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ABSTRACT

This paper discusses a statistical-model-based approach to speech
dereverberation. With this approach, we first define parametric sta-
tistical models of probability density functions (pdfs) for a clean
speech signal and a room transmission channel, then estimate the
model parameters, and finally recover the clean speech signal by
using the pdfs with the estimated parameter values. The key to the
success of this approach lies in the definition of the models of the
clean speech signal and room transmission channel pdfs. This pa-
per presents several statistical models (including newly proposed
ones) and compares them in a large-scale experiment. As regards
the room transmission channel pdf, an autoregressive (AR) model,
an autoregressive power spectral density (ARPSD) model, and a
moving-average power spectral density (MAPSD) model are con-
sidered. A clean speech signal pdf model is selected according
to the room transmission channel pdf model. The AR model ex-
hibited the highest dereverberation accuracy when a reverberant
speech signal of 2 sec or longer was available while the other two
models outperformed the AR model when only a 1-sec reverberant
speech signal was available.

Index Terms— Dereverberation, statistical model.

1. MOTIVATION

Reverberation degrades the quality of speech picked up by dis-
tant microphones and thereby limits the applicability of exist-
ing speech processing products. Therefore, dereverberation tech-
niques, which mitigate the unfavorable reverberation effect, are vi-
tal for the further expansion of existing speech processing products
as well as for the development of new ones. In fact, many derever-
beration methods have been proposed including a maximum kur-
tosis method [1], a spectral subtraction method [2], and a weighted
prediction error (WPE) method [3].

In practical situations, speech quality may be degraded not
only by reverberation but also by ambient noise and interfering
speech. Therefore, dereverberation techniques should be designed
so that they can be effectively combined with noise reduction and
speech separation techniques.

A statistical-model-based approach has been employed ex-
tensively for noise reduction and speech separation [4]. Thus,
this approach affords a good guide to combining the dereverber-
ation techniques with noise reduction and speech separation tech-
niques. In fact, on the basis of the WPE method for dereverbera-
tion [3], which is based on this approach, we have developed sev-
eral dereverberation methods coupled with such other signal pro-
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cessing techniques (e.g., [5]). This paper further investigates the
statistical-model-based approach to dereverberation.

Now, we briefly review the concept of the statistical-model-
based approach to dereverberation. We begin by formulating the
dereverberation problem. In this paper, we deal with a single mi-
crophone case. Let s,,; and y,,; denote clean and reverberant
speech signals, respectively, represented in the short-time Fourier
transform (STFT) domain, where n and [ are time frame and fre-
quency bin indices, respectively. Assume that we observe y,,,; over
N consecutive time frames. We represent the observed data set as
Yy = {Yn,i}o<n<n,0<i<L, Where L is the number of frequency
bins. In response to this, we denote the corresponding set of clean
speech samples by s = {sn,i }o<n<nN,0<i< L. Dereverberation is a
process for estimating s when y is given.

With the statistical-model-based approach, we first define sta-
tistical models of a room transmission channel and a clean speech
signal by using probability density functions (pdfs) p(y|s, ©) and
p(s|©), respectively, where © is the set of all parameters. We re-
fer to the respective pdfs as the room acoustics pdf and the clean
speech pdf. Then, we estimate © values using the observed data, y.
We denote by © the set of the estimated parameter values. Finally,
we compute the minimum mean square error (MMSE) estimate of
the clean speech signal as

5§ = Es{s;p(sly,0)}, 1)
where p(s|y,©) oc p(yls,©)p(s|©) and Ez{f(z);q(z)} =
J a(z) f(z)dz. In summary, we need to perform the following
three steps to derive a specific dereverberation method.

(s1) Define a room acoustics pdf, p(y|s,©), and a clean speech
pdf, p(s|©), along with a parameter set, ©.

(s2) Define an estimation algorithm for ©.
(s3) Derive the MMSE signal estimator given by (1).

The key to the successful design of a dereverberation method
is the selection of statistical models of room acoustics and clean
speech pdfs. Different models lead to dereverberation methods
with different characteristics. Therefore, we must understand what
kind of dereverberation method is derived based on each model.

With the above motivation, this paper describes several sta-
tistical models of room acoustics and clean speech pdfs, and ex-
perimentally compares the dereverberation methods derived from
these models. The models considered in this paper include both
newly proposed and already reported models [3]. The comparison
is carried out in terms of maximum dereverberation accuary and
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the amount of observation data required for model parameter esti-
mation. (Although computational cost and memory size are also
important, we do not cover these performance indices because they
are dependent on implementation.)

