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Abstract

This paper describes a many-to-many voice conversion model
that filters the speaker vector to control high-level attributes
such as speaking rate while preserving voice timbre. In or-
der to control only the speaking rate, it is essential to decom-
pose the speaker vector into a speaking rate vector and others.
The challenge is to train such disentangled representations with
no/few annotation data. Motivated by this difficulty, we pro-
pose an approach combining the conditional filtering method
with data augmentation. The experimental results showed that
our method disentangled complex attributes without annotation
and separately controlled speaking rate and voice timbre. Audio
samples can be accessed on our web page'.

Index Terms: Voice conversion, conditional filtering, disentan-
glement, speaker representation, sequence-to-sequence learning

1. Introduction

Voice conversion (VC) technology, which converts one speak-
ing style to another without changing linguistic information, has
been applied for various tasks; speaker conversion [1,2], singing
conversion [3, 4], assistive systems [5, 6] to overcome speech
and hearing impairments, and pronunciation and accent con-
versions [7] in language learning. Although the recent conver-
sion quality has been improved thanks to sequence-to-sequence
(S2S) learning approaches [2,4,6,8,9], the efficient way for op-
timal control of high-level attributes such as speaking rate and
fundamental frequency (Fp) is still an active research area. In
this work, we focus on speaking rate controllability.

A well-known pure signal processing (SP) method for
modifying speaking rate is a waveform similarity-based syn-
chronous overlap addition (WSOLA) method [10]. WSOLA
performs temporal modification of speech waveforms by using
a scale factor. For more flexible control, [11] proposed a pho-
netic posterior-gram (PPG) based VC, which was the best VC
method in VC challenge 2020 [12]. The PPGs are extracted
from the speech in advance using an external automatic speech
recognition (ASR) system trained with a large amount of train-
ing data. Then, an inverter from the PPG to the Mel spectro-
gram is trained. In addition, to change the speaking rate, each
context duration per speaker is calculated in advance. The con-
text duration is manually modified along with the pre-calculated
duration statistics during the inference (called duration adjust-
ment). The converted speech sounds natural but requires an ex-
ternal model and duration statistics for each context.

To reduce tedious labeling tasks, a semi-supervised gener-
ative modeling method [13] for text-to-speech synthesis (TTS)
has been proposed. They introduce a variational autoencoder

"http://www.kecl.ntt.co.jp/people/tanaka.ko/
projects/cfvc/
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Figure 1: System overview of the proposed method during the
training (a) and the inference (b) and (c). The differences
between (b) and (c) are described in Sec. 2.2. In (c), the
converted speech has target speaker’s voice timbre but source
speaker’s speaking rate, for example. (c) is important to confirm
whether the proposed method makes is possible to decompose
the speaker representation.

(VAE) based speaker encoder to the S2S-based TTS system. By
introducing the VAE, speech attributes such as speaking rate,
which are essential but rarely labeled, can be discovered and
controlled. However, their framework is in the scope of semi-
supervised learning, requiring small amounts of labeled data as
training data to make reasonable inferences, and their applica-
tion is TTS.

To avoid the labeling task altogether, an unsupervised
speech disentanglement method [14] has been proposed for the
VC task. They perform aspect-specific voice conversion by dis-
entangling speech into content, rhythm, pitch, and voice tim-
bre using multiple autoencoders (AEs) in an unsupervised man-
ner. Each AE constrains the flow of information on the speech
components to be disentangled using efficient signal process-
ing methods and resampling techniques. Unfortunately, data
modification is necessary during the training and testing, and
reference speech is also needed to estimate the rhythm corre-
sponding to the speaking rate.

Inspired by [15], we propose a conditional filtered voice
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conversion (CFVC) model for controlling high-level attributes
such as speaking rate while preserving voice timbre. Un-
like [15], we do not require annotation in advance to learn the
attribute representation. The filtering coefficients are treated
as continuous values rather than discontinuous values. Fur-
thermore, the conversion framework is within sequence-to-
sequence learning. Similar to [14], a data augmentation ap-
proach is adopted rather than data labeling. However, our ap-
proach makes it possible to represent and control the speaker’s
speaking rate as a vector by introducing a conditional filtering
technique, unlike [14]. Our contributions are as follows:

* Our model training requires only speech data and no annota-
tion for speaking rate.

* Combining the conditional filtering method with data aug-
mentation makes it possible to learn the represention of each
speaker’s speaking rate as a multiple-dimensional vector, not
a scalar.

* Itis possible to convert the speech into a voice with the speak-
ing rate of speaker S and the voice timbre of speaker T by
manipulating the learned speaker vector, as shown in Fig. 1
(c).

* We briefly confirmed that our model also allows training and
controlling other high-level attributes such as Fy (see the
bonus track in the supplemental material).

