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ABSTRACT

This paper describes a method for distilling a recurrent-
based sequence-to-sequence (S2S) voice conversion (VC)
model. Although the performance of recent VCs is becom-
ing higher quality, streaming conversion is still a challenge
when considering practical applications. To achieve stream-
ing VC, the conversion model needs a streamable struc-
ture, a causal layer rather than a non-causal layer. Moti-
vated by this constraint and recent advances in S2S learning,
we apply the teacher-student framework to recurrent-based
S2S-VC models. A major challenge is how to minimize
degradation due to the use of causal layers which masks
future input information. Experimental evaluations show
that except for male-to-female speaker conversion, our ap-
proach is able to maintain the teacher model’s performance
in terms of subjective evaluations despite the streamable stu-
dent model structure. Audio samples can be accessed on
http://www.kecl.ntt.co.jp/people/tanaka.
ko/projects/dists2svc.

Index Terms— Voice conversion, sequence-to-sequence
learning, distillation, streaming conversion.

1. INTRODUCTION

Voice conversion (VC) technology, which converts one speak-
ing style to another without changing linguistic information,
has been applied for various tasks; speaker conversion [1,
2], singing conversion [3, 4], assistive systems [5, 6] to over-
come speech and hearing impairments, and pronunciation and
accent conversions [7] in language learning. Recently, the
conversion quality has been improved thanks to sequence-
to-sequence (S2S) learning approaches [2, 4, 6, 8–10]. An
encoder-decoder structure, including an attention mechanism,
makes it possible to learn conversion rules that reflect the
long-term dependencies of input and output sequences. How-
ever, the conversion process is executable after we obtain the
entire sentence because the encoder contains non-causal lay-
ers, as shown in Fig. 1. Considering practical use, waiting
for the end of a speech is a major barrier against the smooth
speech communication in daily life. Unlike other speech sig-
nal processing, such as text-to-speech synthesis, the effect of
delayed auditory feedback [11], a well-known problem lead-
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Fig. 1. Non-causal (left) and causal (right) layers. The red
and pink boxes show the segments of the input feature and
the frames of the converted feature. The causal layers do not
take future frames as input, contrary to the non-causal lay-
ers. Real-time conversion of streaming speech data increases
latency by the amount of look-ahead.

ing to unnatural speech, must also be considered since the
converted speech is fed back to the auditory system. The VC
task requires handling streaming processing with low latency,
such as several dozen ms.

In the zero/minimal look-ahead scenario within the S2S
learning, achieving low latency streaming processing with
a recurrent-based approach appears possible rather than
convolution/transformer-based [12, 13]. A recurrent neural
network (RNN) can hold time-series information internally
in a layer, while a convolution/transformer-based model re-
quires a deep architecture to capture such information. Unfor-
tunately, in the preliminary experiments, we confirmed that
just replacing non-causal layers of the encoder with causal
layers would result in converted speech with significant de-
lay, as shown in Fig. 2. Note that this phenomenon has been
reported in a speech recognition task [14]. Trying to train a
model from scratch without any guides, uni-directional RNN
may have been trained to generate the current output after
considering inputs a little further ahead to capture the time-
frequency structure accurately. During the model training, the
time delay is offset by the attention mechanism. However,
in the test time on real-time streaming VC, this time delay is
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Fig. 2. Attention matrices in reconstruction scenarios; tar-
get speech is the same as source speech. a) is generated by
the standard encoder-decoder model, and b) is generated by
the encoder-decoder model replacing non-causal layers with
causal layers. Attention matrix b) is automatically shifted by
around 300 ms. This shifted attention directly increases the
latency of real-time streaming VC.

not canceled and increases the latency because we force the
attention matrix to be diagonal.

Motivated by the real-time streaming VC, the recent
advanced VC, and our preliminary experiments, we apply
knowledge distillation approaches, known as teacher-student
frameworks, to a recurrent-based S2S-VC model as the first
step. A major challenge is minimizing degradation due to
introducing the causal structure instead of the non-causal
structure, namely degradation caused by masking future in-
put information. Therefore, we investigate several knowledge
distillation approaches mentioned in Sec. 2.3. One is to copy
some model parameters from the teacher model to the student
model and fix them during training. The second is an atten-
tion distillation using Kullback-Leibler divergence (KLD).
The last is to share some model parameters between teacher
and student models and update them during training, known
as joint training. Experimental evaluations show that except
for male-to-female speaker conversion, the first approach is
able to maintain the teacher model’s performance in terms of
subjective evaluations despite the streamable model structure.

