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ABSTRACT

This paper presents a dereverberation method based on I-divergence
minimization, which is particularly suitable for music signals. Ex-
isting dereverberation methods, including one designed for music,
sometimes distort instrument sounds and make staccato-like tones.
The problems with the Itakura-Saito-divergence-based formulation
of the existing methods are 1) their tendency to excessive suppres-
sion of direct sound and 2) the difficulty of incorporating and opti-
mizing sophisticated source models suitable for music signals. The
proposed I-divergence-based method can mitigate these problems.
Employing the I-divergence measure enables us to avoid the di-
rect sound suppression problem and to use powerful music spec-
trum models without complicating its optimization. We develop
a convergence-guaranteed parameter estimation algorithm based on
the auxiliary function approach. Experimental results reveal the ef-
fectiveness of the proposed dereverberation method.

Index Terms— dereverberation, musical audio signal, I-
divergence, auxiliary function method

1. INTRODUCTION

Audio effects such as reverberation, delay, and phase shift are im-
portant factors for enriching the perceptual quality of music. On
the other hand, they are very harmful for automatic analysis (e.g.
melody extraction [1] and chord detection [2]) of musical audio sig-
nals. Therefore, technologies for removing and controlling such au-
dio effects will be vital for development of emerging music process-
ing applications including automatic music analyzers [3] and active
music listening systems [4].

Dereverberation for music signals, namely music dereverbera-
tion, is a much more challenging task than speech dereverberation.
This is because musical tones tend to last long unlike moras in nat-
ural voices, which makes it difficult to distinguish direct sound from
reverberation. Indeed, existing speech dereverberation methods such
as [5] are not necessarily effective for music dereverberation. Re-
cently, [6] proposed a music dereverberation method that used a
harmonicity-based source model by taking advantage of strong har-
monic structures inherent in music signals. This method was shown
to be effective in removing reverberation from music signals.

However, we have recently experienced a serious problem even
with the method of [6]: dereverberated signals with this method, es-
pecially for struck string instruments, tend to be distorted and sound
like staccato tones.

We find the main cause of this problem to be that this method
(as well as other speech dereverberation methods) is based on the

minimization of the Itakura-Saito (IS) divergence. The main draw-
back of employing the IS-divergence is twofold. Firstly, with the
IS-divergence, we sometimes regard sustained parts of musical tones
as reverberation and suppress the sustain mistakenly, which results
in the staccato-like sounds. Secondly, because of technical incon-
veniences in the analysis of the IS-divergence, the parameters of an
assumed source model are difficult to estimate. To avoid the latter,
[6] settled for using different criteria for dereverberation filter opti-
mization and source model parameter estimation. But, because of
this settlement, [6] had to use a non-convergent iterative algorithm.

This paper presents a new dereverberation method based on the
I-divergence criterion allowing for the joint estimation of dereverber-
ation filter coefficients and source model parameters. In audio pro-
cessing, the I-divergence is often used as a goodness of fit measure
between an observed spectrum and a source model. The I-divergence
measure allows us to use powerful music spectrum models such as
harmonic Gaussian mixture model [7, 8] and nonnegative matrix fac-
torization (NMF) model [9, 10]. To realize the I-divergence-based
dereverberation, a new convergence-guaranteed optimization algo-
rithm is proposed based on the auxiliary function concept (e.g., [10]).

The remainder of this paper is organized as follows: Section
2 describes the dereverberation problem and qualitatively compares
existing and proposed reverberation methods. Section 3 introduces
the proposed dereverberation method with I-divergence. Section 4
presents the evaluation results, and Section 5 concludes the paper.

2. COMPARISON OF EXISTING AND PROPOSED
DEREVERBERATION METHODS

This section first defines the dereverberation problem. Then a new
I-divergence-based dereverberation approach is introduced and com-
pared with the existing IS-divergence-based one.

2.1. Problem Statement

Let sn,l denote an anechoic signal of speech or music in the short-
time Fourier transform (STFT) domain, where, n and l correspond
to the time frame and frequency bin indices, respectively. We refer to
sn,l as a source signal. The source signal is assumed to be unobserv-
able, and only its reverberated version, denoted by xn,l, is available.
Dereverberation is the process of estimating the source signal, sn,l,
by using the reverberant signal, xn,l, without precise knowledge of
the reverberation properties. We assume that the observed signal
is monaural and dereverberation is performed in a batch processing
manner.

