
Hidden Markov Convolutive Mixture Model
for Pitch Contour Analysis of Speech

Kota Yoshizato1, Hirokazu Kameoka1,2, Daisuke Saito1, Shigeki Sagayama1,

1Graduate School of Information Science and Technology, The University of Tokyo, Japan
2 NTT Communication Science Laboratories, NTT Corporation, Japan

{yoshizato,kameoka,dsaito,sagayama}@hil.t.u-tokyo.ac.jp

Abstract

This paper proposes a stochastic model of speech F0 con-
tours, based on the stochastic formulation of the Fujisaki
model. Our motivation for the stochastic formulation is
twofold. Firstly, it allows us to derive a well-behaved
algorithm for estimating the Fujisaki model parameters
from a raw F0 contour. Secondly, it will open the door
to incorporating the well-founded F0 contour model into
various statistical speech processing problems. We quan-
titatively evaluated the performance of our method in
terms of an Fujisaki-model parameter estimation accu-
racy using real speech data. Experimental results re-
vealed that our method was superior to a state-of-the-art
Fujisaki model parameter extractor.
Index Terms: speech F0 contours, statistical model, Fu-
jisaki model, hidden Markov model, EM algorithm

1. Introduction
The fundamental frequency (F0) contours in normal
speech contains various types of non-linguistic infor-
mation such as speaker’s identity, emotion and atten-
tion. Modeling the F0 contours of speech utterances can
thus be potentially very useful for many speech applica-
tions, including speech recognition, speaker recognition,
speech synthesis, and dialogue systems.

The Fujisaki model [1] is a well-founded mathemati-
cal model, which describes the generating process of the
whole F0 contour of a speech utterance. The remarkable
feature of the Fujisaki model is that it consists of physi-
ologically and physically meaningful parameters (called
the phrase and accent commands) and is able to fit F0

contours of real speech well when they are chosen ap-
propriately. For this reason, the Fujisaki model has of-
ten been used to manually design an F0 contour for syn-
thesizing natural speech. Thus, to enable speech syn-
thesizers to automatically generate natural-sounding F0

contours, one way would be to incorporate the Fujisaki
model into the generative model of phonemic sequences
so that its parameters can be learned from a speech cor-
pus in a unified manner. However, estimating (learning)
the Fujisaki model parameters from raw F0 contour ob-
servations has been a difficult task. Several techniques
have already been developed [2, 3, 4], for the purpose
of incorporating the extracted parameters in automatic
speech/emotion recognition systems to improve their per-

formance, but so far with limited success due to the ana-
lytical complexity of the Fujisaki model.

We have previously derived a stochastic model of
speech F0 contours by translating the Fujisaki model into
a probabilistic generative model [5, 6]. The stochastic
reformulation of the Fujisaki model has allowed us to de-
rive an efficient algorithm for automatically estimating
the Fujisaki-model parameters from raw F0 contours. In
this paper, we present an improved version of our previ-
ous models described in [5, 6]. The rest of this paper is or-
ganized as follows. Section 2 briefly reviews the original
Fujisaki model. Section 3 formulates a probabilistic gen-
erative model of speech F0 contours based on the Fujisaki
model. Section 4 derives an algorithm for finding the
maximum a posteriori (MAP) estimates of the Fujisaki
model parameters from an observed F0 contour. Section
5 presents results of a quantitative evaluation conducted
using real speech data excerpted from the ATR speech
database. Section 6 concludes this paper.

2. Original Fujisaki Model
The Fujisaki model [1] assumes that an F0 contour on a
logarithmic scale, y(t), where t is time, is the superposi-
tion of three components: a phrase component yp(t), an
accent component ya(t), and a base component yb:

y(t) =yp(t) + ya(t) + yb. (1)

The phrase component yp(t) consists of the major-scale
pitch variations over the duration of the prosodic units,
and the accent component ya(t) consists of the smaller-
scale pitch variations in accented syllables. These two
components are modeled as the outputs of second-order
critically damped filters, one being excited with a com-
mand function up(t) consisting of Dirac deltas (phrase
commands), and the other with ua(t) consisting of rect-
angular pulses (accent commands):

yp(t) =Gp(t) ∗ up(t), (2)

Gp(t) =
{

α2te−αt (t ≥ 0)
0 (t < 0)

, (3)

ya(t) =Ga(t) ∗ ua(t), (4)

Ga(t) =
{

β2te−βt (t ≥ 0)
0 (t < 0)

, (5)



Figure 1: Command function modeling with HMM.

Figure 2: The splitting of state an into 4 substates an,0,
an,1, an,2, and an,3. ϕan,0,an,1 corresponds to the proba-
bility of staying at state an with 4 consecutive times.

where ∗ denotes convolution over time. The baseline
component yb is a constant value related to the lower
bound of the speaker’s F0, below which no regular vo-
cal fold vibration can be maintained. α and β are natu-
ral angular frequencies of the two second-order systems,
which are known to be almost constant within an utter-
ance as well as across utterances for a particular speaker.
It has been shown that α = 3 rad/s and β = 20 rad/s can
be used as default values.

3. Stochastic model of speech F0 contours
Here, we model the generative process of an entire F0

contour of speech based on the discrete-time version of
the Fujisaki model.