2. STRUCTURE AND OBJECTIVE FUNCTION

The system overview is shown in Fig. 3. We employ a S2S
model architecture where the source speech parameters are
used as input and the target speech parameters are generated
as output. All we need for training is a parallel corpus of input
and output paired speech. We introduce pre-trained speaker
encoder [15] to control output speaker styles and pre-trained
neural vocoder [16] to generate speech waveform from speech
parameters.

As the speech parameters, we extract 80-dimensional
log-Mel spectrogram features X = [x1, · · · ,xi] and Y =
[y1, · · · ,yj ] over a range of 80-7600 Hz from the given
source and target speech signals sampled at 16 kHz. The
requirements for Short-Time Fourier Transform are the same
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Fig. 3. System overview of teacher and student models.

as reported in [12]; a Hanning window, 64 ms frame length,
eight ms frameshift, and 1024-point Fast Fourier Transform.
Since shorter sequences make it easier to train each model, we
shortened the length of the sequence by creating subframes
containing two time-frames.

2.1. Speaker Encoder [15]

The network consists three LSTM layers with 768 unis and
a fully connected layer with a 256-dimensional linear projec-
tion to get a 256-dimensional speaker vector c from an input
log-Mel spectrogram. To train the speaker encoder, we used
Softmax criterion reported in [15] and a speech database con-
taining over 100k files uttered by thousands of speaker. Other
training condition, such as mini-batch size and parameter ini-
tialization, is the same as in [15]. The resulting Top-1 accura-
cies are 99.98 % and 99.65 % for training data and evaluation
data. During S2S model training, to avoid leaking context
information to the S2S modules, the speaker vector c is ex-
tracted from different sentences from the source and target
speech of the S2S model.

2.2. Teacher Model

Inspired by [17], an input log-Mel spectrogram X and a
source speaker vector cx is passed into an encoder network
fEnc is composed of three 1D non-causal convolutional layers
each containing 512 filters with the kernel size of 5, followed
by a batch normalization [18] layer and a rectified linear unit
(ReLU) activation. The output of the final convolutional layer
is passed into a single bi-directional long short term mem-
ory (LSTM) layer containing 512 units to generate encoded
features Zx, as follows:

Zx = fEnc(X, cx). (1)

A decoder network fDec is the same as reported in [17],
except for changing the LSTM unit size from 1024 to 512 1

and taking the target speaker vector cy as input. The decoder
involving the attention mechanism fAtt and post-net fPost
predicts an attention matrix A, the output log-Mel spectro-
gram Ŷ = [ŷ1, · · · , ŷj ], and its improved Ŷ post from Zx,

1 We confirmed no degradation in the preliminary objective experiments.
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Table 1. A list of investigated approaches. Post-net fPost is omitted for brevity.

System Encoder Decoder Fix Attention Skip Other explanationmechanism
Baseline (related with Fig. 2 a) fEnc fDec fAtt LTeacher

Preliminary experiment
fDistEnc fDistDec fDistAtt LStudent(related with Fig. 2 b)

Approach-1 fDistEnc f⋆
Dec ✓ ✓ LStudent + copied attention matrix

Approach-2 fDistEnc f⋆
Dec ✓ ✓ LStudent + self-supervised learning

Approach-3 fDistEnc f⋆
DistDec ✓ LStudent + copied attention matrix

Approach-4 fDistEnc fDistDec fDistAtt LStudent + LAttKLD

Approach-5 (excluded) fDistEnc fDistDec fDistAtt LStudent + LJnt

Ỹ = [y0,y1, · · · ,yj−1], and cx, where y0 indicates a zero
vector, known as start token, as follows:

Ŷ post, Ŷ ,A = fDec(Zx, Ỹ , cy). (2)

Finally, we minimize the objective function LTeacher to train
the encoder fEnc and the decoder fDec:

LTeacher = ||Ŷ − Y ||2, (3)

where ||Ŷ post − Y ||2 and stop token loss [17] are also used
but omitted for brevity of the latter section.

2.3. Student Model

The structure of an encoder network fDistEnc is the same as
that of the teacher encoder fEnc, except for streamable struc-
ture replacing the non-causal convolutions and bi-directional
LSTM with the causal convolutions and uni-directional
LSTM. The structure of a decoder network fDistDec is the
same as that of the teacher decoder fDec. A list of investi-
gated approaches is shown in Table 1.

