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ABSTRACT

This paper describes a method based on a sequence-
to-sequence learning (Seq2Seq) with attention and context
preservation mechanism for voice conversion (VC) tasks.
Seq2Seq has been outstanding at numerous tasks involving
sequence modeling such as speech synthesis and recognition,
machine translation, and image captioning. In contrast to
current VC techniques, our method 1) stabilizes and acceler-
ates the training procedure by considering guided attention
and proposed context preservation losses, 2) allows not only
spectral envelopes but also fundamental frequency contours
and durations of speech to be converted, 3) requires no con-
text information such as phoneme labels, and 4) requires no
time-aligned source and target speech data in advance. In our
experiment, the proposed VC framework can be trained in
only one day, using only one GPU of an NVIDIA Tesla K80,
while the quality of the synthesized speech is higher than that
of speech converted by Gaussian mixture model-based VC
and is comparable to that of speech generated by recurrent
neural network-based text-to-speech synthesis, which can be
regarded as an upper limit on VC performance.

Index Terms— Voice conversion, deep learning, sequence-
to-sequence, attention mechanism, context preservation mech-
anism

1. INTRODUCTION

Voice conversion (VC) systems aim to convert para/non-
linguistic information included in a given speech waveform
while preserving its linguistic information. VC has been
applied to various tasks, such as speaker conversion [1-3]
for impersonating or hiding a speaker’s identity, as a speak-
ing aid [4, 5] for overcoming speech impairments, as a style
conversion [0, 7] for controlling speaking styles including
emotion, and for pronunciation/accent conversion [8, 9] in
language learning.

A popular form of VC is a statistical one based on a Gaus-
sian mixture model (GMM) [10]; it requires time-aligned
parallel data of the source and target speech for training the
conversion models. For frameworks requiring time-aligned
parallel data, other researchers have proposed exemplar-based
VCs using non-negative matrix factorization (NMF) [11, 12]
and neural network (NN)-based VCs using restricted Boltz-
mann machines [13, 14], feed-forward NNs [ 15, 16], recurrent
NNs [17, 18], variational autoencoders [19, 20], and gener-
ative adversarial nets [9]. On the other hand, frameworks
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requiring no parallel data, called parallel-data-free VCs, have
been proposed [!, 3] to avoid the time-consuming job of
recording speech for parallel data collection. Notably, the
drawbacks of these VCs are the prerequisite of a large num-
ber of transcripts and/or difficulty converting the durations of
the source speech.

Recently, sequence-to-sequence (Seq2Seq) learning [21,

] has proved to be outstanding at various research tasks

such as text-to-speech synthesis (TTS) [23-25] and auto-
matic speech recognition (ASR) [26,27]. The early Seq2Seq
model [21] has encoder and decoder architectures for map-
ping an input sequence to an encoded representation used by
the decoder network to generate an output sequence. To select
critical information from the encoded representation in accor-
dance with the output sequence representation, later Seq2Seq
models [22, 28] introduce an attention mechanism. The key
advantages of the Seq2Seq learning approach are the ability to
train a single end-to-end model directly on the source and tar-
get sequences and the capacity to handle input and output se-
quences of different lengths. In particular, we expect that the
Seq2Seq model makes it possible to convert not only acoustic
features but also the durations of the source speech to those of
the target speech. Moreover, Seq2Seq learning is extensible
to semi-supervised learning [29], where it can avoid the time-
consuming task of collecting parallel data. In a supervised
learning task, Seq2Seq learning requires parallel data of the
source and target sequences rather than time-aligned paral-
lel data. Considering dual learning [30,31], Seq2Seq learning
can be trained with a small amount of parallel data and a large
amount of non-parallel data.

In this paper, we propose a Seq2Seq-based VC with at-
tention and context preservation mechanisms'. Our contribu-
tions are as follows:

e Our VC method makes it possible to stabilize and ac-
celerate the training procedure by considering guided
attention and context preservation losses.

e It makes it possible to convert not only spectral en-
velopes but also fundamental frequency contours and
durations of the speech.

e It requires no context information such as phoneme
labels, unlike [32, 33] which introduced the Seq2Seq
model and used context information.