We adopt the inverse filtering approach to achieve dereverbera-
tion. As in [5], we assume that the reverberant signal is generated
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from the source signal sn,l by an auto regressive (AR) system as

xn,l =

K∑
d=k

gd,lxn−d,l + sn,l. (1)

k and K are the initial delay time and the filter length, respectively.
Then the source signal can be recovered as xn,l−

∑K
d=k gd,lxn−d,l.

Thus, our goal is to estimate gd,l. In this paper we refer to gd,l as a
reverberation filter coefficient.

In order to estimate gd,l, we introduce a source model charac-
terized by a set of parameters. The source model is used to measure
the degree to which a dereverberated signal is good. Since the source
model parameters are unavailable in advance, they are also estimated
in the course of the reverberation filter estimation.

To put this idea into shape, we have to set up an optimization
problem, which is specified by the following two components:

1. source model reflecting the source characteristics such as har-
monicity, which is described in Section 3.2, and

2. cost function between the dereverberated signal, rn,l =

xn,l −
∑K

d=k gd,lxn−d,l, and this source model.

2.2. IS-divergence-based existing method

Yoshioka et al. proposed a dereverberation method [5], which mini-
mizes a cost function defined as follows:

Q(IS) =

N−1∑
n=0

L−1∑
l=0

(
log pn,l +

|rn,l|2
pn,l

)
, (2)

where pn,l is the source model that defines the power spectral enve-
lope of the source. From the viewpoint of the estimation of pn,l, this
cost function consists of the Itakura-Saito (IS) divergence between
|rn,l|2 and pn,l. Although it is not the IS-divergence in terms of the
estimation of gd,l, we simply call it the IS-divergence. Note that the
cost function is quadratic form with respect to the filter coefficient
gd,l, and thus gd,l can be estimated easily.

However, minimizing Eq.(2) with respect to gd,l sometimes
leads to excessive suppression of direct sound. This can be ac-
counted for as follows. We note that rn,l is the prediction error of
the AR system representing reverberation (see Eq.(1)), and Eq.(2) is
a weighted sum of the errors. Hence, this cost function tends to con-
fuse the sustain part of direct sound as reverberation because the sus-
tain part is almost predictable from its preceding part. Furthermore,
sophisticated source models that were previously proposed for music
spectrum modeling are difficult to optimize with the IS-divergence.

2.3. Proposed I-divergence-based method

In this paper, we consider the I-divergence between the magnitude
of dereverberated signal |rn,l| and the source model pn,l as:

Q(I) =

N−1∑
n=0

L−1∑
l=0

(
|rn,l| log |rn,l|

pn,l
− (|rn,l| − pn,l)

)
. (3)

Note that pn,l represents in turn the magnitude spectrum of the
source. Advantages of the proposed approach are twofold. Firstly,
with this cost function gd,l is estimated in a way that directly mini-
mize the difference between the dereverberated signal and the source
estimate, which avoids sound distortion. Secondly, various magni-
tude spectrum modeling techniques for music signals based on the
I-divergence (e.g., Harmonic GMM [7, 8] designed for F0 estima-
tion) can be incorporated into the present dereverberation system.

It is important to note here that the cost function given by Eq.(3)
is no longer a quadratic form with respect to the reverberation filter

Table 1. Algorithm for parameter estimation

1. Initialize source magnitude model parameters assuming |rn,l|
to be |xn,l|, and initialize gd,l by the IS-divergence based dere-

verberation given by Eq.(2) with pn,l = |xn,l|2.

2. Update source magnitude model parameters using current gd,l.

3. Update gd,l using a current source magnitude model estimate:

3.a Update auxiliary variables {tn,l, bn,l, ωn,l} by Eq.(13).

3.b Update gd,l by Eq.(14).

3.c Iterate from 3.a for several times.

4. Iterate 2. and 3. until convergence.

coefficients gd,l. We are thus concerned with deriving an algorithm
for estimating gd,l, as will be discussed in the following section.

3. DEREVERBERATION WITH I-DIVERGENCE

This section describes the proposed parameter estimation algorithm
using the auxiliary function method. The principle of the auxiliary
function method is to iteratively minimize an upper bound of a cost
function, which is easier to minimize than the original cost function.
The upper bound is called an auxiliary function, and it is generally
characterized by both the parameters of interest and additional pa-
rameters called auxiliary parameters. See [10] for more details.