2. Method

The system overview is shown in Fig. 1. We employ an S2S
model architecture where the source speech parameters are used
as input, and the target speech parameters are generated as out-
put. All we need for training is a parallel corpus of input and
output paired speech.

As the speech parameters, we extract 80-dimensional log-
Mel spectrogram features Xsre = [Z1,src, " , Ti,sre] and
Xigt = [®1,¢gt,+ , Xj,e9¢) Over a range of 80-7600 Hz from
the given source and target speech signals sampled at 16 kHz.
The requirements for Short-Time Fourier Transform are the
same as reported in [16]; a Hanning window, 64 ms frame
length, eight ms frameshift, and 1024-point Fast Fourier Trans-
form. Since shorter sequences make it easier to train each
model, we shortened the length of the sequence by creating sub-
frames containing two time frames.

2.1. Data Augmentation

This paper focuses on speaking rate control and augments
the training data with an efficient signal processing method,
WSOLA [10]. Time-domain speech waveforms Y s, and Y ;¢
are manipulated before the log-Mel spectrogram extraction. Us-
ing the scale factors asrc and agge, Y sre and Y gg are stretched
to asre and auygs times their original length. The scale factor of
1 indicates no data augmentation. Therefore, the extracted log-
Mel spectrogram features X s, and X4 are already stretched.
We sampled ovsrc and ag¢ from the uniform distribution over
a range of 0.8-1.25 and performed the data augmentation with
50% probability during the training. In this paper, the uni-
form distribution range was determined from the fastest and
slowest speakers in the training data. To avoid misunderstand-
ing, WSOLA requires a scale factor and does not require pre-
calculation of speaking rate.

2.2. Conditional Filtering

As shown in Fig. 2, input one-hot vectors 0sy. and 04¢ cor-
responding to speaker id are passed into a conditional filter-
ing module fcr consisting of a 1024-dimensional linear pro-
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Figure 2: Conditional filtering module for controlling the speak-
ing rate. “Linear”, “Tanh” and “Concat.” indicate the linear
transformation layer, the hyperbolic tangent function, and the
vector concatenation, respectively. Augment coefficients sy
and gy are defined at Sec. 2.1.

jection, followed by the hyperbolic tangent activation function
and three linear projections to get 3-dimensional variable com-
ponents ¢, src and ¢, ¢g¢ changed by the data augmentation, 3-
dimensional constant components Cc, src and ¢4 not changed
by the data augmentation, and 253-dimensional remaining com-
ponents ¢, src and ¢, ig¢. 3-dimensional vectors ¢ src and
cs,tg¢ for representing speaking rate are generated as follows:

()]
(@)

Cs,src = Cuy,src ¥ Qsre + Ce,src,

Cs,tgt = Cu,tgt * Qtgt + Cc,tgt-

Finally, a 256-dimensional speaker vectors ¢s,. and ¢4 condi-
tioning on the encoder and decoder are obtained by concatenat-
ing the speaking rate vectors Cs, src and cs, g+ and the remain-
ings ¢, src and ¢, tg¢.

At the test time, we can control the speaking rate of the con-
verted speech Xere by changing ag4¢. Considering the condi-
tional filtering module makes it possible to represent the speak-
ing rate as cs,4¢, We can try to generate the speech X s with
target speaker’s voice timbre but source speaker’s speaking rate
by concatenating ¢ src and ¢, t4:. We call these tasks ’constant
ratio conversion’ and ’vector swapping conversion’ (see Fig. 1
(b) and (¢)).

In the preliminary experiment, we confirmed that chang-
ing the speaking rate representation from 3-dimensional vec-
tor representation into a scalar representation resulted in perfor-
mance degradation. Therefore, a multidimensional representa-
tion may help to model the high-level attributes. We also con-
firmed that the constant components were necessary because
the vector swapping conversion failed by removing the constant
components.

2.3. Encoder and Decoder

Inspired by [17], an input log-Mel spectrogram X .. and a
source speaker vector csr. are passed into an encoder network
fEnc is composed of three 1D non-causal convolutional layers
each containing 512 filters with the kernel size of 5, followed
by a batch normalization [18] layer and a rectified linear unit
(ReLU) activation. The output of the final convolutional layer
is passed into a single bi-directional long short term memory
(LSTM) layer containing 512 units to generate encoded features



Z, as follows:
Z = fEnc (X (3)

A decoder network fpec is the same as reported in [17],
except for changing the LSTM unit size from 1024 to 512. 2
and taking the target speaker vector c¢4¢ as input. The de-
coder involving the attention mechanism and post-net pre-
dicts an attention matrix A, the output log -Mel spectrogram
X = [Z1,- -+ ,&;], and its improved Xpost from Z, X =
[To, T1,tgt, - ,mj,l,tgt], and ¢4+, where x¢ indicates a zero
vector, known as start token, as follows:

Xpost7X7A = fDCC(Z7X’ct9t)'

srey csrc)~

“

Finally, we minimize the objective function Ls2s to train the
encoder fgnc and the decoder fpec:

Lsas = || X — Xigt|2, (5)
where HXpOSt — X tgt||2 and stop token loss [17] are also used
but omitted for brevity.

