds. All
the models were trained for 500k iterations.

To avoid a combinatorial explosion in converting the test utter-
ances, the sentences of the utterances from source and target speak-
ers were restricted to be identical. This resulted in 192 source-
speaker utterance pairs. Speaker embeddings of source and target
speakers were extracted with a sliding window approach, where a
1.0 s window length and a 0.2 s frameshift were used. For the gener-
ation of time-domain signals, the HiFi-GAN vocoder was used [38].
HiFi-GAN vocoder was prepared from a publicly available imple-
mentation3, where “V2” network architecture was used.

4.2. Objective evaluation

As the evaluation metrics, the average of the Mel-cepstral distortions
(MCDs) between the converted and target signals was used in the
objective evaluation, where the dynamic time warping (DTW) was
applied to align Mel-cepstral sequence pairs in advance. The frame-
level MCDs were averaged to obtain the utterance-level MCDs for
each converted signal. In addition to AutoVC-based and JSV-VC-
based methods, synthesized signals obtained from source features
and target features were also evaluated.

2https://github.com/auspicious3000/autovc
3https://github.com/kan-bayashi/ParallelWaveGAN
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(a) Source feature.
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(b) AutoVC.
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(c) AutoVC w/ SV.
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(d) Target feature.
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(e) JSV-VC w/o SV.
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(f) JSV-VC.

Fig. 2: Mel-spectrograms of (a) source feature, (b) AutoVC, (c) AutoVC w/ SV, (d) target feature, (e) JSV-VC w/o SV, and (f) JSV-VC, where
the source speaker is an unknown female speaker and the target speaker is a known female speaker.

Fig. 1 shows a comparison of the conversion performance of
each method with different source-target pairs. First, the source
feature performs worst, and the target feature performs best, show-
ing the lower and upper bound in the HiFi-GAN vocoder. On the
one hand, comparing AutoVC-based methods, the AutoVC with the
joint learning causes performance degradation. On the other hand,
in a comparison of JSV-VC-based methods, we can see that joint
learning provides performance improvements. Although AutoVC
and JSV-VC use different network architectures, one clear differ-
ence is whether there exist training criteria that consider a conversion
process. From these results, we can conclude that it is important to
use not only self-reconstruction training objectives but also the train-
ing criterion that considers a conversion process, and joint learning
contributes to improving conversion performances in the JSV-VC
framework.

4.3. Subjective evaluation

A subjective evaluation test on speaker similarity was conducted to
investigate the perceptual quality. In the subjective evaluation, five
converted samples per source-target pair were used to reduce the
evaluation cost, resulting in 60 samples for each method. A pref-
erence test was conducted for speaker similarity, where six different
conversion methods including synthesized signals from source fea-
tures and target features were evaluated. Ten subjects were joined;
each subject was presented with two utterances and asked to assign
a score by selecting “1: Different (sure)”, “2: Different (not sure)”,
“3: Same (not sure)”, or “4: Same (sure)”. Note that one of two ut-
terances for each sample was the natural speech of a target speaker,
and the speaker similarity against the target natural speech was in-
vestigated.

Fig. 2 shows a comparison of the converted samples of each
method. We can see that the samples from AutoVC-based methods
closely resemble the source feature, which implies the conversion
failure. On the other hand, JSV-VC-based methods can successfully
generates mel-spectrograms more resembling to the target feature.
Fig. 3 shows a comparison of the preference scores of each method
on speaker similarity. When comparing AutoVC-based methods and
JSV-VC methods, the proposed approaches outperform conventional
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Fig. 3: Preference percentages for speaker similarity, where the av-
erage preference scores are denoted as white dots with 95 % confi-
dence intervals.

approaches. It can be seen that AutoVC w/ SV underperforms Au-
toVC and resembles the result of the source feature, and we can con-
firm that the conversion performances would be insufficient. Finally,
compared to JSV-VC-based methods, JSV-VC has slightly better
performance than that without the joint learning approach, demon-
strating its effectiveness.

5. CONCLUSION

This paper proposed a non-parallel any-to-any VC method called
JSV-VC, jointly-trained speaker verification and voice conversion
models. JSV-VC was based on ACVAE-VC, where a training cri-
terion considering a conversion process was included. JSV-VC in-
troduced an SV model, and the VC model was trained so that a con-
verted speech is correctly verified as a target speaker. Meanwhile,
the SV model was trained in order to output consistent speaker em-
beddings before and after the VC model. Furthermore, a joint learn-
ing approach of training both the VC model and the SV model was
presented. The experimental results revealed that JSV-VC outper-
forms conventional AutoVC, demonstrating the effectiveness of the
joint learning approach.
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