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ABSTRACT

Modeling the speech generation process can provide flex-
ible and interpretable ways to generate intended synthetic
speech. In this paper, we present a deep generative model of
fundamental frequency (F0) contours of normal speech and
singing voices. The generative model we propose in this pa-
per 1) is able to accurately decompose an F0 contour into the
sum of phrase and accent components of the Fujisaki model,
a mathematical model describing the control mechanism of
vocal fold vibration, without an iterative algorithm, and 2)
can represent/generate F0 contours of both normal speech
and singing voices reasonably well.

Index Terms— Deep generative model, voice F0 contour,
singing voice, variational autoencoder, gated convolutional
network

1. INTRODUCTION

The fundamental frequency (F0) contours in normal speech
contain linguistic and para/non-linguistic information. For
example, they are usually used to convert a regular phrase to
a question. They also indicate intonation in pitch accent lan-
guages. Furthermore, they play the role of adding extra flavor
to speech such as the identity, intention, attitude, and mood of
the speaker to convey para/non-linguistic information to the
listener. In singing voice, they are used to express the melody
of the song and the singing style of the singer. If we can build
a physically or musically interpretable generative model, it
may provide flexible ways to synthesize expressive speech or
singing voices. This paper is concerned with developing a
generative model of voice F0 contours, which allows us to
generate natural sounding F0 contours conditioned on a con-
textual input such as a phrase/accent command sequence and
a musical score.

Conventionally, several attempts have been made to
model F0 contours of speaking and singing voices. One
well-known model is called the Fujisaki model [1], which
describes the control mechanism of vocal fold vibration in
a physically interpretable way. This model assumes that the
F0 contour on a logarithmic scale is the superposition of a
phrase component, an accent component, and a base value.
The phrase and accent components are considered to be asso-
ciated with mutually independent types of movement of the
thyroid cartilage with different degrees of freedom and mus-
cular reaction times. Another example is F0 control models
of singing voices [2, 3]. Similar to the Fujisaki model, these

models assume that a singing voice F0 contour is described
as a mixture of several types of F0 fluctuations such as over-
shoot, vibrato, and preparation. The Fujisaki model and the
singing voice F0 control models share in common that there
is a need to solve an inverse problem to obtain the underlying
parameters. Although the models reported in [2, 3, 4] have
provided a tractable way of estimating the underlying param-
eters by using statistical inference techniques, shortcomings
of these models are that parameter estimation algorithms typ-
ically require many iterations, which can be computationally
demanding, and parameter estimation accuracy is limited due
to the inherent difficulties in the inverse problem.

Recently, several types of generative model described by
a neural network have been proposed, such as a variational
autoencoder (VAE) [5, 6]. As the name implies, VAEs are
a stochastic counterpart of autoencoders, consisting of en-
coder and decoder networks. The encoder network generates
a set of parameters of the conditional distribution Q(z|x)
of a latent space variable z given an input data vector x
whereas the decoder network generates a set of parameters
of the conditional distribution P (x|z) of the data vector x
given the latent space variable z. Given a training data set
X = {xn}Nn=1, VAEs learn the entire network parameters so
that the encoder distribution Q(z|x) becomes consistent with
the posterior P (z|x) ∝ P (x|z)p(z). If we can associate the
latent space variables with a set of interpretable parameters
governing the data of interest, the decoder can be seen as a
generative model (like the Fujisaki model) that relates the
underlying parameters to observed data and the encoder can
be seen as an inverse problem solver. While the Fujisaki
model, for example, is a hand-crafted or manually designed
model, an interesting point of view would be that through
training of VAE, we would be able to discover the structure
of a generating process model in a data-driven manner as well
as an inverse process of estimating the underlying parameters.
Furthermore, since VAEs provide a principled and convenient
way of handling semi-supervised learning tasks [6, 7], they
can be very useful especially when it takes a lot of time
and effort to collect a large amount of labeled data. For our
task, while collecting a complete pair of F0 contours and
the underlying parameters can be a demanding process, we
can easily collect a large amount of unlabeled F0 contours.
Indeed, VAEs have been applied to various supervised/semi-
supervised tasks with notable success [8, 9, 10].

In this paper, we propose a generative model of F0 con-
tours based on a VAE with a fully convolutional architecture.
In particular, we adopt a gated CNN architecture [11] to be
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able to capture and reflect long- and short-term dependencies
in F0 contours. Experimental results showed that our pro-
posed framework successfully achieved higher performance
than a conventional method in terms of the subjective pair-
wised comparison for singing voice quality, the generation er-
ror of the underlying parameters of the F0 contours in speak-
ing voice, and processing time required to solve the inverse
problem.

2. F0 CONTOUR AND ITS UNDERLYING
PARAMETERS

Here, we briefly review conventional work on voice F0 con-
tour modeling for speaking and singing voices.