3.1. Parameter estimation algorithm

Now our objective is to introduce an iterative algorithm for estimat-
ing gd,l efficiently on the basis of I-divergence. The key to the devel-
opment of the proposed algorithm is its use of the auxiliary function
method to deduce from Eq.(3) a quadratic form with respect to gd,l,
which can be optimized analytically. The auxiliary function method
is used twice before obtaining the quadratic form. The overall pa-
rameter estimation algorithm is summarized in Table 1.

First we introduce one inequality to eliminate nonlinearity of a
logarithmic function in the first term in Eq.(3) as follows:

log |rn,l| ≤ log tn,l +
1

tn,l
(|rn,l| − tn,l), (4)

where tn,l > 0 is an auxiliary parameter. The right-hand side of the
inequality is a linear function that is tangent to log |rn,l| at |rn,l| =
tn,l, and thus can be considered as an auxiliary function of log |rn,l|.
By using this, we obtain an auxiliary function Q+ for Q(I) as:

Q+ =

N−1∑
n=0

L−1∑
l=0

(
|rn,l|2
tn,l

+

(
log

tn,l

pn,l
− 2

)
|rn,l|+ pn,l

)
. (5)

However, ∂
∂gd,l

Q+ = 0 still cannot be solved analytically because

of the second term in Eq.(5).

Next, we introduce the following two inequalities, which are
chosen depending on log(tn,l/pn,l)− 2, appearing in Eq.(5).

in case Dn,l ≥ 0 : |rn,l| ≤ |rn,l|2
2bn,l

+
bn,l

2
, bn,l > 0 (6)

in case Dn,l < 0 : |rn,l| ≥ Re
[
ω∗
n,lrn,l

]
, |ωn,l| = 1 (7)

where Dn,l = log(tn,l/pn,l)− 2 and superscript ∗ stands for com-
plex conjugate. bn,l and ωn,l are auxiliary parameters for Eq.(6) and
Eq.(7), respectively. The right-hand side of the first inequality is a
convex quadratic function that is tangent to |rn,l| at |rn,l| = bn,l.
The right-hand side of the second inequality means inner product of
rn,l and an directional vector ωn,l.
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By introducing the above two inequalities, we obtain another
new auxiliary function Q++:

Q++ =

N−1∑
n=0

L−1∑
l=0

Q++
n,l , (8)

Q++
n,l =

⎧⎪⎪⎨
⎪⎪⎩

(
Dn,l

2bn,l
+

1

tn,l

)
|rn,l|2 + c (Dn,l ≥ 0)

1

tn,l

∣∣∣∣rn,l +
tn,l

2
Dn,lωn,l

∣∣∣∣
2

+ c (Dn,l < 0)

, (9)

where c represents terms that do not depend on gd,l. For simplicity,
let us set κn,l and ρn,l as

κn,l =

{
xn,l (Dn,l ≥ 0)

xn,l +
tn,l

2
Dn,lωn,l (Dn,l < 0)

, and (10)

1

ρn,l
=

⎧⎨
⎩

1
tn,l

+
Dn,l

2bn,l
(Dn,l ≥ 0)

1
tn,l

(Dn,l < 0)
. (11)

Then Eq.(8) can be rewritten as

Q++ =

N−1∑
n=0

L−1∑
l=0

∣∣∣κn,l −
∑K

d=k gd,lxn−d,l

∣∣∣2
ρn,l

+ c. (12)

This form is obviously quadratic with respect to gd,l. Thus gd,l can
be estimated in the same way as IS-divergence-based estimation.

gd,l is estimated by alternatively minimizing Q++ with respect
to the auxiliary parameters, {tn,l, bn,l, ωn,l}, and reverberation filter
coefficients gd,l. The update rules for the auxiliary parameters are

tn,l = |rn,l| , bn,l = |rn,l| , and ωn,l = rn,l/ |rn,l| . (13)

The first and the second rules are given by minimizing the right-
hand side of Eqs. (4) and (6), respectively. The third rule is given by
maximizing the right-hand side of Eq.(7). The update rule for gd,l is
derived based on Eq.(12) and we obtain

[gk,l, ..., gK,l]
T = R−1

l rl (14)

where, Rl and rl are called a modified correlation matrix and a mod-
ified correlation vector, respectively, and are structured as follows:

Rl =

⎡
⎢⎢⎢⎢⎢⎢⎣

N−1∑
n=0

xn−k,l

ρn,l
x∗
n−k,l · · ·

N−1∑
n=0

xn−K,l

ρn,l
x∗
n−k,l

...
. . .

