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AbstractÐThis paper proposes a new voice conversion (VC)
task from human speech to dog-like speech while preserving
linguistic information as an example of human to non-human
creature voice conversion (H2NH-VC) tasks. Although most VC
studies deal with human to human VC, H2NH-VC aims to
convert human speech into non-human creature-like speech. Non-
parallel VC allows us to develop H2NH-VC, because we cannot
collect a parallel dataset that non-human creatures speak human
language. In this study, we propose to use dogs as an example
of a non-human creature target domain and define the ªspeak
like a dogº task. To clarify the possibilities and characteristics
of the ªspeak like a dogº task, we conducted a compara-
tive experiment using existing representative non-parallel VC
methods in acoustic features (Mel-cepstral coefficients and Mel-
spectrograms), network architectures (five different kernel-size
settings), and training criteria (variational autoencoder (VAE)-
based and generative adversarial network (GAN)-based). Finally,
the converted voices were evaluated using mean opinion scores:
dog-likeness, sound quality and intelligibility, and character error
rate (CER). The experiment showed that the employment of
the Mel-spectrogram improved the dog-likeness of the converted
speech, while it is challenging to preserve linguistic information.
Challenges and limitations of the current VC methods for H2NH-
VC are highlighted.

I. INTRODUCTION

Voice conversion (VC) is a technology that converts the

speech waveform of the source speaker into a speech waveform

with the characteristics of the target speaker while preserving

linguistic information [1]. Specifically, in many VC methods,

acoustic features are first extracted from the source speaker’s

speech waveform using speech analysis and then converted

to acoustic features similar to those of the target speaker.

Finally, a speech waveform is synthesized using the converted

acoustic features. Most VC studies have focused on human to

human VC. In this study, we consider human to non-human

creature VC (H2NH-VC). H2NH-VC converts human voice

into non-human creature-like voice while preserving linguistic

information. Non-human creature-like voice refers to voice

with certain non-human creature elements such as animals and

monsters speaking in a fantasy world. We expect technologies

that can efficiently generate non-human creature-like voice to

extend the possibility of creative works in cinema production,

game playing, etc. In this study, we focus on dogs as a

representative example of the non-human creature target do-

main because dog voices are relatively easy to collect and are

familiar and prevalent in our daily lives. We define an H2NH-

VC task called ªspeak like a dog,º task and investigate the

plausibility and challenges of applying existing non-parallel

VC methods in this study. Figure 1 illustrates an overview of

the human to dog VC.

Notably, the recent development of non-parallel VC meth-

ods [2]±[5] has made H2NH-VC a possibility. In studies on

H2NH-VC, the collection of ground truth speech signals has

been a critical barrier to conducting the study. Since ªthere is

no dog in this world that speaks human languages,º the ground-

truth utterance output from the VC system corresponding to

the input utterance cannot be obtained. Therefore, conventional

VC methods that require parallel data for training, parallel

VC methods [6]±[8], cannot be used. For more examples and

details of parallel VC methods, readers are referred to a recent

review article [9].

The parallel data consists of source and target speech pairs

used to express the same sentence. In contrast, non-parallel

VC methods do not require parallel data. This means that non-

parallel VC methods have theoretically overcome the barrier

of H2NH-VC. Recent deep learning-based, non-parallel VC

methods have achieved a VC that is comparable to the ground

truth speech in a mean opinion score (MOS) test [10], [11].

The baseline methods in Voice Conversion Challenge [12] are

based on generative adversarial networks (GAN) or variational

autoencoders (VAE). One example of a GAN-based method is

StarGAN-VC [13], [14], and one example of a VAE-based

method is the auxiliary classifier VAE-based VC (ACVAE-

VC) [15]. However, the applicability of these non-parallel VC

methods to H2NH-VC tasks has not been explored.

To this end, in this paper, we propose a task called ªspeak

like a dog,º which is a new task for VC from human voice

into dog-like voice while preserving linguistic information.

We construct datasets and evaluation criteria for this task. In

addition, we investigated how much VC could be achieved

using existing non-parallel VC methods. We experimented

with comparing acoustic features, network architectures, and

training criteria as baseline methods.

The main contributions of this paper are twofold.

• We propose the ªspeak like a dogº task as an example of

H2NH-VC tasks and construct a dataset and evaluation

criteria.

• We investigated the possibilities and characteristics of
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Human speech

"Isshuukan bakari nyu-

yo-ku wo shuzai shita."

"Ryokan ya hoteru ni 

tuku to hijouguchi wo 

tazuneru."

Dog voice
"Bow wow"

"Bow wow, bow wow"

"Woof, woof"

Ikita junkatsuyu desu.

Optimized
parameter Ikita junkatsuyu desu.

