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Abstract—In this paper, we propose a new network training to
improve the source separation performance of the fast multichan-
nel variational autoencoder (FastMVAE) method. The FastMVAE
method is very effective for supervised source separation. It
also significantly reduces the processing time by replacing the
backpropagation steps in the MVAE method with a single forward
propagation of the encoder for estimating latent variables. In
previous studies, the encoder is trained together with the decoder
using clean speech. In contrast, in this study, we re-train only
the encoder by using the mixed signals with the decoder fixed.
More specifically, using the imperfectly separated signals obtained
in the process of the source separation algorithm, we train the
encoder to find the optimal latent variables that minimize the ob-
jective function for source separation. Experimental results show
that the proposed method reduces the objective function at almost
every iteration and achieves higher separation performance than
the conventional method.

I. INTRODUCTION

Multichannel blind source separation is a promising tech-
nique to extract each source signal from a mixture. It has
been remarkably developed in the last two decades [1], and
frequency-domain independent component analysis (ICA) [2],
independent vecotr analysis (IVA) [3], [4], auxiliary function
based IVA (AuxIVA) [5], and independent low-rank matrix
analysis (ILRMA) [6] have been proposed. Some of these
methods have a source model representing a source signal, and
the parameters of the source model and the demixing matrix
are alternately updated to reduce the same objective function.

Recently, multichannel BSS methods using deep neural
networks (DNNs) has been actively investigated [7]–[9]. The
high expressive power of DNNs suggests that they may be
effective in separating speech signals. In particular, the multi-
channel variational autoencoder (MVAE) [10], which intro-
duces a variational autoencoder (VAE) as a source model, is
effective in supervised source separation tasks. MVAE is a
method that uses the decoder distribution of Conditional VAE
(CVAE) as a source model for each sound source. CVAE is
trained with the spectrogram of a single speaker signal and
the corresponding speaker ID as condition class variables. This
training allows CVAE to be used as a speech source model for
the speakers in the training data. During source separation,
iterative projection (IP) updates the demixing matrix. And,
backpropagation of the CVAE decoder is used to update the
source model, searching for latent variables that maximize the
independence of the separated signals. In this time, if the step
size can be adjusted appropriately, monotonic non-decreasing

and convergence of the likelihood function in the update are
guaranteed.

However, each iterative update requires a long processing
time for backpropagation. This makes MVAE unsuitable for
real-time processing. To address this, a fast algorithm called
the FastMVAE [11] has subsequently been proposed. The
idea is to replace the process of updating the latent variables
with the forward propagation of the trained encoder. This
replacement eliminates the time-consuming backpropagation
steps and significantly reduces processing time. However,
the encoder output is only an approximation of the update
destination that decreases the objective function. Therefore, the
objective function is not guaranteed to monotonically decrease
and converge. For this reasons, the literature [11] reports that
while FastMVAE is indeed faster than MVAE, it falls short of
MVAE in separation performance.

To solve this problem, we propose a method to train the
encoder to find latent variables that decrease the objective
function during the source separation algorithm, while fol-
lowing the idea of updating latent variables using only the
forward propagation of the encoder. Specifically, after training
the network (encoder and decoder) in conventional FastMVAE,
only the encoder is re-trained using the likelihood function as
the loss function. Experimental results show that the network
trained by the proposed method reduces the decrease of the
likelihood function and achieves higher separation perfor-
mance than the conventional method.

II. BLIND SOURCE SEPARATION

A. Problem formulation

Let N be the number of sound sources and microphones.
The speech signal, the mixed signal, and the separated signal
at each time-frequency are denoted as follows

sf,t = (sf,t,1, . . . , sf,t,n, . . . , sf,t,N )
T ∈ CN , (1)

xf,t = (xf,t,1, . . . , xf,t,n, . . . , xf,t,N )
T ∈ CN , (2)

yf,t = (yf,t,1, . . . , yf,t,n, . . . , yf,t,N )
T ∈ CN , (3)

where f = 1, . . . , F , t = 1, . . . , T and n = 1, . . . , N denote
the frequency bins, time frames, and sources or channel in-
dices, respectively. T indicates transposition. Let Sn ∈ CF×T

be the complex spectrogram matrix of the nth speech signal,
sf,t,n over all time frequencies, and let Xn ∈ CF×T be
the complex spectrogram matrix of the mixed signal as well.
Assuming that the mixing system is linear time-invariant and is
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Fig. 1. Overview of MVAE method (upper) and FastMVAE method (lower).

a complex instantaneous mixing in the time-frequency domain,
the separated signal can be estimated by yf,t = Wfxf,t. where
Wf = (wf,1, · · · ,wf,N )H ∈ CN×N is the demixing matrix
and H is the Hermitian transpose.