2. MODELS CONSIDERED IN THIS PAPER

In Section 2, we describe several statistical models of room acous-
tics and clean speech pdfs.

2.1. Basic PDFs

First, we present two basic pdfs that are used in the definition of
room acoustics and clean speech pdfs.

e Complex normal distribution
Ne{z; 1, 5%} denotes the pdf of a complex normal distribu-
tion with mean y and variance o2, i.e.,

1 z — p?
Ne{zp, 0%} = — exp{lo—zul} forxeC. (2

e Generalized gamma distribution
GG{z; K, 0, p} denotes the pdf of a generalized gamma dis-
tribution with scale parameter 6 and two shape parameters x
and p, i.e.,

Kkp—1

%exp{—(g)p} forz > 0. (3)

2.2. Room acoustics PDFs

GG{z; k,0,p} =

Now, we describe the room acoustics pdfs, p(y|s, ©), that are con-
sidered in this paper. We assume that reverberant speech signals at
different frequency bins are statistically independent of each other.
Then, p(y|s, ©) can be decomposed as

L-1N-1

p@ls,©) = [] [] p@wn.ilvg™",s,0),

=0 n=0

“

where y§~! = {Yn' 1 }o<n’ <n,0<i<z- The pdf on the right hand

side of (4), p(yn,ilya ™", s, ©), represents the probability of ob-
serving yr,; at time frame n on condition that we have the clean
speech signal and the past observed signal. In this paper, we con-
sider three statistical models for this conditional pdf. Two of these
three models are presented for the first time.

Autoregressive (AR) model

The first room acoustics model is an autoregressive (AR) model,
which we described in our previous paper [3]. (Note however that,
in [3], we did not restrict the number of microphones to one.) The
reverberant speech signal, y, i, is divided into its clean compo-
nent, s, i, and reverberation component, denoted by 4 ;, as

®

The AR model assumes that a room transmission channel is mod-
eled by an AR system, or equivalently, that r,, ; is given by

Yn,l = Sn,l + Tn,l-

Di+K;—-1

*
Tn,l = E hk,lyn—k,la

k=D,

©
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where hj,; is a complex number and x is a complex conjugate.
Therefore, the conditional pdf, p(yn:|yg~", s, ©), is described as

P(Yn,lys "5, 0)
D+K;—-1

=Nc{yn,z; > hi,zyn-k,z+sn,1702} (*—=0). (M

k=D,

By substituting (7) into (4), we obtain the AR-model-
based room acoustics pdf. This model is parameterized by
{{h«,} D, <k<D,+K, to<i<r; in other words, we have hy,; € ©.
The validity of the AR model is discussed in [3].

Reverberation generally affects both the power and phase
spectra of a clean speech signal. We see that (7) takes account
of the reverberation effects on both the power and phase spectra.
By contrast, the remaining two room acoustics models consider
only the reverberation effect on the power spectra.

Autoregressive psd (ARPSD) model

The second room acoustics model is an autoregressive power spec-
tral density (ARPSD) model. This model is new and inspired by
the Lebart et al.’s work [2]. Lebart et al. assumed that the power
spectral density (psd) of the reverberation component of a rever-
berant speech signal is the same as the psd of a delayed version
of the reverberant speech signal up to a constant scale factor. This
assumption was derived from the observation that sound energy
exponentially decays in a room. (Later, Habets et al. reported that
the exactness of this assumption can be improved by further tak-
ing into consideration direct-to-reverberation ratio [6].) The delay
amount is set at about 50 msec, and the constant scale factor is
determined with respect to the reverberation time.

The ARPSD model regards the reverberation component, 7, ;,
as an additive noise. In other words, we assume that r,, ; is uncor-
related with s, ;. Furthermore, generalizing the assumption made
by Lebart et al., we assume that r,; is normally distributed with
a mean of 0 and a variance (i.e., a psd component) given by an
autoregressive form as

D;+K;—-1

p(rn,1©) = Nc{rn,l;O, ( > gk,ll'yn—k,llz)}~ ®

k=D,

Note that the gx,; value is non-negative. Based on (8), we obtain
the following conditional pdf:

p(yn,llyg_l’ S, @)
D)+K;—-1

=Nc{yn,z;sn,z,( Z gk,llyn—k,llz)}- )]

k=D,

If we set K; at 1 and D; at about 50 msec, (9) becomes equiva-
lent to the model of [2]. The ARPSD model is parameterized by
{{9x,1} D, <k<D,+K, }o<i<L; thus we have gk, € ©.

