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ABSTRACT

We have previously proposed a statistical fundamental fre-
quency (F0) prediction method that makes it possible to
predict the underlying F0 contour of electrolaryngeal (EL)
speech from its spectral feature sequence. Although this
method was shown to contribute to improving the naturalness
of EL speech as a whole, the predicted F0 contour was still
unnatural compared with that in normal speech. One possi-
ble solution to improve the naturalness of the predicted F0
contours would be to take account of the physical mechanism
of vocal phonation. Recently a statistical model of voice F0
contours was formulated by constructing a stochastic coun-
terpart of the Fujisaki model, a well-founded mathematical
model representing the control mechanism of vocal fold vi-
bration. This paper proposes a Product-of-Experts model to
incorporate this generative model of voice F0 contours into
the statistical F0 prediction model. Based on the constructed
model, we derive algorithms for parameter training and F0
prediction. Experimental results revealed that the proposed
method successfully outperformed our previously proposed
method in terms of the naturalness of the predicted F0 con-
tours.

Index Terms— Electrolaryngeal speech enhancement,
F0 prediction, Generative model, Product of Experts

1. INTRODUCTION
Speech is one of the most common tools in human commu-
nication. Since speech is produced by the vocal apparatus,
the produced sounds are physically constrained by the con-
ditions of human body. Unfortunately, there are many peo-
ple with disabilities that prevent them from producing speech
freely, leading to communication barriers. Those who are un-
able to produce speech freely involve laryngectomees, who
have undergone an operation to remove the larynx including
the vocal folds for such reasons as injury or laryngeal can-
cer. The ability by these people to generate excitation sounds
is severely impaired because they no longer have their vocal
folds. One alternative means of producing voice for these pa-
tients involves the use of electrolaryngeal (EL) speech, which
is produced by using the excitation signals mechanically gen-
erated from an electrolarynx. EL speech is reasonably intelli-
gible, but somewhat unnatural particularly due to the mechan-
ical sounding of the excitation signals.

To address this problem, we have previously proposed
methods that aim to convert EL speech to normal-sounding
speech, by predicting the fundamental frequency (F0) con-
tour from the spectrum sequence of the EL speech based on
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Gaussian Mixture Models (GMMs) followed by synthesizing
the speech waveforms according to the predicted acoustic pa-
rameters [1–3]. These methods were shown to contribute to
improving the naturalness of EL speech [1, 2] and also pre-
serving its intelligibility [3]. However, the F0 contours pre-
dicted using these methods still sounded unnatural compared
with that in normal speech. This was because the predicted F0
contours were not necessarily guaranteed to satisfy the phys-
ical constraint of the actual control mechanism of the thyroid
cartilage, even though they were optimal in a statistical sense.
In this regard, these methods still had a plenty of room for
improvement. One possible solution to improve the natural-
ness of the F0 contours of the converted speech would be to
incorporate a generative model of voice F0 contours into the
statistical F0 prediction model to take account of the physical
mechanism of vocal phonation.

One of the authors previously proposed a statistical model
of voice F0 contours [4–6], formulated by constructing a
stochastic counterpart of the Fujisaki model [7], a well-
founded mathematical model representing the control mecha-
nism of vocal fold vibration. The Fujisaki model [7] assumes
that an F0 contour on a logarithmic scale is the superposi-
tion of a phrase component, an accent component and a base
value. The phrase and accent components are considered to
be associated with mutually independent types of movement
of the thyroid cartilage with different degrees of freedom and
muscular reaction times. The model proposed in [4–6] has
made it possible to estimate the underlying parameters of the
Fujisaki model that best explain the given F0 contour, by
using powerful statistical inference techniques.

To incorporate the generative F0 contour model into the
statistical F0 prediction framework, this paper proposes a
Product-of-Experts (PoE) model [8] combining the above-
mentioned two models. Since the PoE model is obtained by
multiplying the densities of different models, it usually be-
comes complicated due to the renormalization term. To avoid
this, we introduce a latent trajectory model proposed in [9] to
reformulate the prediction model so that it can be smoothly
combined with the generative F0 contour model.

2. GMM-BASED STATISTICAL F0 PREDICTION
We briefly review our statistical F0 prediction method [1–3],
which exploits the idea of statistical voice conversion tech-
niques [10, 11]. The aim of this method is to predict F0 con-
tours from the spectral parameters of EL speech. As with
voice conversion methods, it consists of training and predic-
tion processes.