Under the above assumptions, the speech signal sf,t,n is
defined as a random variable following a complex normal
distribution with mean 0 and variance rf,t,n = E[|sf,t,n|2]
as follows

p(sf,t,n|rf,t,n) = NC(sf,t,n|0, rf,t,n). (4)

Assuming that each speech signal (sf,t,n and sf,t,n′ , n ̸= n′) is
statistically independent, the negative log-likelihood function
J for the mixed signal can be expressed as

J (W,V) = − 2T
∑
f

log |detWf |

+
∑
f,t,n

(
log vf,t,n +

|wH
f,nxf,t|2

vf,t,n

)
,

(5)

where W = {Wf}f is a set of all the separation matrices,
V = {vf,t,n}f,t,n is a set of vf,t,n for all sources and time-
frequencies. Here, when the variance rf,t,n is unconstrained,
the (5) is computed independently for each frequency f , thus
occurring arbitrariness in the order of the separated signals.
This problem is called the permutation problem and requires
permutation resolution as a post-processing step to obtain
the correct separation signal. Recently, a method has been
proposed to achieve source separation while avoiding the
permutation problem by introducing constraints on the source
model rf,t,n. ILRMA and MVAE methods are examples of
such techniques.

B. MVAE and FastMVAE

1) MVAE: The MVAE method uses CVAE to represent the
source model in (5). CVAE is trained to match the posterior
distribution pΦ(zn, |Sn, cn) ∝ pΦ(Sn|zn, cn)p(zn) derived
from pΦ(Sn|zn, cn) and qθ(Sn|zn, cn) as closely as possible
and has the structure shown in the upper part of Fig.1.

θ and Φ denote the encoder and decoder weight parameters,
respectively. Where cn is a time-invariant latent variable vector

representing the category class of the sound source and zn is a
latent variable representing the time variation of the spectrum.

Now, for simplicity, let these latent variables be represented
collectively as ξn = {zn, cn}, and the decoder output of CVAE
represents the following source model

Rn(ξn) = gn · Dec(ξn,Φ), (6)

where Dec(ξn,Φ) ∈ RF×T is the decoder output, and its f, t
component is σ2

Φ,f,t,n(ξn). gn is a variable representing the
scale. This source model is the same as in (4), representing
the local Gaussian source model as follows

pΦ(Sn|zn, cn, gn) =
∏
f,t

NC(sf,t,n|0, rf,t,n(ξn)), (7)

rf,t,n(ξn) = gn · σ2
Φ,f,t,n(ξn). (8)

In the following, Rn(ξn) is called the CVAE source model.
The CVAE source model Rn(ξn) represents various single
sources in the training dataset by the latent variable ξn.

IP [5] can be used to minimize (5) with respect to Wf as in
ILRMA. Since (5) is differentiable with respect to ξn, ξn can
be updated to decrease (5) using backpropagation. The scale
parameter gn can be updated to minimize (5) under fixed ξn
and Wf as follows

gn ←
1

FT

∑
f,t

|wH
f,nxf,t|2

σ2
Φ,f,t,n(ξn)

. (9)

2) FastMVAE: MVAE updates the parameters Wf , ξn and
gn so that the objective function (5) becomes smaller at each
iteration, which has the advantage of guaranteeing convergence
of the objective function to the stopping point. On the other
hand, the huge computational costs when determining where
to update the CVAE source model parameters ξn is an issue.
FastMVAE was proposed to avoid this problem. Note that
we use FastMVAE2 [11], the latest version of the FastMVAE
method, and all descriptions below are based on this version.