Incidentally, the method described in [2] determines the gx
value based on the reverberation time. Lebart et al. proposed
estimating the broadband reverberation time by exploiting short
pauses in speech activity. However, because a reverberation time
generally depends on a frequency bin, we may not achieve an ac-
ceptable dereverberation accuracy by using only the broadband re-
verberation time. In constrast, we can estimate gi,; without us-
ing the reverberation time by combining the ARPSD model with a
sparseness-constrained non-stationary Gaussian model of a clean
speech pdf, which we describe later.
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Moving-average psd (MAPSD) model

The third model is a moving-average psd (MAPSD) model. This
model also regards reverberation component r,; as an additive
noise. The difference from the ARPSD model lies in the assump-
tion that the variance (i.e., the psd component) of 7, ; is expressed
by using a moving-average (MA) form. Specifically, the condi-
tional pdf on the right hand side of (4) is assumed to be given by

—ELY - (10)
Mn—k,l

D;+K;-1

P(yn,llyg—lv 5,0) = NC{yn,U Sn,l, z

k=D,

where 7, ; is the reciprocal of the psd component, which is some-
times called the accuracy, of clean speech signal s, ;. This model
is parameterized by {{gk,}p,<k<D,+K, }o<i<L; thus, we have
gkt € ©. The MAPSD model aims to remove the exponential
decay assumption made by the ARPSD model.

The above three room acoustics models are compared in Sec-
tion 4.

2.3. Clean speech PDFs

Next, let us describe the clean speech models. We start with
the assumption that s,; and s, ;- are statistically independent if
(n,1) # (n',1'). Then, we obtain

L-1N-1

p(s1©) = IT IT p(snal®).

1=0 n=0

an

As regards p(sn,1|©), we consider the following two models:

e an unconstrained non-stationary Gaussain (UCNSG) model;

e a sparseness-constrained non-stationary Gaussian (SCNSG)
model.

A clean speech pdf model should be selected in accordance
with a room acoustics model so that we can derive an effective
parameter estimator in step (s2). The UCNSG model is used in
combination with the AR model. On the other hand, the SCNSG
model is used with the ARPSD or MAPSD models.

Unconstrained non-stationary Gaussian (UCNSG) model

In the field of independent component analysis, it is well known
that effective speech separation algorithms can be obtained by as-
suming a clean speech signal to be a realization of a non-stationary
Gaussian process. With this as a basis, we consider the following
model of p(sn,|©):

P(52,11©) = Nec{sn,1;0,1/00,}-

The parameter set for this model is the set of accuracies,
{nn,i}o<n<n,0<i<L; thus, we have i, ; € ©.

12)

Sparseness-constrained non-stationary Gaussian (SCNSG)
model

A clean speech signal generally contains short pauses and has a
harmonic spectral structure. Therefore, the psd components of a
clean speech signal are sparsely distributed. To express this sparse-
ness, the second model uses the following prior pdf for accuracy
7,1 in addition to (12):

P(nn,l) = gg{nn,lﬂ% oap}a (13)
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where k&, 0, p are prescribed constants.
In summary, we consider the following three combinations of
room acoustics and clean speech pdfs:

(m1) an AR model combined with an UCNSG model;
(m2) an ARPSD model combined with an SCNSG model;
(m3) an MAPSD model combined with an SCNSG model.
Thus, step (s1) has been completed.

3. DEREVERBERATION METHODS

By carrying out steps (s2) and (s3) for each statistical model com-
bination described in Section 2, we can derive dereverberation
methods corresponding to the respective combinations. Combi-
nation (m1) leads to the WPE method [3]. In this section, we de-
scribe the parameter estimation algorithm (step (s2)) and MMSE
signal estimator (step (s3)) for combination (m2). The parameter
estimation algorithm and MMSE signal estimator for combination
(m3) can be derived in a similar way to those for (m2).
The statistical models for (m2) are defined by (4), (9), (11),
(12), and (13). Hence, the set of parameters is given by
© = {{gx,1} D, <k<Di+K;s {Mn i Yo<n<n Yo<i<L- (14)
We estimate these parameter values by means of maximum a pos-
teriori (MAP) estimation, i.e., we compute © that maximizes the
following posterior pdf:
p(©ly) o< p(©)Es{p(yls, ©); p(s|©)}. (15)
The first term on the right hand side of (15) is defined as
p(®) = Hf:'z_ol {“;01 p(1n,1), where we ignore the prior for g ;.
p(y|s, ©) is given by (4) and (9), while p(s|©) is given by (11)
and (12).
© that maximizes the posterior pdf, (15), cannot be analyt-
ically calculated. There are two factors for this difficulty. One
is that each variance of the ARPSD model, (9), is defined as a
(weighted) sum of gx,; over several k values. The other is that
the log of the prior, given by (13), involves the computation of
p power of n,;. To cope with the first problem, we use an
expectation-maximization (EM) algorithm by introducing latent
variables rp; n1, - ,"D,+K,~1,n, for each n and l. 7k » rep-
resents the component of reverberation component 7,,; that comes
from the reverberant speech signal at the (n — k)th time frame,
Yn—k,1. Therefore, rx »,; satisfies the following two conditions.