2.1. Fujisaki model

The Fujisaki model [1] is one of well-known models describ-
ing the control mechanism of vocal fold vibration in a phys-
ically interpretable way. This model assumes that the F0

contour x[t] on a logarithmic scale is given as the sum of
three components x[t] = xp[t] + xa[t] + µb where xp[t] and
xa[t] are a phrase component and an accent component at
time frame t, and µb is a constant value, respectively. The
phrase and accent components are assumed to be the out-
puts of different second-order critically damped filters excited
with Dirac deltas (phrase commands) and rectangular pulses
(accent commands), respectively. These components respec-
tively correspond to contributions associated with the trans-
lation and rotation movements of the thyroid cartilage. The
former usually contributes to phrasing, while the latter con-
tributes to accentuation during an utterance. The magnitudes
of these components correspond to how much emphasis the
speaker intends to place on the associated phrase or accent.
These parameters, which we call the Fujisaki model parame-
ters, are thus physically and linguistically interpretable. If we
can estimate these parameters from raw F0 contours, we will
be able to flexibly control them as desired.

2.2. Singing voice F0 contour model

The F0 contour of a singing voice contains the melody con-
tour of a song and an expression contour such as overshoot,
preparation and vibrato. Compared with the F0 contours of
speaking voice, those of singing voice change more rapidly,
and their dynamic range is wider and so the Fujisaki model
cannot be directly applied to singing voices. In [3], a singing
voice version of the Fujisaki model is proposed.

3. VAE-SPACE: F0 CONTOUR REPRESENTATION
VIA DEEP GENERATIVE MODEL

3.1. Concept

In [4], we proposed formulating a stochastic counterpart of
the Fujisaki model. The key idea of this model is that a
phrase/accent command pair sequence, given by an impulse
train and a rectangular pulse train, is modeled as an output
sequence of a path-restricted hidden Markov model (HMM).
Similarly, [3] proposed introducing a stochastic counterpart
of a singing voice version of the Fujisaki model. With this

model, two sequences, one representing a melody contour and
the other representing an expression contour, are modeled as
piecewise constant functions generated by a path-restricted
HMM. These models have allowed us to utilize statistical
inference techniques to estimate the underlying parameters.
However, the parameter estimation algorithms must be run
for many iterations, which can be computationally demand-
ing. Furthermore, parameter estimation accuracy is limited
due to the inherent difficulties in the ill-posed inverse prob-
lem. Another limitation of these models is the lack of flexibil-
ity needed to express a wide variety of voice F0 contours and
neither of these models can be universally applied to all pos-
sible F0 contours. We may need to manually design different
models and algorithms according to languages, speakers and
types of speech (e.g., singing voices and regular/emotional
speech) as long as we take a hand-engineering approach.

To overcome these limitations, we take a learning-based
approach. In particular, we focus on VAEs with a gated CNN
architecture for flexibly modeling voice F0 contours. As men-
tioned in Sec. 1, if we can associate the latent space variables
with a set of interpretable parameters (like the phrase/accent
components in the Fujisaki model) governing the data of in-
terest, the decoder can be seen as a generative model (like
the Fujisaki model) that relates the underlying parameters to
observed data whereas the encoder can be seen as a param-
eter extractor. It would be interesting if we could automat-
ically discover the structure of a generating process model
in a data-driven manner through training of VAE as well as
the parameter estimation process. Furthermore, since VAEs
provide a principled and convenient way of handling semi-
supervised learning tasks, they can be very useful especially
when it takes a lot of time and effort to collect a large amount
of labeled data. For our task, even though collecting a com-
plete pair of F0 contours and the underlying parameters can
be a painstaking process, we can easily collect a large amount
of unlabeled F0 contours. These are the main reasons we have
focused on VAEs.

To realize the above-mentioned concept, an architecture
design is a key to success. Given the fact that both the Fu-
jisaki model and the singing voice F0 contour model men-
tioned in Sec. 2 are described as a mixture of linear time-
invariant systems, we believe that convolutional architectures
can be a reasonable choice for our architecture design. In
particular, we focus on a convolutional architecture called the
gated CNN. The gated CNN has recently been shown to be
powerful in modeling long-term sequential data. It was origi-
nally introduced to model word sequences for language mod-
eling and was shown to outperform long short-term memory
(LSTM) language models trained in a similar setting [11]. We
previously applied a gated CNN architecture for speech se-
quence modeling and its effectiveness has already been con-
firmed [12]. With a gated CNN, the output of a hidden layer
of a network is described as a linear projection modulated by
an output gate. Similar to an LSTM [13] and gated recurrent
unit (GRU) [14], the output gate controls what information
should be propagated through the hierarchy of layers and al-
lows capturing long-term structures.