...
N−1∑
n=0

xn−k,l

ρn,l
x∗
n−K,l · · ·

N−1∑
n=0

xn−K,l

ρn,l
x∗
n−K,l

⎤
⎥⎥⎥⎥⎥⎥⎦
, (15)

rl =

[
N−1∑
n=0

κn,l

ρn,l
x∗
n−k,l · · ·

N−1∑
n=0

κn,l

ρn,l
x∗
n−K,l

]T

. (16)

Note that Rl and rl can be calculated efficiently using the Fast
Fourier Transform in the same way as [11].

3.2. Source model

This section introduces two kinds of source models that have esti-
mation algorithms with both I and IS divergence. Convergence is
guaranteed in case these models are estimated with the same diver-
gence as one used for estimation of reverberation filter coefficients.

3.2.1. Harmonic GMM with residual (HGMM)

HGMM is a source model that can represent harmonic structure of
instrument sounds. The HGMM describes a magnitude or power

spectrum of musical tones by using a GMM where the means of
each Gaussian component appear at the harmonic frequencies of the
tone. Assuming I musical tones, each of which has J harmonics,
are present at each time frame, the magnitude or power of source is
modeled as

pn,l =

I∑
i=1

(
J∑

j=1

ui,j,nHi,j,n,l

)
+

M∑
m=1

vm,nIm,n,l, (17)

Hi,j,n,l = e
− (Ωl−jμi,n)2

2σ2 , Im,n,l = e
− (Ωl−υm)2

2γ2 , (18)

where ui,j,n is the intensity of j-th peak of the i-th tone, μi,n is
the fundamental frequency, and σ2 is the spectral spread of each
harmonic component. Ωl means a scaling function that maps the
index of frequency bins to Hertz. Inharmonic components such as
drum sound and noise floor, are modeled by an inharmonic GMM
in the second term of Eq.(17), which has M Gaussians with fixed
means υm and fixed large variance γ2.

Parameters to be estimated are {ui,j,n, vm,n, μi,n}. Below are
update rules of these with I and IS divergence, which are also based
on the auxiliary function method.

• Let us put auxiliary parameters, Ψ
(I)
i,j,n,l and Ψ

(IS)
i,j,n,l, as

Ψ
(I)
i,j,n,l =

ui,j,nHi,j,n,l

pn,l
|rn,l| , and (19)

Ψ
(IS)
i,j,n,l = ui,j,nHi,j,n,l

[
1 +

ui,j,nHi,j,n,l(|rn,l|2− pn,l)

pn,l
2

]
. (20)

• Update rules of ui,j,n are:

ui,j,n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑L−1
l=0 Ψ

(I)
i,j,n,l∑L−1

l=0 Hi,j,n,l

(I-divergence)

1

L

L−1∑
l=0

Ψ
(IS)
i,j,n,l

Hi,j,n,l
(IS-divergence)

. (21)

Update rules of vm,n are similar to those of ui,j,n.

• An update rule of μi,n with I-divergence is:

μi,n =

∑J
j=1

∑L−1
l=0 ΩljΨ

(I)
i,j,n,l∑J

j=1

∑L−1
l=0 j2Ψ

(I)
i,j,n,l

. (22)

μi,n is hard to update analytically with IS-divergence and ob-
tained in numerical calculations such as the Newton method.

3.2.2. Nonnegative-Matrix-Factorization-based model (NMF)

NMF is a dimension reduction technique that has been successfully
applied to musical signal processing such as source separation, tran-
scription [9] and so on. Update rules of NMF with I and IS diver-
gence are described in [12].

4. EXPERIMENTS

The accuracy of dereverberation and that of source modeling are
evaluated by using simulated data to compare proposed and exist-
ing methods.

4.1. Experimental Condition

The proposed I-divergence-based dereverberation method is com-
pared with the existing IS-divergence-based method using two dif-
ferent source models, the HGMM and the NMF model. A combina-
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Table 2. Experimental results: The left-hand side in each cell shows the LSD
between the true source and the dereverberated signal. The right-hand is the
LSD between the true source and the signal given by the source model. Smaller
values indicate higher quality. The best performing values are shown in boldface.