(16)
an

TDynl+ "+ TD+K; —1,n,1 = Tn,l

P(Tk,n i|©) = Ne{rk,n,50, gk tlyn—k |}

We cope with the latter problem by using an auxiliary function
method, which is commonly used in the field of non-negative ma-
trix factorization (NMF) [7].

The parameter estimation algorithm may be described as fol-
lows (we omit the detailed derivation owing to the limited space).
In the following, we use vector 5, which is defined as r,,; =
[rDymits -+ sTDy+ K —1,n,) T . First, we set initial parameter val-
ues, denoted by O Then, we repeat the following two steps until
convergence.
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1. For all 2 and  values, compute p(r»,;|y, ©') according to
the following equations (E-step):

p(rnaly, ©Y) = Ne{ra; uld, =0} (18)
ull =) 1y, (19)
= =8 By ami +117All) T o)
W =AY (1/nf, + 117A) @1

I and 1 denote the K -dimensiqnal identity matrix and all-
one vector, respectively, and AE:] ; is given as follows:

A = diag(g | lyn—p,I%,
'7g[Ez;],+K[—1,l|yn—Dt—Kt+lyl|2)' (22)

Note that the matrix inversions in (20) and (21) can be
avoided by using the Woodbury fomula.

2. For all n, [, and k values, update the parameter values ac-
cording to the following equations (M-step):

1/ = Bu, {lynit — g7 Pral®s p(raly, ©9)} /rp

+1/k6° () * (23)

N-1 2, . [4]

i E, n Irk, ,ll ,p(‘r NA y’e )
e Y Erenallren Lo ten e

= Nlyn-k,|?
Because p(rn 1|y, ©1Y) is based on a complex normal dis-
tribution as shown by (18), the expectated values in (23)
and (24) can be readily computed.

As regards step (s3), it is obvious that the MMSE signal esti-
mator is given by a Wiener filter. This is a consequence of the fact
that we regarded the reverberation component, 7, as an additive
noise. We omit the details due to lack of space.

4. EXPERIMENT AND CONCLUSION

‘We conducted an experiment to compare the dereverberation meth-
ods derived from the statistical models described in Section 2. We
used utterances of 306 speakers contained in the JNAS database.
For each speaker, we made 1-, 2-, 3-, 4-, and 5-sec clean speech
signals with a sampling rate of 16 kHz. The individual clean
speech signals were convolved with an impulse response measured
in a room with a reverberation time of 0.6 sec to simulate rever-
berant speech signals. The frame size and frame shift for STFT
were set at 512 points (32 msec) and 128 points (8 msec), respec-
tively. Dy, K, K, p, and 0 values were experimentally determined.
The experimental results were evaluated in terms of the 12th-order
cepstral distances (CD) between the target (i.e., processed or rever-
berant) speech signals and the corresponding clean speech signals.
The CD was shown to be highly correlated with subjective quality
of dereverberated speech [8].

Figure 1 shows the CDs averaged over the 306 speakers
against the amount of observed data. We see that combination
(m1) provided the smallest average CDs when reverberant speech
signals of 2 sec or longer were available. However, with (m1), the
average CD increased when we used only 1-sec reverberant speech
signals. By contrast, we find that combinations (m2) and (m3) con-
stantly improved the average CDs to some degree. Although the
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Figure 1: Average cepstral distances. Note that the lines for
ARPSD and MSPSD models are almost completely overlapping.

speech signals processed by the dereverberation methods for (m2)
and (m3) sounded somewhat distorted due to Wiener filtering, they
were much less reverberant than the input speech signals.

From the above results, we conclude that, for a room acous-
tics pdf, we should use an AR model when we can assume that
a speaker does not move frequently. For situations where this as-
sumption is invalid, ARPSD and MAPSD models are better. Effec-
tively combining these two models would achieve dereverberation
with high accuracy using only a small amount of observation data.

In this paper, we focused on maximum dereverberation accu-
racy and observation data amount. Another important performance
index is sensitivity to environmental changes. We will conduct
comparative tests in relation to these other performance indices.
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