3.2. VAE-SPACE

Let us use z to denote a sequence of parameters governing the
generating process of F0 contours. In the case of the Fujisaki
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model, this corresponds to a sequence of a phrase/accent com-
ponent pair. Here, we consider a “decoder” network that gen-
erates the parameters of a conditional distribution Pθ(x|z) of
an F0 contour x. The posterior distribution Pθ(z|x) can be
seen as an inverse process of generating z given x. Since ob-
taining the exact posterior is intractable, we introduce another
network, i.e., “encoder”, that generates the parameters of a
conditional distribution Qφ(z|x) and train both the decoder
and encoder networks so that Qφ(z|x) becomes consistent
with the exact posterior Pθ(z|x) ∝ Pθ(x|z)P (z). We can
show that the log marginal distribution logPθ(x) is given as

logPθ(x) = L(θ, φ;x) +DKL [Qφ(z|x)||Pθ(z|x)] , (1)
L(θ, φ;x) = −DKL [Qφ(z|x)||P (z)]︸ ︷︷ ︸

Regularization term over z

+EQφ(z|x) [logPθ(x|z)]︸ ︷︷ ︸
Reconstruction term

(2)

where DKL[·|·] denotes the Kullback-Leibler (KL) diver-
gence. This implies we can minimize the KL divergence be-
tween Pθ(z|x) and Qφ(z|x) by maximizing L(θ, φ;x) with
respect to θ and φ. One typical way of modeling Qφ(z|x)
and Pθ(x|z) is to assume normal distributions. As for the
prior distribution P (z), we can design its specific form ac-
cording to the assumption we would like to make about z.
For example, if we associate z with a phrase/accent command
pair sequence, we can employ the path-restricted HMM with
Gaussian emission densities proposed in [4]. In this case,
by using s to denote the state sequence of the HMM, P (z)
is written as P (z) =

∑
s P (z|s)P (s). Since our VAE

is designed to perform statistical phrase/accent component
estimation (SPACE), we call it “VAE-SPACE”.

3.3. Sequential modeling with gated CNN

To capture long- and short-term dependencies in F0 con-
tours, we use a gated CNN [11] to construct both the encoder
and decoder networks of the VAE. Gated CNNs are CNNs
equipped with gated linear units (GLUs) as activation func-
tions instead of regular rectified linear units (ReLUs) [15] or
Tanh activations. The output of the lth hidden layer of a gated
CNN is described as a linear projection H l−1 ∗ W l + bl
modulated by an output gate σ(H l−1 ∗ V l + cl)

H l = (H l−1 ∗W l + bl)⊗ σ(H l−1 ∗ V l + cl), (3)

where W l, V l, bl and cl are the network parameters to
be trained, σ is the sigmoid function and ⊗ indicates the
element-wise product. Here, the input to the 1st layer is
H0 = x for the encoder and H0 = z for the decoder
whereas the output from the lth layer is H l = [µz; logσ

2
z]

for the encoder and H l = [µx] for the decoder. Simi-
lar to LSTMs, the output gate multiplies each element of
H l−1 ∗ W l + bl and control what information should be
propagated through the hierarchy of layers in a data-driven
manner.

4. EXPERIMENTS

4.1. Experimental Conditions

Datasets: For the speaking voice F0 contours, we used the
ATR speech database [16], 429 sentences (around 0.5 hours)

Table 1. Details of network architecture.
Input : 1ch. 1 × 1200

Encoder CNN 1 : 4 ch. 1 × 200, GLU
Encoder CNN 2 : 8 ch. 1 × 50, GLU
Encoder CNN 3 : 4 ch. 1 × 15, GLU
Encoder CNN 4 : 8 ch. 1 × 5, GLU
Encoder CNN 5 : K ch. 1 × 50

Latent : K ch. 1 × 1200
Decoder CNN 1 : 16 ch. 1 × 10, GLU
Decoder CNN 2 : 1 ch. 1 × 10

Output : 1 ch. 1 × 1200

Table 2. Results of subjective evaluation for F0 contour sim-
ilarity (# of evaluated samples: 42, # of evaluators: 7).

VAE-SPACE Musical score or Fair p-value
76.2 % 23.8 % 0.000312

uttered by one male speaker to train a deep generative model,
and the remaining 53 sentences (around 3 minutes) to evaluate
the performance. For singing voice F0 contours, we used real
singing data paired with the musical score, 42 songs (around
15 minutes) sung by 6 singers including female and male clas-
sical, pop, and amateur singers (namely, each singer recorded
7 songs). To evaluate the performance of singing voice F0