'Audio samples can be accessed on our web page: http://www.
kecl.ntt.co.jp/people/tanaka.ko/projects/atts2svc/
attention_based_seg2seq_voice_conversion.html
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e [t requires no time-aligned source or target speech data
in advance.

We conducted an our experiment demonstrating that the qual-
ity of the synthesized speech generated by our VC framework
is higher than that of speech generated by the conventional
GMM-based VC, and it is comparable to that of speech gen-
erated by recurrent-NN based TTS in terms of both natural-
ness and speaker similarity. Note that the proposed model was
trained in only one day, using only one GPU of an NVIDIA
Tesla K80.

2. CONVENTIONAL VC

2.1. Frame/Sequence- based VC

There are two types of frame/sequence- based VC: VCs re-
quiring parallel data [10,34,35] and parallel-data-free VC [1,

]. The first framework has different procedures of training
and conversion, as shown in Fig. la. The conversion proce-
dure does not have a time warping function, despite that the
training procedure includes a time-alignment step to handle
source and target sequences having different lengths. The sec-
ond framework is a parallel-data-free VC that does not require
parallel source and target speech data. To realize parallel-
data-free VC, the second framework uses context informa-
tion [36,37], adaptation techniques [38,39], a pre-constructed
speaker space [40,41], and cycle consistency [1,3]. Although
these VC techniques have various training procedures, the
conversion procedure does not involve the time warping func-
tion. Consequently, the frame/sequence- based VC frame-
works do not allow us to convert the durations and the acous-
tic features of the source speech at the same time. In contrast,
our model allows both the acoustic features and the durations
to be converted at the same time.

2.2. Seq2Seq-based VC

In contrast to the frame/sequence- based VC frameworks,
Seq2Seq-based VC frameworks make it possible to convert
not only the acoustic features but also the durations of the
source speech. Most Seq2Seq-based VCs consist of ASR and
TTS modules which are trainable with pairs of speech and
its transcript rather than the source and target speech. The
ASR module converts the acoustic feature sequence of the
source speech into a sequence of context information such as
phoneme labels and context posterior probabilities [32, 37],
and the TTS module generates the acoustic feature sequence
of the desired speech from the sequence of context informa-
tion. One approach to changing the duration of the source
speech uses a re-generation method that generates the du-
ration information from the text symbols after converting
the acoustic features of the source speech into text symbols
once. Namely, the duration information is erased once and
re-generated. Another approach [32, 33] involves Seq2Seq
learning, as shown in Fig. 1b. In this approach, the context
posterior probability sequence of the source speech including
the duration information is directly converted into a context
posterior probability sequence of the desired speech including
the duration information. Both approaches work well if ASR
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Fig. 1. System overviews of conventional VC, a)

frame/sequence- based VC using parallel data (see Sec. 2.1)
and b) Seq2Seq-based VC (see Sec. 2.2). “CPPs” and “BiL-
STM” denote context posterior probabilities and bidirectional
LSTM, respectively.

performs robustly and accurately enough, but they require a
large number of transcripts to train each module. In contrast,
our model does not use any transcript.

3. ATTS2S-VC

Our method consists of 1) four basic components of the
Seq2Seq model and 2) two additional components as a con-
text preservation mechanism. The four basic components are
a source encoder, target encoder, target autoregressive (AR)
decoder, and attention mechanism. The two additional com-
ponents are a source decoder and another target decoder to
keep linguistic information of the source speech. Figure 2 is
an overview of the system.