Fig. 1. Overview of the human to dog VC. The linguistic information in the
training data may differ between speakers.

ªspeak like a dogº task by conducting an experiment com-

paring existing representative non-parallel VC methods

in acoustic features, network architectures, and training

criteria.

The remainder of this paper is organized as follows. Section

2 defines the speech task as a dog task. Section 3 describes

the methods used in the experiment. Section 4 describes

comparative experiments. Finally, Section 5 concludes the

paper.

II. SPEAK LIKE A DOG TASK

A. Problem definition

The proposed ªspeak like a dogº task is one of the H2NH-

VC tasks that converts human voice into dog-like voice while

preserving linguistic information and representing a dog-like

element of the target domain. Thus, the VC method should pre-

serve linguistic information and represent dog-like elements. It

is not enough to satisfy only one or the other. In particular, it

is important to preserve linguistic information, that is, uttered

sentences are recognized correctly by listeners, while ensuring

dog-likeness, sound quality, and intelligibility of speech.

B. Dataset

A dataset can be non-parallel but should contain human

speech signals and dog voices. We constructed an example

dataset for the ªspeak like a dogº task. Details of the dataset

can be found on our website1. The abstract of the dataset is

as follows.

ATR digital sound database. We use the ATR digital sound

database [16] for human speech signals. This is a database

of speech recordings of sentences, single words, and other

standardized content uttered by two male (MMY and MTK)

and two female (FKN and FTK) professional announcers. The

number of each domain’s sounds is 503. Total time for FKN

and MMY dataset is 45 and 39 minutes, respectively.

1https://github.com/suzuki256/dog-dataset

Dog dataset. The dog dataset was constructed from several

studies [17]±[19], Freesound project [20], freesoundslibrary,

and Youtube. Because there is no dog dataset created for VC,

we removed extremely soft, loud, and noisy sounds from our

collected data. We also divided them into two datasets based

on pitch, adult dog and puppy. The number of adult dog and

puppy sounds is 792 and 288, respectively. The total time for

adult dogs and puppies is 36 and 29 minutes, respectively.

Note that the total time includes much of the time between

barks. The dataset is available under the terms of the Creative

Commons Attribution-NonCommercial license.

C. Evaluation criteria

Mean Opinion Score (MOS). We defined three MOSs for

the ªspeak like a dogº task. They can be obtained by asking

subjects to rate the following three MOS tests on a scale of 1

to 5:

1) Dog-likeness: How much of the dog-like element is

included?

(1 indicates completely not dog-like, and 5 indicates

completely dog-like).

2) Sound quality: How good is the sound quality?

(1 indicates completely low quality, and 5 indicates

completely high quality.)

3) Clarity: How intelligibly were you able to hear the

spoken utterance given a written text of the content of

the spoken utterance?

(1 indicates complete vagueness, and 5 indicates com-

plete intelligibility).

Character Error Rate (CER). To evaluate how H2NH-

VC preserves linguistic information, we use the character

error rate (CER), which represents the error rate between the

transcribed sentences of converted speech by the listener and

the correct sentences. The CER is defined as

CER =
D+S+ I

N
, (1)

where D, S, I, and N are the number of deletion errors, substi-

tution errors, insertion errors, and characters in the reference,

respectively.

III. METHOD

In this section, we introduce the methods for the experiment.

The key elements involved in VC are acoustic features, net-

work architectures, and the methods of learning the conversion

model. Each element has multiple options, but it is not clear

what combination is appropriate for converting human voice

to dog-like voice.

A. Acoustic features

The main acoustic features transformed by VC are MCC

sequences and the mel-spectrogram. MCC is an acoustic

feature that corresponds to the spectral envelope (shape of the

human vocal tract), and the mel-spectrogram is an acoustic

feature that includes a harmonic structure (close to the raw

acoustic spectrum). Therefore, it is not clear whether MCC
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Fig. 2. Overview of ACVAE-VC training [15]. x̃ and x denote acoustic feature
sequences. c̃ and c denote speaker information. z denote latent variable.
qφ (z|x̃, c̃) output the mean µφ and variance σ2

φ of the latent variable z following

a normal distribution. pθ (x|z,c) output the mean µθ and variance σ2
θ of the x

that follows a normal distribution. rψ (c|x) output distribution p which speaker
uttered the acoustic feature sequences x.

is appropriate for representing a dog’s spectral envelope. We

predict that the mel-spectrogram works better than MCC in

the ªspeak like a dogº task. We then compared the results of

the experiments.

B. Network architecture

Network architectures is another element to investigate.

In recent years, both convolutional neural network (CNN)-

based [21]±[24] and recurrent neural network (RNN)-based

network architectures [25]±[27] have been employed in VC

studies. For example, StarGAN-VC is based on three networks,

a generator, discriminator, and domain classifier, with CNN

architectures.