FastMVAE decomposes the posterior distribution
pθ(zn, cn|Sn) into a product of two conditional distributions,
such as pθ(zn|Sn)pθ(cn|Sn), and learns qΦ(zn|Sn)
and γΦ(cn|Sn) to approximate each distribution. As a
result, the search for ξn, which is used to apply the
backpropagation method to (5) , can be substituted by
the forward propagation of qθ1(zn|Sn) and γθ2(cn|Sn).
Therefore, the backpropagation method is not required, and
fast source model updating is possible. Let ξ̂n denote the
outputs zn(Sn, θ1), cn(Sn, θ2) of the encoder with weight
parameter Θ = {θ1, θ2}, and denote

ξ̂n = Enc(Sn,Θ). (10)

The encoder output ξ̂n in the FastMVAE method is not
directly calculated to reduce the objective function of source
separation (5). Also, the input signal to the encoder during
source separation is a mixed signal Xn, or an imperfectly
separated signal Yn during iterative estimation. Thus, one of
the problems is that these signals are very different from the
clean single speech signals in training phase. For the above
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Fig. 2. Overview of the proposed method. Note that during re-training in the
proposed method, only the encoder is re-trained through back-propagation. The
decoder is fixed with the parameters trained in the previous stage (training as
FastMVAE method).

reasons, there is no guarantee that the objective function (5)
will decrease in the source model update in the FastMVAE
method. It may increase.

III. PROPOSED METHOD

A. Motivation

The previous work [11] has reported that the FastMVAE
method runs as fast as the conventional fast BSS methods but
shows slightly worse separation performance than the MVAE
method. The main difference between the MVAE and lies in
the way the latent variable ξn is updated. As explained in
section II-B, the latent variable is updated through the forward
propagation of the encoder in the FastMVAE method. How-
ever, the decrease of the objective function is not guaranteed
in this process. Therefore, if the encoder can be trained to
consistently find ξn that decreases (5), we expect to achieve
both the high separation performance of the MVAE method
and the fast processing speed of the FastMVAE method.

To achieve this, we propose to re-train only the encoder
using (5) as the loss function after network (encoder and
decoder) training in the conventional FastMVAE method.This
re-training allows the encoder to find the update destinations so
that the objective function (5) is reduced under the constraint
that the decoder distribution can only represent a single speaker
signal. This is very similar to the parameters of the source
model in ILRMA. which minimizes the objective function (5)
under the constraint that the source spectrogram is represented
as a low-rank matrix. Namely, the re-trained encoder can be
interpreted as corresponding to the update equation for the
source model parameters in ILRMA.

B. Training of encoder parameter Θ

Consider updating ξ̂n to decrease the objective function (5)
as described above. Minimizing the objective function (5) for
the source model parameters can be expressed as the Itakura-
Saito divergence between the power spectrum of the separated

signal |Yn|.2 estimated in the previous step and the source
model Rn(ξn) of the decoder output. Therefore, the objective
here is to estimate the latent variable ξ̂n as follows

ξ̂n = argmin
ξn

DIS(|Yn|.2| Rn(ξn)) (11)

= argmin
ξn

DIS(|Yn|.2| gn · Dec(ξn,Φ)) (12)

= argmin
ξn

∑
f,t

(
|yf,t,n|2

gn · σ2
Φ,f,t,n(ξn)

− log
|yf,t,n|2

gn · σ2
Φ,f,t,n(ξn)

− 1

)
,

(13)

where | · |.2 denotes the element-wise square of a matrix, and
DIS(·|·) is the Itakura-Saito divergence between the matrix
elements.

Now, we want the encoder to find the best latent variable
ξ̂n from Yn. Note that Yn is an imperfectly separated signal
since it is obtained during the iterative estimation process. By
substituting the expression ξn = Enc(Yn,Θ) into (12), the
function to be minimized can be written as DIS(|Yn|.2| gn ·
Dec(Enc(Yn,Θ),Φ). Taking the expectation with respect to
Yn, we obtain the following objective function

L = E(Yn)

[
DIS(|Yn|.2| gn · Dec(Enc(Yn,Θ),Φ)

]
. (14)

Thus, to obtain an encoder that outputs the best latent variable
ξn for a given Yn, the encoder parameter Θ should be
determined to minimize the expression (14). We can see that it
is a form of the classical autoencoder (non-variational) train-
ing using imperfectly separated signals Yn as training data.
Namely, the difference from the FastMVAE method is that it
learns as AE instead of VAE. In addition, the training data is
not a clean single speech signal but an imperfectly separated
signal obtained during the iterative estimation process.