2.3.1. Approach-1 & -2: use a teacher decoder as a student
decoder

In Approach-1 and -2, only the student encoder fDistEnc is
trained, because the teacher decoder is already streamable.
In these approaches, we initialize the model parameters of
the student decoder by those of the teacher decoder and fix
them during training. To do so, we have two training schemes.
Approach-1 uses the source and target parallel speech dataset
for the student encoder training. To handle different lengths
of speech sequence, we skip the attention mechanism fAtt but
bring the attention matrix A generated by the teacher model
as follows:

Z ′
x = fDistEnc(X, cx), (4)

Y ′
post,Y

′ = f⋆
Dec(Z

′
xA, Ỹ , cy), (5)

LStudent = ||Y ′ − Y ||2, (6)

where ⋆ indicates skipping the attention mechanism.
On the other hand, Approach-2 uses the target speech

Y as the source speech, so it is self-supervised learning, like
an auto-encoder, as follows:

Z ′
y = fDistEnc(Y , cy), (7)

Y ′
post,Y

′ = f⋆
Dec(Z

′
y, Ỹ , cy). (8)

It is assumed that if the teacher model is successfully trained,
the input of the decoder will be disentangled features; the con-
text information Z ′

y extracted by the encoder and the speaker
style cy extracted by the speaker encoder. Therefore, even if it
is self-supervised learning, we expect the student’s encoder to
be trained as a contextual information extractor that removes
speaking style rather than simple compression.

2.3.2. Approach-3 & -4: train a student decoder

We also investigate schemes in which the student encoder
fDistEnc and decoder fDistDec are trained. As mentioned in
Sec. 1, we confirmed in the preliminary experiment that an
approach of replacing the non-causal encoder with a causal
encoder and training all parameters resulted in the shifted at-
tention matrices. Therefore, Approach-3 and -4 take the atten-
tion matrix generated by the teacher model as a guide to train
the student model. In Approach-3, the given attention matrix
is used for changing the input sequence length as follows:

Y ′
post,Y

′ = f⋆
DistDec(Z

′
xA, Ỹ , cy). (9)

On the other hand, Approach-4 aims to train the atten-
tion mechanism fDistAtt, which is contained in the student
decoder fDistDec. Each column of the attention matrix gives
a probability distribution that describes the relationship be-
tween the output of the decoder at each step and the source
feature sequence Zx. To guide the attention mechanism train-
ing, we introduce KLD between the attention matrix A gen-
erated by the teacher and that A′ generated by the student
model. This approach is known as attention distillation. The
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KLD loss LAttKLD is the following;

Y ′
post,Y

′,A′ = fDistDec(Z
′
x, Ỹ , cy), (10)

LAttKLD =
∑

j
DKL(aj ||a′

j), (11)

where aj and a′
j denote j-th column of the attention matrices

A and A′.

2.3.3. Approach-5: jointly train non-causal and causal en-
coders

In Approach-5, we do not use any guides or model parame-
ters from the teacher model but train the non-causal encoder
fJntEnc jointly with the causal encoder. Therefore, in addition
to Eq. (4) and (10), we introduce the following formulation:

Z̈x = fJntEnc(X, cx), (12)

Ÿ post, Ÿ , Ä = fDistDec(Z̈x, Ỹ , cy), (13)

LJnt = ||Ÿ − Y ||2, (14)

where the structure of fJntEnc is the same as that of the
teacher encoder fEnc. From another point of view, we share
and update the decoder between the teacher and student mod-
els.

Unfortunately, we confirmed the phenomenon of attention
shifting, similar to Fig. 2b. One possible reason is that the
non-causal encoders were unintentionally trained to match the
characteristics of the causal encoders, as opposed to knowl-
edge distillation from the non-causal encoders to the causal
encoder, which is our aim. In order to achieve low latency
streaming VC, Approach-5 was excluded from the experi-
mental evaluations.

2.4. Neural Vocoder

In the proposed model, any neural vocoders by conditioning
on Mel spectrograms as input can be used. In the experiment,
HiFi-GAN [16] is used as the neural vocoder. We confirmed
that V2 setting described in [16] is able to generate wave-
forms faster than real-time for streaming applications under
the eight ms frameshift condition.