This study focuses on a CNN-based network architecture

that can be easily investigated by changing the kernel size. We

want to investigate how much time range the VC system needs

to capture in the ªspeak like a dogº task. In the experiment, we

focus on the kernel size k because it is not obvious how wide

a range of time dependencies must be captured in acquiring a

model for converting human voice to dog-like voice.

Notably, unlike humans, dogs’ voice is short. Therefore,

reducing the kernel size of the discriminator and the domain

classifier reduces the receptive field of the CNN. That may

potentially results in more dog-like voice. However, increasing

the kernel size increases the amount of information the CNN

receives and may allow for a conversion that comes closer to

human voice, preserving linguistic information.

C. Training criterion

A VAE-based VC method and a GAN-based VC method

have been proposed to enable non-parallel VC. In this study,

we used StarGAN-VC and ACVAE-VC because they are

known to function in standard VC tasks as benchmark methods

and a type of major generative model.

ACVAE-VC. Figure 2 illustrates an overview of ACVAE-VC.

ACVAE-VC is a VC method that applies the regularization

concept of InfoGAN [28] to conditional VAE (CVAE) [29] One

of the strengths of this method is its fast learning convergence

and stable acquisition of high-performance conversion models.

StarGAN-VC. Figure 3 illustrates an overview of StarGAN-

VC. StarGAN-VC is a VC method that can train many-

𝐱
ො𝐱

𝒄′
𝒄 𝒚

𝐺(𝐱, 𝑐) ො𝒄

𝒄
𝐺
𝐺 𝒄′

𝐶
𝒄 𝐷

Fig. 3. Overview of StarGAN-VC training [13], [14].

to-many conversion models on non-parallel data based on

StarGAN’s [30] learning method. One of the strengths of this

method is the possibility of obtaining a conversion model that

performs as well as or better than ACVAE-VC, if hyperparam-

eters that allow for good learning convergence can be found.

IV. EXPERIMENT

A. Conditions

The speaker information used for training the VC mod-

els were (ªFKN,º ªMMY,º ªpeople (FKN, FTK, MMY, and

MTK),º ªadult dog,º ªpuppy,º and ªdogs (adult dog and

puppy)º). Ten recording samples were randomly selected from

each domain as evaluation data. The remaining data of each

domain were used as the training data. The sounds used

in the evaluation is that converted from FKN to adult dog,

original sounds of FKN and adult dog before the conversion,

and white noise. Five listeners took part in experiment. The

listeners participated in each MOS test only once. Regarding

CER tests, each converted voice was presented to a listener

twice to prevent the listener from missing to listen to it.

In this experiment, we generated a speech waveform using

WORLD [31] (D4C edition [32]) and parallel WaveGAN [33],

and the acoustic features input to the VC model were the

MCC sequences and mel-spectrogram, respectively. We trained

Parallel WaveGAN with the same dataset as the VC method.

Experiment 1: comparing acoustic features and learning

methods. We performed VC using StarGAN-VC with MCC

and the mel-spectrogram and ACVAE-VC with MCC and the

mel-spectrogram using default kernel sizes in original paper.

Experiment 2: comparing the kernel size k of the con-

version model (CNN). We define the kernel size kd of the

discriminator and domain classifier described in the original

paper as default values. The kernel size kd − 2, kd − 1, kd ,

kd +1, and kd +2 in the time direction were compared. Figure 4

illustrate the original paper’s architectures for the discriminator

and domain classifier, respectively. Bold letters indicate the

default kernel size kd for each layer. The value kd was changed

in this experiment.

B. Result

Tables I and II show the results of the MOS and CER

tests in Experiment 1. In all Tables, ªmelspecº and ªoriginalº
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Domain Classifier

Real/Fake Discriminator
Attr

ibu
te c

Fig. 4. Network architecture of the discriminator and classifier [14], [30]. In
input and output, ªhº, ªwº, and ªcº represent height, width, and number of
channels, respectively. In addition, ªkº, ªcº, and ªsº denote kernel size, number
of channels, and stride size, respectively. Conv1d, BatchNorm, GLU, and
Deconv1d denote the 1D convolution layers, batch normalization, gated linear
units, and 1D transposed convolution layers, respectively. Batch normalization
is applied to each input channel. The class index vectors were repeated along
the time direction and then concatenated to the input of each convolution layer.