Although (14) can be seen as AE training using imperfectly
separated signals. our goal, however, is not to have the encoder
and decoder reconstruct Yn as it is. Rather, our goal is to let
the encoder and decoder find the closest match to Yn among
the possible spectrograms of a single source. This is similar
to ILRMA, which updates the source model parameters as
to approximate the spectrograms of the imperfectly separated
signals obtained during the iterative process using low-rank
matrices. In ILRMA, if the number of basis spectra becomes
too large, the source model becomes so flexible that it can
represent any spectrogram, resulting in poor separation perfor-
mance. By analogy, we consider it desirable to fix the decoder
to the one trained by the FastMVAE method.

Therefore, we propose to train the encoder and decoder first
by the FastMVAE method. Then, while keeping the decoder
parameter Φ fixed, only the encoder parameter Θ is updated
through the backpropagation of the (14). An overview diagram
of network training is shown in Fig. 2.

C. Model architecture

In this paper, the network structure used in the first and
second stages is the same as the FastMVAE method.
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Fig. 3. The room size in the simulation was 8 m×5 m×3 m.The microphone
array was arranged in a circle with a radius of 0.1 m centered on the red point.
The sound sources were randomly arranged in a circle with a radius of 2.5 m
centered on the red point.

The encoder and classifier layers consist of convolutional
layers, LayerNormalization (LN) and Sigmoid Linear Unit
(SiLU). The decoder layer consists of an inverse convolution
layer, LN and SiLU.

IV. EXPERIMENTS

A. Conditions

To evaluate the performance of the proposed method, we
conducted source separation experiments using speech signals.
In this experiment, we applied BSS to the mixed signals and
compared the separation performance and how monotonically
decreasing the objective function is. ILRMA and the Fast-
MVAE method were employed as comparison methods. The
number of bases in ILRMA was set to two.

The WSJ0 [12] dataset was used as training data for the Fast-
MVAE and the proposed methods. For the FastMVAE method,
we used single-speaker signals with simulated reverberation by
Pyroomacoustics [13]. The signal length was set to 10 s. While
for the proposed method, we first selected multiple speech
signals from the WSJ0 dataset and simulated the mixing. Then,
we applied the FastMVAE method to the mixtures and stored
the imperfectly separated signals at each step from 0 to 30
iterations. They were used for re-training the encoder by the
proposed method.

The test data used the JVS [14] dataset, and the simulated
speech signal of 10 s was used. The number of sources N was
two and three, and the 50 mixed signals to test were created
for each source number.

Fig. 3 shows the room configuration, microphone and sound
source layout in the simulation. The room size in the simula-
tion was 5 m×8 m×3 m. The microphone array was arranged
in a circle with a radius of 0.1 m, centered on the red point, as
shown in Fig. 3. The sound sources were randomly arranged

in a circle with a radius of 2.5 m, centered on the red point.
The reverberation time was about 300 ms.

The sampling frequency, STFT length and shift length were
set to 16 kHz, 128 ms and 64 ms, respectively. The amount
of improvement in SI-SDR [15] was used as the evaluation
index.

B. Results

The average SI-SDR improvement for each method is shown
in Fig. 4. The proposed method showed high separation
performance for all source numbers. It can also be seen
that FastMVAE and the proposed method do not show a
significant decrease like ILRMA in separation performance
with an increase in the number of sources.

The evolution of the objective functions for each method is
shown in Fig. 5. ILRMA updates the source model parameters
so that the objective function is always decreasing. Therefore,
the objective function of ILRMA has not increased in Fig. 5.
On the other hand, FastMVAE often shows an increasing
objective function. Although the proposed method is based
on FastMVAE, the increase in the objective function was
suppressed, and the convergence was similar to ILRMA.

V. CONCLUSION
In this paper, we proposed a new encoder training method

on FastMVAE to improve the estimation of the latent variables
at each iteration. After training the encoder and decoder by
the conventional FastMVAE method, only the encoder is re-
trained using imperfectly separated signals to minimize the
objective function of BSS. Experimental results showed that
the proposed method suppressed the increase of the objective
function at iterative updates and improved the source separa-
tion performance.
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