3. EXPERIMENTS

3.1. Experimental Conditions

To demonstrate the performance of each method, we con-
ducted experimental evaluations using a phonetically bal-
anced Japanese speech parallel dataset [19] consisting of ut-
terances by two professional male speakers (mht and msh) and
two professional female speakers (fym and ftk). The speeches
were recorded in a quiet room with minimal reverberation.
To train each VC model, we used 450 sentences (speech
section of around 0.5 hours) of each speaker. Statistics of

Table 2. Speech section length [sec] over the training dataset.

Speaker Avg. Min. Max.

Source mht 4.18 1.48 8.53
fym 4.11 1.47 8.31

Target msh 3.93 1.42 7.66
ftk 4.48 1.45 8.74

speech section length are shown in Table 2. To evaluate the
performance, we used 53 sentences from each speaker. For
the evaluations, we conducted intra-gender pairs, mht-msh
and fym-ftk, and cross-gender pairs, mht-ftk and fym-msh.

All of the encoder-decoder are trained 100k iterations.
The learning rate and the exponential decay rate for the first
moment for Adam [20] were set at 0.0002 and 0.9 after 4k
step of warmup. The mini-batch size was 16. All of encoder-
decoder models were trained on many-to-many condition,
which is four-speaker input and four-speaker output. Dur-
ing test inference time, we forced the attention matrix to be
diagonal because real-time streaming VC does not allow to
change the speaking rate.

3.2. Objective Evaluation

As the objective evaluation metrics, we used Mel-cepstral dis-
tortion (MCD) [dB], root mean square error of F0 (F0 RMSE)
[Hz], and character error rate (CER) [%]. We used dynamic
time warping to get the alignment between the converted sam-
ple and the reference sample. To calculate the MCD, we cal-
culated 1-24 order Mel-cepstrum. For VC model evaluation,
we extracted Mel-cepstrum and F0 from the converted speech
waveform synthesized by the neural vocoder because the VC
model generates Mel-spectrogram. The CER was calculated
by the Transformer-based ASR model trained on the corpus of
spontaneous Japanese (CSJ) [21], which was provided by ES-
Pnet [22]. MCD and F0 RMSE reflect speaker, prosody, and
phonetic content similarities, and CER represents the intelli-
gibility and correlates to naturalness [23]. Note that MCD and
F0 RMSE are less sensitive to speech discontinuity than CER
because MCD and F0 RMSE are calculated frame-by-frame
while the CER is calculated by ASR model that takes the se-
quential information into account. The performances of neu-
ral vocoder, MCD, F0 RMSE, and CER of the re-synthesized
speech given the ground-truth Mel-spectrogram, were 2.99,
19.50, and 10.6, respectively.

The objective evaluation results are shown in Table 3.
First, we focus on the results of Baseline. The result shows
that the Baseline’s performance depends on who the target
speaker is rather than the gender pairs. The conversion into
the speaker ftk seems to be more difficult than the conversion
into the speaker msh.

Compared to Baseline, the performance of Approach-1,
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Table 3. Objective evaluation results on intra-gender (upper) and cross-gender (lower) pairs. The lower the value the better the
performance.

System mht-msh fym-ftk
MCD F0 RMSE CER MCD F0 RMSE CER

Baseline 5.11 ± 0.08 18.66 ± 1.18 15.8 6.01 ± 0.08 27.49 ± 1.88 15.1
Approach-1 5.61 ± 0.08 21.31 ± 1.40 22.1 6.39 ± 0.09 31.90 ± 2.53 19.8
Approach-2 5.51 ± 0.08 19.09 ± 1.31 17.0 6.19 ± 0.08 26.32 ± 1.82 14.2
Approach-3 5.44 ± 0.08 21.10 ± 1.43 18.9 6.43 ± 0.08 34.57 ± 2.54 16.8
Approach-4 5.73 ± 0.09 25.47 ± 1.48 29.6 6.55 ± 0.09 39.90 ± 2.89 26.1

System mht-ftk fym-msh
MCD F0 RMSE CER MCD F0 RMSE CER

Baseline 5.95 ± 0.09 28.49 ± 1.58 15.0 5.13 ± 0.08 18.30 ± 1.27 16.7
Approach-1 6.38 ± 0.09 34.87 ± 2.66 21.2 5.66 ± 0.08 21.23 ± 1.55 19.6
Approach-2 6.34 ± 0.06 28.43 ± 1.56 15.0 5.82 ± 0.08 22.08 ± 1.74 15.7
Approach-3 6.37 ± 0.08 36.13 ± 2.54 16.4 5.55 ± 0.09 20.08 ± 1.41 17.5
Approach-4 6.55 ± 0.08 41.01 ± 2.94 32.9 5.79 ± 0.08 24.14 ± 1.44 26.0