In the training process, the parameters λG of the joint
probability density p((x[k]T,o[k]T)T|λG) described as a
Gaussian mixture model (GMM) are trained, where T de-
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Fig. 1. Original Fujisaki model [7].

notes transposition, and x[k] and o[k] denote a source feature
and a target feature at time frame k, respectively. The corre-
sponding joint feature vectors can be obtained by performing
automatic frame alignment with Dynamic Time Warping. As
a source feature, the spectral segment feature of EL speech
is extracted on a frame-by-frame basis from the mel-cepstra
at multiple frames around the current frame k [12]. The tar-
get feature o[k] = (y[k],∆y[k])T consists of the static and
delta (time derivative) components of the log-scaled F0 value
y[k], extracted on a frame-by-frame basis from the target
normal speech. Note that to improve prediction accuracy, we
interpolate unvoiced frames of F0 patterns by using spline
interpolation and remove micro-prosody [13].

In the prediction process, given the spectral segment se-
quence x = (x[1]T, . . . ,x[K]T)T of EL speech, the most
likely F0 sequence y = (y[1], . . . , y[K])T can be obtained as
follows:

ŷ = argmax
y

p(o|x,λG) subject to o = Wy, (1)

where o = (o[1]T, . . . ,o[K]T)T denotes the joint static and
dynamic feature vector sequence, W is a constant matrix that
transforms the static feature vector sequence y to o. Namely,
each row of W consists of the coefficients of an identity map-
ping operator or time differential operator. p(o|x,λG) is the
GMM with the trained parameters, which we approximate as

p(o|x,λG)=
∑
m

p(o|x,m,λG)p(m|x,λG)

≃ p(o|x, m̂,λG)p(m̂|x,λG), (2)

with m̂ = argmaxm p(m|x,λG). Here, m = (m1, . . . ,mK)
indicates a sequence of mixture indices. p(o|x,m,λG) is
given as the product of p(o[k]|x[k],mk,λG) = N (o[k];e

(o|x)
mk ,

D(o|x)
mk

) over k where e
(o|x)
mk and D(o|x)

mk
are the mean vector

and covariance matrix of mk-th mixture component, respec-
tively. Thanks to this approximation, the solution to Eq. (1)
is given explicitly as follows:

ŷ = (W TD(o|x)−1

W )−1W TD(o|x)−1
m̂ e

(o|x)
m̂ , (3)

where e(o|x)m̂ is a stacked vector of the mean vectors e(o|x)m̂1
, . . . ,

e
(o|x)
m̂K

and D
(o|x)
m̂ is a block diagonal matrix where each block

is D(o|x)
m̂1

, . . . ,D
(o|x)
m̂K

.

3. GENERATIVE MODEL OF VOICE F0 CONTOURS
The generative model of F0 contours proposed in [4–6] is a
stochastic counterpart of a discrete-time version of the Fu-
jisaki model [7].

The Fujisaki model (shown in Fig. 1) assumes that a log-
scaled F0 contour y(t) is the superposition of a phrase com-
ponent yp(t), an accent component ya(t) and a base value
µb. The phrase and accent components are assumed to be
the outputs of different second-order critically damped filters,
excited with Dirac deltas up(t) (phrase commands) and rect-
angular pulses ua(t) (accent commands), respectively. Here,

Fig. 2. Command function modeling with HMM.

it must be noted that the phrase and accent commands do not
usually overlap each other. The base value is a constant value
related to the lower bound of the speaker’s F0, below which
no regular vocal fold vibration can be maintained. The log F0

contour, y(t), is thus expressed as
y(t) = yp(t) + ya(t) + µb, (4)

where
yp(t) = gp(t) ∗ up(t), (5)
ya(t) = ga(t) ∗ ua(t). (6)

Here, ∗ denotes convolution over time. gp(t) and ga(t) are
the impulse responses of the two second-order systems, which
are known to be almost constant within an utterance as well
as across utterances for a particular speaker.

A key idea in the proposed model [4–6] is that the se-
quence of the phrase and accent command pair (i.e., the un-
derlying parameters of the Fujisaki model) is modeled as a
path-restricted hidden Markov model (HMM) with Gaussian
emission densities (shown in Fig. 2) so that estimating the
state transition of the HMM directly amounts to estimating
the Fujisaki-model parameters.