K = 80 K = 160 K = 240

Derev.-I / HGMM-I
k = 3 8.72 8.68 8.68 8.71 8.75 8.78
k = 10 8.65 8.70 8.63 8.72 8.68 8.69

(Proposed) k = 20 8.66 8.68 8.63 8.66 8.62 8.65

Derev.-I / NMF-I
k = 3 8.74 9.06 8.78 8.96 8.88 9.03
k = 10 8.64 8.98 8.62 9.08 8.64 8.82

(Proposed) k = 20 8.64 8.78 8.62 8.78 8.63 8.78

Derev.-IS / HGMM-I [6]
k = 3 9.82 9.66 9.98 9.82 10.05 9.89
k = 10 9.07 8.98 9.14 9.19 9.16 9.09
k = 20 8.79 8.76 8.82 8.78 8.85 8.82

Derev.-IS / HGMM-IS
k = 3 10.06 13.53 10.27 13.61 10.34 13.64
k = 10 9.24 12.69 9.34 12.80 9.32 13.37
k = 20 8.91 13.37 8.98 13.38 9.01 13.41

Derev.-IS / NMF-IS
k = 3 10.14 10.06 10.34 10.21 10.40 10.26
k = 10 9.24 9.80 9.36 10.15 9.22 9.32
k = 20 8.90 9.16 8.94 9.22 8.96 9.10

0.0

1.1

2.1

3.2

4.3kHz

(a) Source signal

0.0

1.1

2.1

3.2

4.3kHz

(b) Reverberated signal

0.0

1.1

2.1

3.2

4.3kHz

(c) Dereverberated signal obtained with the proposed method

0.0

1.1

2.1

3.2

4.3kHz

(d) Dereverberated signal obtained with the existing method

Fig. 1. Example of a dereverberated signal

tion of IS-divergence-based dereverberation and I-divergence-based
HGMM, which is our conventional method [6], is also evaluated.

Twelve musical pieces in RWC Music Database, Jazz and Clas-
sic [13] synthesized with a MIDI tone generator, were used as the
true source signals. The signals were truncated up to 20 seconds,
and reverberated by being convolved with two impulse responses.
The reverberation times of these impulse responses were about 1
and 1.5 seconds, respectively. We measured the dereverberation per-
formance using the log spectral distance (LSD), which is defined as:

LSD(Y,Z) ≡
N−1∑
n=0

L−1∑
l=0

∣∣∣∣20 log10 |yn,l|
|zn,l|

∣∣∣∣
/

NL, (23)

We calculated LSD between 1) the true source, S = {sn,l}, and the
dereverberated signal, R = {r̂n,l}, and 2) the true source and the
signal given by the source model, P = {p̂n,l}, where ˆ means the
estimated result. The former, LSD(S,R), stands for dereverberation
accuracy, and the latter, LSD(S,P), stands for source modeling ac-
curacy. Sampling rate was 44.1kHz. STFT is computed using a 1024
point Gaussian window that has a 256-point overlap.

4.2. Results and Discussion

Table 2 shows the evaluation results with several conditions about
initial delay time k and filter length K. Each left-hand value in each
cell shows LSD(S,R) and each right-hand value shows LSD(S,P).
First, we can see that the accuracy of the I-divergence-based source
model estimation was better than that of the IS-divergence-based
source model estimation. Furthermore, if we compare the results
of I-divergence-based dereverberation and the method based on [6],
we find that this improvement in source model estimation led to the
dereverberation performance improvement only when the reverber-
ation filter is also estimated based on the I-divergence. This clearly
indicates the advantage of the use of the I-divergence both for source
model estimation and reverberation filter estimation.

Figure 1 shows the piano spectrograms of the dereverberated
signal obtained with the proposed (c) and existing (d) methods. It
can be found that (c) could successfully cancel the reverberation and
avoid distorting the sustain of piano tones.

Another small experiment for real reverberation on CDs showed
similar property as the above results. The experiment also showed
that the dereverberation performance did not vary much according
to the signal length. The audio files of both simulated data and real
recordings are available at http://winnie.kuis.kyoto-u.
ac.jp/members/yasuraok/ICASSP2011/.

5. CONCLUSION

This paper presented a new dereverberation method using I-
divergence, which is often used for musical signal processing.
The proposed method uses the auxiliary function method for
convergence-guaranteed parameter estimation. Our experimental
results revealed that the proposed method could perform music
dereverberation more accurately and robustly than the existing IS-
divergence-based one.

Future work includes integrating the proposed method into var-
ious types of musical signal processing such as sound source sep-
aration and sound analysis and synthesis. We will also extend our
method for multi-channel processing, in particular, stereo input.
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