3.1. Seq2Seq Model with Attention Mechanism

Letususe X = [x1, - ,z7]and Y = [y, -+ ,y;] to de-
note sequences of acoustic features of the source and target
speech, respectively. The source encoder network fs,cgnc and
target encoder network fr,mne encode the input sequences
X and Y to the embeddings K = [ky,--- ,k;] and Q =

(g1, ,q], as follows:
K = fsrcEnc(X), (1)
Q = fTarEnc(Y)~ 2)
In order to accurately predict the output sequence, [22,28]

introduced an attention mechanism. At each time frame of the
embeddings @, the attention mechanism gives a probability
distribution that describes the relationship between the given
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Fig. 2. System overviews of proposed VC. The solid lines
indicate the training and conversion procedures. The dashed
lines indicate calculations of the differences during training.
Green boxes and red boxes respectively denote the original
components and the proposed additional components.

time frame feature g; and the embeddings K. Consequently,
the attention matrix A can be written as

eij = frenn(ki, q;), 3)
exp(e; ;)
ij = S - “
! > exp(ei ;)
where frpnn indicates a function described by feed-forward
NNs and a; ; is an element (4, 5) of the attention matrix A.

Aseed R = [ry,--- ,7 ] of the target AR decoder is ob-
tained by considering the long-range temporal dependencies
between the source and target sequences as follows:

r; :Kaj. (5)

As the name implies, the target AR decoder involves all pre-
vious outputs of itself. Hence, the input of the target AR de-
coder is R’ combined with the seed R and the embeddings

Q. The output Y of the Seq2Seq model is obtained through
the target AR decoder frarDecAR>

Y = frapecar(R'). ©)

Finally, we minimize the objective function Lgeqaseq Of
Seq2Seq learning:

‘CSeq2Seq = ||Y - Y||1 (7)

3.2. Stabilizing and Accelerating Training Procedure
3.2.1. Guided Attention Loss

To accelerate the training of an attention module, [25] in-
troduced a guided attention loss. Generally speaking, most
speech signal processing applications, such as ASR, TTS, and
VC, are time incremental algorithms. It is natural to assume
that the time frame 7 of the source speech waveform pro-
gresses nearly linearly with respect to the time frame j of the
target speech waveform, i.e., ¢ ~ «j, where o ~ § There-
fore, the attention matrix A should be a nearly diagonal. A
penalty matrix G is designed, as follows:

AV
~(-%)
203 ’

gi,j =1 —exp (®)

where o, controls how close A is to a diagonal matrix. The
guided attention loss Lg, is defined as

Lga = |G © All1, €))

where © indicates an element-wise product.

3.2.2. Context Preservation Loss

To stabilize the training procedure, we propose a context
preservation loss. In preliminary experiments, we found that
the training procedure sometimes failed even if it took into
account the guided attention loss (see speech samples on our
web page 1). In particular, the converted speech seemed
like randomly generated speech or speech repeating several
phonemes. One possible reason is that minimizing the ob-
jective function Lgeq2seq sometimes makes the target AR
decoder a network just reconstructing the input of the target
encoder. It is because we use Y rather than Y as the input
of the target encoder in the training. As a result, the source
encoder is not required to control the output of the target AR
decoder and preserve the context information of the source
speech.

To make the source encoder meaningful, we introduce two
additional networks to the original Seq2Seq model as a con-
text preservation mechanism. One is a source decoder fs;cpec
for reconstructing the source speech X from the embeddings
K. The other is a target decoder fr.,pec for predicting the
target speech Y from the seed R.

X = fsrepec(K), (10)
Y = fraec(R). (11)

From another point of view, the source decoder fsycpec helps
the source encoder to preserve the linguistic information of
the source speech X, while the target decoder fra,pec helps
the source encoder to encode the source speech X to the
shared space of the source and target speech. Note that in
the preliminary experiments, the target decoder was more im-
portant than the source decoder. The full objective function
of our model is formulated as

EPrOposed = ESquSeq + )\gaﬁga
FAep([[X = X[ +|IY =Y, (2
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where A, controls the context preservation loss.

4. EXPERIMENTS

4.1. Experimental Conditions

Datasets: We used the CMU Arctic database [42] consist-
ing of utterances by two male speakers (rms and bdl) and
two female speakers (clb and slt). To train the models, we
used about 1,000 sentences (speech section of 50 min) of
each speaker. To evaluate the performance, we used 132 sen-
tences of each speaker. The sampling rate of the speech sig-
nals was 16 kHz. We treated rms and clb as source speakers
and bdl and slt as target speakers. For the evaluations, we
conducted intra-gender pairs, rms-bdl and clb-slt, and cross-
gender pairs, rms-slt and clb-bdl. Note that we trained the
conversion models for every speaker pair, independently.