We hereafter use k to indicate the discrete time index.
Given a state sequence s = (s1, . . . , sK) of the above HMM,
the conditional distributions of the phrase command sequence
up = (up[1], . . . , up[K])T and the accent command se-
quence ua = (ua[1], . . . , ua[K])T are given as

p(up|s,λF ) = N (up;µp,Σp), (7)
p(ua|s,λF ) = N (ua;µa,Σa), (8)

respectively, where λF denotes the parameters of the HMM.
µp and µa denote the mean sequences of the state emission
densities and Σp and Σa are diagonal matrices whose diag-
onal elements correspond to the variances of the state emis-
sion densities. From Eqs. (5) and (6), the relationships be-
tween yp = (yp[1], . . . , yp[K])T and up and between ya =

(ya[1], . . . , ya[K])T and ua can be written as
Gpup = yp, (9)
Gaua = ya, (10)

where Gp and Ga are Toeplitz matrices where each row is a
shifted copy of the convolution kernels gp[1], . . . , gp[K] and
ga[1], . . . , ga[K]. By using ub to denote the baseline compo-
nent, the log F0 sequence y is given as y = yp+ya+ub+n
where n is an additive noise component corresponding to mi-
cro prosody. If we assume that n follows a Gaussian distribu-
tion with mean 0 and covariance Γ, the conditional distribu-
tion of y given u = (uT

p ,u
T
a ,u

T
b)

T is defined as
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p(y|u) = N (y;Gpup +Gaua + ub,Γ). (11)

We further assume that ub follows a Gaussian distribution
with mean µb1 and covariance Σb. Then, from Eqs. (7), (8)
and (11), the conditional distribution of y given s is given as

p(y|s,ΛF )=
∫
p(y|u)p(u|s,λF )du

= N (y;µF ,ΣF ), (12)

where µF = Gpµp +Gaµa + µb1 and ΣF = GpΣpG
T
p +

GaΣaG
T
a +Σb + Γ.

4. PROPOSED MODEL
4.1. Product-of-Experts Strategy

PoE [8] is a general technique to model a complicated distri-
bution of data by combining relatively simpler distributions
(experts). Since the distribution is obtained by multiplying
the densities of the experts, the way the experts are combined
is somewhat similar to an “and” operation. In this section, we
construct a PoE model by treating the two models introduced
in the previous sections as the experts.

Training a PoE model by maximizing the likelihood of the
data usually becomes difficult since it is hard even to approxi-
mate the derivatives of the renormalization term. By contrast,
we propose an elegant formulation that allows the use of the
EM algorithm for both parameter training and F0 prediction.
To do so, we first introduce a latent trajectory model proposed
in [9] to reformulate the GMM-based statistical F0 prediction
model, which plays a key role in making this possible.

4.2. Latent-Trajectory-GMM-Based F0 Prediction

We reformulate the GMM-based statistical F0 prediction
model presented in Sec. 2 by employing the idea proposed
in [9]. Instead of treating o as a function of y, we treat o
as a latent variable to be marginalized out, that is related
to y through a soft constraint o ≃ Wy. The relationship
o ≃ Wy can be expressed through the conditional distribu-
tion p(y|o)

p(y|o)∝ exp
{
−1

2 (Wy − o)TΛ(Wy − o)
}

(13)
= N (y;Ho,V ), (14)

where H = (W TΛW )−1W TΛ and V = (W TΛW )−1.
Λ is a constant positive definite matrix that can be set arbi-
trarily. As with Sec. 2, the joint distribution p(x,o|λG) is
modeled as a GMM. Namely, given mixture indices m, the
conditional distribution p(x,o|m,ΛG) is defined as a Gaus-
sian distribution. Thus, the joint distribution of y, x, o, and
m can be described using the distributions defined above

p(y,x,o,m|λG) = p(y|o)p(x,o|m,λG)p(m|λG), (15)

where p(m|λG) is the product of mixture weights of the
GMM. By marginalizing o and m out, we can readily obtain
the joint distribution p(y,x|λG), which can be used as a
criterion to train λG and predict optimal y in a consistent
manner, unlike the method presented in Sec. 2. We use this
model to construct our PoE model in the next subsection.