TABLE I
RESULT OF THE MOS TEST IN EXPERIMENT 1

Methods Dog-likeness
Sound
quality Clarity

StarGAN-VC (MCC) 1.20 1.28 0.92

StarGAN-VC (melspec) 4.20 2.76 2.04

ACVAE-VC (MCC) 2.04 2.24 1.76

ACVAE-VC (melspec) 4.24 2.36 1.36

FKN (original) 1.00 4.80 5.00

Adult Dog (original) 5.00 3.70 1.00

White Noise 1.10 1.20 1.00

denote the mel-spectrogram and the unconverted test data,

respectively. The bold and underlined numbers in all the tables

also denote the highest numerical value of conversion human

voice to dog-like voice and the value of voice expected to

obtain the highest numerical value in each MOS evaluation,

respectively. The notation inside parentheses next to each VC

method in Table I denotes the input acoustic features.

Table I shows that the method using the mel-spectrogram

produces a more dog-like voice than the method using the

MCC. Regarding sound quality, StarGAN-VC with a mel-

spectrogram produced the best results. It is clear that StarGAN-

VC with a mel-spectrogram also has the highest clarity of

TABLE II
RESULT OF THE CER TEST IN EXPERIMENT 1

Methods 1st sound 2nd sound

StarGAN-VC (MCC) 1.00 1.00

StarGAN-VC (melspec) 0.97 0.95

ACVAE-VC (MCC) 0.97 0.94

ACVAE-VC (melspec) 0.98 0.97

FKN (original) 0.03 0.02

TABLE III
RESULT OF THE MOS TEST IN EXPERIMENT 2

Kernel size Dog-likeness
Sound
quality Clarity

kd +2 2.20 2.40 2.00

kd +1 2.40 2.08 2.12

kd 2.60 2.80 2.60

kd -1 2.28 2.28 3.00

kd -2 2.60 2.48 2.88

FKN (original) 1.00 4.70 5.00

Adult Dog (original) 5.00 3.20 1.00

White Noise 1.10 1.00 1.00

TABLE IV
RESULT OF THE CER IN EXPERIMENT 2

Kernel size 1st sound 2nd sound

kd +2 0.93 0.89

kd +1 0.95 0.92

kd 0.97 0.95

kd -1 0.83 0.80

kd -2 0.87 0.76

FKN (original) 0.03 0.02

spoken utterances. In contrast, for ACVAE-VC, we observed

that the use of MCC as an acoustic feature synthesizes clearer

voice than the use of a mel-spectrogram.

Table II indicates that there is no significant improvement

in CER while the ACVAE-VC with MCC has the smallest

error. This shows that the non-parallel VC methods did not

successfully achieve the ªspeak like a dogº task preserving

linguistic information satisfactorily. However, we can notice

some language-like sentences were made from converted voice

when listening to the sound generated by ACVAE-VC (MCC).

That did not contribute to CER much.

Table III and IV show the results of the MOS and CER test

in Experiment 2. From Table III, it is clear that the kernel size

of the default value and the kernel size of the default value

minus 2 produce a relatively better dog-like voice. Regarding

sound quality, we find that the default values are the best. It

can be seen that the clarity of the spoken utterance is best at the

kernel size of the default value minus 1. Table IV indicates that

the kernel size of the default value −1or −2 has the smallest

error.

C. Discussion

In the results of the MOS test in Experiment 1, the mel-

spectrogram may have a better representation of dog-like voice

than the MCC, as predicted by Section III-A.

There was no significant difference for dog-like ele-

ments between StarGAN-VC and ACVAE-VC using the mel-

spectrogram in quantitative evaluation. However, when we lis-

tened to the converted sounds, we found qualitative differences

subjectively. Sounds produced by ACVAE-VC had a tendency

to preserve language-like expressions. The converted sounds

can be listened to on our website1.

From the MOS values for clarity in Table I and the CER

values in Table II, ACVAE-VC with the mel-spectrogram
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preserves less clarity and linguistic information than ACVAE-

VC with the MCC. This may be because the source filter

model on which the vocoder is based imitates the human voice

production process.

In the results of the CER test of Experiment 1, the high

value of CER with existing methods indicates the difficulty

of preserving linguistic information in the ªspeak like a dogº

task.

In Experiment 2, unlike what was predicted in Section IV-A,

increasing the kernel size from the default value did not

improve the preservation of linguistic information. This may

be because the discriminator and the domain classifier were

trained to include the dog’s voice and silent intervals by

increasing the kernel size. We found that relatively small kernel

size, e.g., kd − 1 or kd − 2, had a better performance in the

ªspeak like a dogº task, generally.

V. CONCLUSIONS

In this study, we proposed the ªspeak like a dogº task as an

example of a human to non-human creature VC task. Although

we could convert human voices into dog-like voices in a

fragmented manner, we found that it is challenging to preserve

linguistic information. It was clear that VC methods that

worked well for standard VC tasks did not work sufficiently

well here. We also found that using a mel-spectrogram instead

of an MCC is important in this task.
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