2.4. Neural Vocoder

In the proposed model, any neural vocoders by conditioning
on Mel spectrograms as input can be used. In the experiment,
HiFi-GAN [19] was used as the neural vocoder. We applied
V2 setting described in [19] except for the eight ms frameshift
condition.

3. Experiments

The most important thing to prove here is that the proposed
method makes it possible to disentangle the speaker representa-
tion and allow the manipulation of each element of the speaker
vector. Therefore, objective experimental evaluations demon-
strate that 1) the length of the vector swapping converted speech
X vsc using the speaking rate vector cs sr. from the source
speaker and the remaining ¢, :¢¢ from the target speaker is
equivalent to the length of the source speech X s,.. Then, sub-
jective experimental evaluations demonstrate that 2) the voice
timbre of the converted speech X usc is similar to that of the
target speech X ;4¢.

3.1. Experimental Conditions

We conducted experimental evaluations using a phonetically
balanced Japanese speech parallel dataset [20] consisting of ut-
terances by six professional male speakers and four professional
female speakers. The speech was recorded in a quiet room with
minimal reverberation, and silent sections were removed using
annotation by experts. Therefore, fluctuation of the length of the
speech length caused by fluctuation of the length of the silence
section need not be considered in this experiment. To train VC
models, we used 450 sentences (speech section of around 0.5
hours) per speaker. Table 1 shows speech section length statis-
tics. To evaluate the performance, we used 53 sentences per
speaker. The encoder-decoder models were trained on many-
to-many condition, which is 10-speaker input and 10-speaker
output.

The number of training iterations is 100k. The learning
rate and the exponential decay rate for the first moment for
Adam [21] were set at 0.0002 and 0.9 after 4k step of warmup.
The mini-batch size was 16. We evaluated the following con-
verted speech.

2 We confirmed no degradation in the preliminary objective experi-
ments.
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Table 1: Averaged speech section length [sec] over the training
dataset. Male speaker (upper) and female speaker (lower). The
lower the value the faster the speaking rate.

Speaker || mho | mht | mmy | msh | mtk | myi
Length 3.65 | 418 | 3.89 | 3.93 | 454 | 3.69
Speaker || fkn fks ftk | fym
Length 442 | 405 | 448 | 4.11

Baseline: Converted speech by using a sequence-to-sequence
VC model, which is equivalent to the proposed method with-
out the data augmentation and the conditional filtering mod-
ule. R

* Proposed-swap: Converted speech X , 5. by using the speak-
ing rate vector c;, s, from the source speaker and the remain-
ing ¢, +4¢ from the target speaker in the vector swapping con-
version using the proposed method.

Proposed-0.6~1.4: Converted speech X cre when Qigt 18
varied from 0.6 to 1.4 in the constant ratio conversion using
the proposed method.

As the objective evaluation metrics, we used Mel-cepstral
distortion (MCD) [dB], root mean square error of Fp (Fp
RMSE) [Hz], and character error rate (CER) [%]. We used
dynamic time warping to get the alignment between the con-
verted sample and the reference sample. To calculate the MCD
and Fp RMSE, we extracted 1-24 order Mel-cepstrums and Fps
from the raw speech and the converted speech synthesized by
the neural vocoder. Note that the range of Fy RMSE was 22-
24, and no difference was found, so it was omitted. The CER
was calculated by the Transformer-based ASR model trained
on the corpus of spontaneous Japanese (CSJ) [22], which was
provided by ESPnet [23].

As the objective evaluation metrics to evaluate the speaking
rate controllability, we define duration factor (DF) and duration
ratio correlation coefficient (DRCC). DF is proposed to evaluate
the controllability of speaking rate in constant ratio conversion.
In constant ratio conversion, the length of the converted speech
should vary in proportion to the given augment coefficient av ;.
For example, the length of the converted speech with ag¢ =
0.8 should be 0.8 times the length of the converted speech with
atgt = 1.0. Therefore, we define the DF as follows:

N
Z

length(converted speech with czgt)

length(converted speech with agr = 1. 0)
(6)

where NN is the number of the evaluated audio clips. In this
experiment, N was 4770 (90 speaker pairs * 53 sentences). The
closer the DF value is to a4¢, the better the performance.