4.3. Deriving PoE

In the same way as Eq. (15), we write the model presented in
Sec. 3 in the form of a joint distribution

p(y,u, s|λF ) = p(y|u)p(u|s,λF )p(s|λF ), (16)

where p(u|s,λF ) is given as the product of state emission
densities and p(s|λF ) the product of the state transition

probabilities given a state sequence s. We consider con-
structing a PoE model by combining Eqs. (15) and (16) fol-
lowed by marginalization, rather than by simply combining
the marginal distributions p(y,x|λG) and p(y|λF ), which
makes the parameter training and F0 prediction problems
excessively hard. To do so, we first combine the densities
of p(y|o) and p(y|u) to obtain p(y|o,u). Since both of
these distributions are Gaussians, the product of their distri-
butions can be easily obtained by completing the square of
the exponent

p(y|o,u)∝ N (y;Ho,V ) · N (y;Gu,Γ)

= N (y;µy|o,u,Σy|o,u), (17)

µy|o,u= (V −1 + Γ−1)−1(V −1Ho+ Γ−1Gu), (18)

Σy|o,u= (V −1 + Γ−1)−1, (19)

where G = [GpGaI] and u = (uT
p ,u

T
a ,u

T
b)

T. From Eqs.
(15), (16) and (17), the joint distribution of y, x, o, u, m and
s can be constructed as

p(y,x,o,u,m, s|λG,λF ) (20)
= p(y|o,u)p(x,o|m,λG)p(u|s,λF )︸ ︷︷ ︸

p(y,x,o,u|m,s,λG,λF )

p(m|λG)p(s|λF ).

This can be used as the complete data likelihood for parameter
training and F0 prediction as explained later. By marginal-
izing o and u out, we can readily obtain the joint distribu-
tion p(y,x,m, s|λG,λF ), which can be used as a criterion
to train λG and λF and predict optimal y in a consistent man-
ner.

Since both p(x,o|m,λG) and p(u|s,λF ) are Gaussians,
let us write them as

p(x,o|m,λG)= N
([

x
o

]
;
[
µx
µo

]
,
[
P xx P xo
P ox P oo

]−1
)
, (21)

p(u|s,λF )= N (u;µu,P
−1
u ). (22)

Then, from Eqs. (17), (21) and (22), it can be shown that
p(y,x,o,u|m, s,λG,λF ) is given as

p(y,x,o,u|m, s,λG,λF )

= N

 y
x
o
u

; [A11b1 +A12b2
A21b1 +A22b2

]
,
[
A11 A12
A21 A22

] , (23)

where[
A11 A12
A21 A22

]
=


Σ−1

y|o,u O −V −1H −Γ−1G
O P xx −P xo O

−HTV −T −P ox P oo O
−GTΓ−T O O P u


−1

, (24)

[
b1
b2

]
=

 O
P xxµx − P xoµo
P ooµo − P oxµx

P uµu

 , (25)

by completing the square of the exponent. Note that A11,
A12, A21 and A22 can be written explicitly using the block-
wise inversion formula.

4.4. Parameter Training and F0 Prediction

The problems of parameter training and F0 prediction can be
formulated as the following optimization problems:

{λ̂G, λ̂F , m̂, ŝ} = argmax
λG,λF ,m,s

log p(ỹ, x̃,m, s|λG,λF ), (26)

{ŷ, m̂, ŝ} = argmax
y,m,s

log p(y, x̃,m, s|λ̂G, λ̂F ). (27)
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where ỹ and x̃ denote the observed F0 contour extracted
from normal speech and the observed spectral sequence ex-
tracted from non-larynx speech. Both of these problems can
be solved using the EM algorithm by treating o and u as
latent variables. Owing to space limitations, here we only
derive an algorithm for solving Eq. (27).

The likelihood of y, m and s given the complete data
{x̃,o,u} is given by Eq. (20). By taking the conditional
expectation of log p(y, x̃,o,u|m, s, λ̂G, λ̂F ) with respect to
o and u given x̃, y = y′, m = m′ and s = s′ and then
adding log p(m|λ̂G)p(s|λ̂F ), we obtain an auxiliary function

Q(θ, θ′) =Eo,u|x̃,y′,m′,s′
[
log p(y, x̃,o,u|m, s, λ̂G, λ̂F )