contour modeling, we adopted the leave one out cross valida-
tion strategy over singer dependent models.
F0 extraction: we adopted TEMPO [17] as an F0 analyzer.
Based on the label data, the frame shifts were set to 8 and
5 ms for the speaking and singing voices, respectively. Note
that we carefully checked the actual extracted F0 contours and
excluded data that have failed to analysis. The final number
of data after excluding was described in Datasets.
Model architecture: The model setting of the conventional
stochastic model of F0 generative process (SPACE) was the
same as reported in [4]. Table 1 details the network archi-
tectures of our proposed model (VAE-SPACE) for speaking
voice F0 contour. The stride of each convolution was set to
1. For speaking voice, we set the number of channels over
latent space, K, to 4 indicating the mean and variance val-
ues of the phrase and accent components. We canceled the
baseline value 60 Hz of the speaking voice F0 contour, in ad-
vance. For singing voice, we set K to 2 indicating the mean
and variance values of the musical score. We normalized the
singing voice F0 contour, its musical score, and its backward
difference to zero-mean and unit-variance using their training
sets, respectively. We optimized the model parameters using
the Adam optimizer [18] with a mini-batch of size 32. The
learning parameters α, β1, β2 were set to 0.0001, 0.9, and
0.99, respectively.

4.2. Experimental Results

4.2.1. F0 Contour Similarity Over Singing Voice

We subjectively evaluate singing voice synthesized with two
types of F0 contours. One is F0 contour corresponding to the
music score, and another is F0 contour generated by using the
only decoder part our proposed framework given the musical
score after training both of the encoder and decoder parts of
the VAE.
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Fig. 1. Samples of F0 contour and MIDI note for real singing
data sung by female classical (top), male pop (middle), and
male amateur (bottom) singers.

Table 3. Generation errors of F0 contour and its underlying
parameters for real speaking data (top) and ”ideal” condition
(bottom; # of evaluated samples: 53).

VAE-SPACE SPACE
F0 contour 0.0536 0.0883

Phrase component 0.0947 0.123
Accent component 0.0936 0.122

F0 contour 0.0169 0.0790
Phrase component 0.0322 0.131
Accent component 0.0329 0.110

Table 2 shows that our proposed model achieved to gen-
erate F0 contours which are similar to those of real singing
data. Note that the breakdown of ”Musical score or Fair” is
that ”Musical score” and ”Fair” are 7.14 % and 16.7 %, re-
spectively. Considering the comments of evaluators, it seems
that they have felt the fluctuations even if F0 contours are
monotonic, namely the musical score. One possible reason is
that the singing style causes the fluctuations of acoustic fea-
tures including not only F0 contours but also spectral features
and power information of the waveform. As shown in sam-
ples (Fig. 1), we confirmed that our proposed model made it
possible to generate F0 contours with the fluctuations, such
as vibrato and overshoot.

4.2.2. Generation Error Over Speaking Voice

Calculating root mean square error (RMSE) between the ref-
erence and the generated one, we objectively evaluate the per-
formance of our proposed model, VAE-SPACE. Note that
not only actual F0 contours observed in real speaking data
but also F0 contours reconstructed by the Fujisaki model pa-
rameters are used as the reference. Using F0 contours recon-
structed by the Fujisaki model parameters means the ”ideal”
condition.

Table 3 shows the performances in the case of training
the model by using only actual F0 contours observed in real
speaking data and the ”ideal” condition. Both of the results
show that our proposed model successfully achieved higher
performance compared with the conventional method. The
major factors of getting high performance is the constraint of
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Fig. 2. Samples of F0 contour and phrase and accent compo-
nents for real speaking data (a ∼ c) and ”ideal” condition (d
∼ f).

Table 4. Processing time to solve inverse mapping from F0

contour to its underlying parameters (Unit: [sec]).

VAE-SPACE SPACE
53 sentences 0.0126 ± 0.0002 2712.080

average — 5.67

VAE that is the training of the parametric encoder in com-
bination with the generator network. As shown in Fig. 2, the
F0 contours and their underlying parameters generated by our
proposed model are more closer to the reference compared
with those generated by the conventional method. In particu-
lar the ”ideal” condition, the underlying parameters estimated
by our proposed framework are truly close to the references.

4.2.3. Processing Time to Solve Inverse Mapping

To demonstrate the use of CNN architecture, we measure the
processing time to estimate the underlying parameters of F0

contours given actual obtained F0 contours. Although our
proposed model VAE-SPACE enables to work on a GPU, the
conventional model SPACE works on only a CPU. The CPU
and GPU are ”Intel R© Xeon R© Processor E5-2699 v3” and
”NVIDIA Corporation GK210GL [Tesla K80] (rev a1)”, re-
spectively.

Table 4 shows that our proposed model makes it possible
to work in real time.

5. CONCLUSIONS

In this paper, we have presented a unified approach to model
both of speaking and singing voice F0 contours. The key
role of our approach is a learning-based mapping to realize
complex mapping, which is really difficult to fully elucidate,
between F0 contours and their underlying parameters. Exper-
imental results revealed that the presented approach signifi-
cantly outperforms the conventional stochastic model of F0

generative process.
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