DRCC is also proposed to evaluate the controllability of
speaking rate in vector swapping conversion. First, we define
duration ratio 1 (DR1) and DR2 as follows:

length(original speech X 4¢)

DR1 = @)

length(original speech X 5,¢)’
length(converted speech from X src)

DR2 =
R length(reconstrcuted speech from X g,.c)’

®)

If the conversion model is trained well, DR2 should be the
same value as DR1, which is the reference DR. As DRCC for
”Baseline” and “Proposed-1.0”, we calculated the correlation



Table 2: Objective evaluation results. The lower the MCD and
CER, the better the performance. The closer the DF and DRCC
are to o and 1, respectively, the better the performance. * in-
dicates the extrapolation because o is sampled from a uniform
distribution over a range of 0.8-1.25 during the training.

Sysem | MCD | CER | DF | DRCC
Baseline — 5.16 14.7 — 0.99
Proposed-swap — 5.20 14.6 — 0.95
0.6%x | 444 | 16.1 | 0.70 —
(Faster) 0.7 | 4.81 155 | 0.75 —
0 0.8 5.08 | 15.0 | 0.81 —
0.9 5.18 | 148 | 0.90 —
Proposed- 1.0 5.16 14.6 — 0.98
1.1 5.33 14.8 | 1.10 —
I 1.2 544 | 150 | 1.20 —
(Slower) 1.3x | 549 | 153 | 1.31 —
1.4%x | 5.51 159 | 1.44 —

coefficient between DR1 and DR2 over 4770 audio clips. The
closer the DRCC value is to 1, the better the performance. For

”Proposed-swap”, we used the following DR2 to calcurate the
DRCC.

length(converted speech X from Xsre)

N length(converted speech X yse from Xsre)

)

If the proposed method works as intended, the speech length of
X usc should be that of the reconstructed speech from X ;.. be-
cause of the converted speech X vse using the source speaker’s
speaking rate vector cs src. Of course, if the proposed method
does not work well and the length of the converted speech is
similar to that of the target speech, the DRCC of ”Proposed-
swap” will be close to 0.0.

As the subjective evaluation of sound quality, we conducted
a 5-scaled mean opinion score (MOS): 5 for excellent, 4 for
good, 3 for fair, 2 for poor, and 1 for bad. To confirm voice
timbre similarity, we also conducted a 4-scaled preference test
(PT): 4 for same (sure), 3 for same (not sure), 2 for different
(not sure), and 1 for different (sure). 10 native Japanese speak-
ers participated in each subjective evaluation. Each system was
evaluated over 275 times.

3.2. No Negative Impact of Data Augmentation and Condi-
tional Filtering Modules

The comparison of “Baseline” and "Proposed-1.0" showed that
there is no difference in objective and subjective evaluation re-
sults, as shown in Table 2 and Fig. 3. Therefore, we found
no problems with the addition of data augmentation and con-
ditional filtering modules.

3.3. Disentangled Representation

There was no difference between “Baseline” and “Proposed-
swap” for the objective evaluations, as shown in Table 2. Es-
pecially, the DRCC of “Proposed-swap” was still higher than
0.9 despite a part of the speaker vector being swapped. The re-
sults showed that the length of the converted speech ’Proposed-
swap” is approximately the same as the length of the source
speech.
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Figure 3: Subjective evaluation results on sound quality (left)

and voice timbre similarity (right). Re-synthesized indicates the
speech synthesized from the ground-truth Mel-spectrogram.

On the other hand, the sound quality and the voice tim-
bre similarity of “Proposed-swap” were comparable to those of
”Baseline,” as shown in Fig. 3. ”Proposed-swap” has the voice
timbre of the target speech even though a part of the speaker
vector was swapped. These results showed that the proposed
method allowed us to decompose the speaker representation
into a speaking rate component and other components.

3.4. Other Discussions

For ”Proposed-0.6~0.8", as shown in Table 2, the DFs behaved
as if there was an upper limit to how fast we could speak. For
”Proposed-0.8~1.2", compared with “Baseline,” the speaking
rate was successfully controlled without degrading CERs. For
”Proposed-1.2~1.4”, MCDs and CERs tended to be degraded,
as in the case of "Proposed-0.6~0.8".

On the other hand, as shown in Fig. 3, the subjective evalu-
ations showed that the sound quality and the voice timbre sim-
ilarity of the proposed method were comparable to those of the
baseline method except for & = 1.2. A possible reason is that
slower speech may make the difference easier to understand, as
in language learning. In particular, the converted speech further
slowing down an initially slow speech may be out of the natural
speech space.

4. Conclusions

We proposed a many-to-many voice conversion using data aug-
mentation and conditional filtering to obtain a speaker repre-
sentation decomposed into the speaking rate and other compo-
nents without annotation, precomputation of statistics, or ref-
erence speech. Experimental results showed that the proposed
method disentangled complex attributes of the speaker and con-
trolled speaking rate and voice timbre separately. In the future,
we plan to extend the proposed method to an any-to-many/any
voice conversion method.
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