Baseline system 1 (GMM-VC-wGYV): We used a GMM-
based VC method [10] as the baseline for frame/sequence-
based VC described in Sec. 2.1. To train the conversion mod-
els, we used an open source VC toolkit sprocket [43] and its
default settings, except for Fy ranges and power thresholds.
Note that a global variance (GV) [10] was also considered.

Baseline system 2 (LSTM-TTS): By assuming the ASR
module and the encoder part of the encoder-decoder mod-
ule in [32] work perfectly, we can focus on the TTS mod-
ule. Therefore, we used an LSTM-based TTS method as the
baseline of Seq2Seq-based VC described in Sec. 2.2. The
contextual features used as input were 416-dimensional lin-
guistic features obtained using the default question set of the
open source TTS toolkit Merlin [44]. From the speech data,
60 Mel-cepstral coefficients, logarithmic Fy, and coded aperi-
odicities were extracted every 5 ms with the WORLD analysis
system [45]. As the duration model, we stacked three LSTMs
with 256 cells followed by a linear projection. As the acoustic
model, we stacked three bidirectional LSTMs with 256 cells
followed by a linear projection.

Proposed system (Proposed): Inspired by Tacotron [23],
we used the architecture described in open Tacotron [46].
Note that we replaced all ReLU activations [47] with a gating
mechanism of gated linear units [48]. Although the proposed
method worked well for not only acoustic features of the
WORLD vocoder but also raw spectral features, we chose to
use the acoustic features of WORLD vocoder to balance the
experimental conditions of LSTM-TTS. Note that the target
AR decoder also generated the stop tokens. As the additional
source decoder and target decoder networks, we used the
same architectures as in the source encoder. The hyperpa-
rameters 0g, Aga, Acp Were 0.4, 10,000, and 10, respectively.
The batch size, number of epochs, and reduction factor [49]
were 32, 1,000 and 5. We used the Adam optimizer [50] and
varied the learning rate over the course of training [51].

4.2. Experimental Results

As shown in Fig. 3, we conducted two subjective evaluations,
preference tests on naturalness and speaker similarity. The
number of listeners was 15, and each listener evaluated 80
shots consisting of randomly selected 10 speech samples x 4

Preference score [%]

Preference score [%]

\ X \3 X N\ X N\ N
@"’d epb & o’oé \0'6} é"z’d (9:06 & opb @’9\
S & & F e S & & & e
B Proposed Fair s GMM-VC-wGV mm LSTM-TTS

Fig. 3. Results of preference tests of naturalness (upper) and
speaker similarity (lower).

pairs of intra/cross- gender x 2 comparisons, v.s. GMM-VC-
wGYV and v.s. LSTM-TTS.

The evaluations indicated that Proposed outperformed
GMM-VC-wGYV in terms of both naturalness and speaker
similarity. This is because our method makes it possible to
convert not only the acoustic features but also the durations of
speech. In contrast, baseline system 1 forces the conversion
while preserving the durations of the source speech. Con-
sequently, durations not used in the target speech make the
conversion errors larger.

Moreover, Proposed was comparable to LSTM-TTS.
This result demonstrates that our method makes it possible
to learn the key components for changing the individuality
of the speaker while preserving the linguistic information.
Notably, our model was trained without any transcript while
[32,33] used a large number of transcripts.

5. CONCLUSIONS

We proposed a method based on Seq2Seq learning with at-
tention and context preservation mechanisms for VC tasks.
Experimental results demonstrated that the proposed method
outperformed the conventional GMM-based VC and was
comparable to LSTM-based TTS. Extending the proposed
method so that it can be used in semi-supervised learning
tasks is ongoing work. Note that since we also progressed in
a convolutional version of the proposed method [52] simul-
taneously, we will conduct further evaluations and report the
results.

Acknowledgements: This work was supported by a grant
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