]
+ log p(m|λ̂G) + log p(s|λ̂F ), (28)

where θ = {y,m, s}. From Eq. (23), we obtain

E
[[

o
u

] ∣∣∣∣ [y′

x̃

]
,m′, q′

]
= A21b1 +A22b2+

A21A
−1
11

([
y′

x̃

]
−A11b1 −A12b2

)
=:

[
ō
ū

]
, (29)

E
[[

o
u

] [
o
u

]T ∣∣∣ [y′

x̃

]
,m′, q′

]
= A22 −A21A

−1
11 A12 +

[
ō
ū

] [
ō
ū

]T
, (30)

which are the values to be computed at the “E-step” by sub-
stituting θ into θ′. At the “M-step”, we compute

{y,m, s} ← argmax
y,m,s

Q(θ, θ′). (31)

The update equations are omitted owing to space limitations.

5. EXPERIMENTAL EVALUATION
5.1. Experimental Conditions

We conducted objective and subjective evaluation experi-
ments to evaluate the performance of the proposed method.
For the objective evaluation, we evaluated the F0 correlation
coefficients between the predicted and target F0 contours. We
also subjectively evaluated the naturalness of the F0 contour
of converted speech.

The source speech was EL speech uttered by one male
laryngectomee, and the target speech was normal speech ut-
tered by a professional female speaker. Each speaker uttered
about 50 sentences in the ATR phonetically balanced sentence
set [15]. We conducted a 5-fold cross validation test in which
40 utterance pairs were used for training, and the remaining
10 utterance pairs were used for evaluation. The sampling fre-
quency was set at 16 kHz. The settings of HMM in the gen-
erative F0 contour model were the same as reported in [4–6].

For initialization of the mixture index sequence m and
state sequence s, we performed the conventional GMM-based
and Fujisaki-model-based methods. Note that the Fujisaki-
model-based method refers to a post-processing method that
consists of first applying the GMM-based method and then
fitting the Fujisaki model to the predicted F0 contour using
the method of [5, 6], which is similar to a post-processing
method for HMM-based speech synthesis [16]. Note that in
this experiment, we implemented a simplified and approxi-
mated version of the proposed method, in which the E-step
procedure is replaced with the conventional Fujisaki-model-
based and GMM-based methods. Therefore, the convergence
of the algorithm implemented for the current evaluation is not
strictly guaranteed. The speech used for evaluation were syn-
thesized using STRAIGHT [17] given the mel-cepstrum se-
quence and F0 contour. The methods selected for comparison
were:
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• GMM-based: Predict F0 contours with the GMM-
based method.
• Fujisaki-model-based1: Fit the Fujisaki model to the

predicted F0 contours obtained with the GMM-based
method.
• Proposed: Predict F0 contours with an approximated

version of the proposed method, in which the E-step
is replaced with the GMM-based and Fujisaki-model-
based2 methods.
• Fujisaki-model-based2: Fit the Fujisaki model to the

predicted F0 contours obtained with Proposed.

5.2. Experimental Results

As Fig. 3 shows, Proposed obtained the highest prediction
accuracy because of eq. (18) meaning an “and” operation
for eq. (11) and (14). Therefore, we found that it is ef-
fectiveness to construct a PoE model. Futhermore, since
Fujisaki-model-based2 has higher correration coefficients
than Fujisaki-model-based1, we found that the predicted F0
contours by Proposed were given good influences by consid-
ering not only the GMM-based method but also the Fujisaki
model. Note that we used the predicted F0 contours obtained
with the GMM-based method as the input for the Fujisaki-
model-based1 method in this experiment. To make a more
fair comparison, it would be necessary to modify the Fujisaki-
model-based method so as not to depend on the GMM-based
method. In additional, as for proposed, there is no large dif-
ference of correration coefficients in each iteration. To make
exactly evaluation, we have to conduct the PoE model not
replaced E-step with the conventional methods.

As Fig. 4 shows, Proposed outperformed the conventional
methods, GMM-based and Fujisaki-model-based1. This re-
sult is reasonable since Proposed obtained the highest predic-
tion accuracy as in Fig. 3.

6. CONCLUSIONS
In this paper, to improve F0 prediction performance in elec-
trolaryngeal speech enhancement, we proposed a Product-of-
Experts model that combined two conventional methods, a
statistical F0 prediction method and a statistical F0 contour
modeling method based on its generative process. Experi-
mental results revealed that the proposed method successfully
outperformed our previously proposed method in terms of the
naturalness of the predicted F0 contours.
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