-3, and -4 was degraded. However, the F0 RMSE and CER
of Approach-2 were comparable to the Baseline. MCD of
Approach-2 was also better than Approach-1, -3, and -4,
except for mht-ftk pair. This result indicates that to distill
the S2S-VC model, a self-supervised learning with a pre-
trained decoder works better than the training approach using
parallel data and attention matrices. One possible reason is
that since the Baseline architecture includes the bi-directional
RNN containing the backward RNN, strange attention shift-
ing, which is acceptable for bi-directional RNN but not for
uni-directional RNN, may occur. Moreover, although the
parallel data is recorded carefully, it is very challenging to be
exactly parallel in several terms such as pause position and
length, pronunciation error, and different intonation. Even
if the attention mechanism makes it possible to reduce the
degradation caused by the recording mistake, self-supervised
learning, which is under the perfect parallel data condition,
seems to be better. However, it is essential to note that the
self-supervised learning approach has a gap during training
and inference processes because training data never see the
speaker conversion setting, in which the input speaker is
different from the target speaker. In the preliminary experi-
ments, we also trained a simple auto-encoder. The result is
the reconstruction of the input speech, and speaker conversion
is a failure 2. In the next section, we will confirm whether
fixing the decoder achieves the speaker conversion.

2In AutoVC [24], the authors have reported that the training of simple
auto-encoder to convert the speaker characteristics is very sensitive to the
data setting and model architecture.

mht-msh fym-ftk mht-ftk fym-msh
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Fig. 4. Subjective evaluation results on sound quality. The
higher the value the better the sound quality. Re-synthesized
indicates the speech synthesized from the ground-truth Mel-
spectrogram.

3.3. Subjective Evaluation

Next, we conducted subjective evaluation tests on sound qual-
ity and speaker similarity to check the perceptual quality. For
sound quality, each subject listened to each sample and rated
the sound quality on a 5-point scale: 5 for excellent, 4 for
good, 3 for fair, 2 for poor, and 1 for bad. For speaker simi-
larity, each subject listened to pairs of the target sample and
the converted sample to judge whether the presented samples
were produced by the same speaker with confidence on a 4-
point scale: 4 for same (sure), 3 for same (not sure), 2 for dif-
ferent (not sure), and 1 for different (sure). 10 native Japanese
speakers participated in each subjective evaluation. Each sys-
tem was evaluated over 250 times.
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Fig. 5. Subjective evaluation results on speaker similarity.
The higher the rate of Same the better the performance.

The subjective evaluation results on sound quality and
speaker similarity are shown in Fig. 4 and 5. First, we focus
on the results of Baseline. Although the MCD, F0 RMSE, and
CER of mht-ftk pair were similar to those of fym-ftk pair, the
subjective evaluation results of mht-ftk pair were the worst.
Given that the auto-regressive model also models something
like phoneme duration, a significant change in the speaking
rate may affect conversion performance. However, the speak-
ing rate of the speaker mht was similar to the speaking rate of
the speaker fym, as shown in Table 2. This result showed that
the Baseline’s performance depended on whether it was male-
to-female speaker conversion or not, rather than the speaking
rate changes.

Compared to Baseline, the performance of Approach-1,
-3, and -4 was degraded, similar to the objective evaluation
results. However, the sound quality of Approach-2 overcame
that of Baseline, thanks to self-supervised learning, which
was under the perfect parallel data condition. On the other
hand, the speaker similarity of the mht-ftk pair was degraded.
Note that there was no significant difference on the speaker
similarity of the fym-ftk pair. This result indicated that the
self-supervised learning approach might be more likely to be
affected than the S2S learning approaches required the paired
speech data. To tackle this limitation, we will work on it in
future work.

4. CONCLUSIONS

Toward real-time streaming VC applications, this paper de-
scribes a method for distilling a recurrent-based S2S-VC
model. The experimental results revealed that using a de-
coder, which is trained in advance by using parallel speech
data, is a good constraint for the encoder training. Moreover,

self-supervised learning with a fixed decoder can maintain
the teacher model’s performance in terms of subjective evalu-
ations despite the streamable student model structure, except
for male-to-female speaker conversion. In future work, we
will work on reducing the impact of male-to-female speaker
conversion in the self-supervised learning.
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