We first describe the process for generating the phrase
and accent command functions, up[k] and ua[k], where k
denotes the discrete-time index. In the original Fujisaki
model, it is required that the phrase commands must con-
sist of Dirac deltas and the accent commands must con-
sist of rectangular pulses. In addition, they are not al-
lowed to overlap each other. To incorporate these require-
ments, we find it convenient to model the up[k] and ua[k]
pair, i.e., o[k] = (up[k], ua[k])T, using a Hidden Markov
Model (HMM). Specifically, we assume that {o[k]}K

k=1
is a sequence of outputs emitted from an HMM with the
specific topology illustrated in Fig. 1. The output distri-
bution of each state is a Gaussian distribution

o[k] ∼N (o[k];ν[k],Υ[k]) , (6)

ν[k] =
[
µp[k]
µa[k]

]
, Υ[k] =

[
υ2

p[k] 0
0 υ2

a [k]

]
, (7)

where the mean vector ν[k] and variance matrix Υ[k] are
considered to evolve in time as a result of the state tran-

sition. To parameterize the durations of the self transi-
tions, each state is split into a certain number of substates
such that they all have exactly the same emission densi-
ties. Fig. 2 shows an example of the splitting of state
an. The number of substates is set at a sufficiently large
value and the transition probability from substate an,m to
substate an,m+1 is set at 1 for m ̸= 0. This state splitting
allows us to flexibly control the durations for which the
process stays in state an through the settings of the tran-
sition probability. The transition probability from sub-
state an,0 to substate an,m (m ≥ 1) corresponds to the
probability of the present HMM generating a rectangu-
lar pulse that has a particular duration. In the same way,
we split states p0 and a0 to parameterize the probabil-
ity of the spacing between phrase and accent commands.
Henceforth, we use the notation p0 = {p0,0, p0,1, . . .},
a0 = {a0,0, a0,1, . . .}, and an = {an,0, an,1, . . .}.

The present HMM is now defined as follows:

Output sequence: {o[k]}K
k=1

Set of states: S = {p0, p1, a0, . . . , aN}
State sequence: {sk}K

k=1

Output distribution: P (o[k]|sk) = N (o[k]; [k],Υ[k])
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8
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Transition probability: ϕi′,i = log P (sk = i|sk−1 = i′)

Given the state sequence s = {sk}K
k=1, the above

HMM generates the up[k] and ua[k] pair. From (2) and
(4), up[k] and ua[k] are then fed through different crit-
ically damped filters, Gp[k] and Ga[k], to generate the
phrase and accent components, xp[k] and xa[k]:

xp[k] = up[k] ∗ Gp[k], (8)
xa[k] = ua[k] ∗ Ga[k], (9)

where ∗ denotes convolution over k. The entire F0 con-
tour is then given by

x[k] = xp[k] + xa[k] + ub, (10)

where ub denotes the baseline component. In non-tonal
languages such as standard Japanese, the pharse and ac-
cent commands should be non-negative. In our previous
model [5, 6], we treated up[k], ua[k] and ub as latent vari-
ables (i.e., parameters to be marginalized out), and did
not explicitly take the non-negativity constraints on up[k]
and ua[k] into consideration. To explicitly impose the
non-negativity constraints, it is convenient to treat these
variables as model parameters instead of latent variables.

For real speech F0 contours, observed F0s should
not always be considered reliable. For example, F0 es-
timates obtained with a pitch extractor in unvoiced re-
gions would be totally unreliable. When performing pa-
rameter inference, we would want to trust only reliable
observations and neglect unreliable ones. To incorporate
the degree of uncertainty of F0 observations, we consider
modeling an observed F0 contour y[k] as a superposition



of the “ideal” F0 contour x[k] and a noise component
xn[k] ∼ N

(
0, υ2

n[k]
)
, where υ2

n[k] represents the degree
of uncertainty of the F0 observation at time k, which is
assumed to be given.

Overall, an observed F0 contour y[k] is described as
y[k] = x[k] + xn[k]. For simplicity, we henceforth treat
ϕi′,i, ub, σ2

p,i, σ2
a,i, υ2

n[k], α, and β as constants. By
marginalizing xn[k] out, we obtain the probability density
function of y = {y[k]}K

k=1, given o = {o[k]}K
k=1, as

P (y|o) =
K∏

k=1

N (y[k];x[k], υ2
n[k]),

x[k] = Gp[k] ∗ up[k] + Ga[k] ∗ ua[k] + ub. (11)

Recall from (6) that given a state sequence s = {sk}K
k=1

and θ = {{Ap[k]}K
k=1, {A(n)

a }N
n=1, }, o is generated

according to P (o|s, θ) =
∏K

k=1 N (o[k];ν[k],Υ[k]).
P (s) is given by the product of the state transition prob-
abilities: P (s) = ϕs1

∏K
k=2 ϕsk,sk−1 . Furthermore, we

assume that θ is uniformly distributed.

4. Parameter Optimization Process

In this section, we describe an iterative algorithm that
searches for the maximum a posteriori estimates of o and
θ by locally maximizing P (o, θ|y) given y using the
generalized Expectation-Maximization (EM) algorithm.
We treat s as a latent variable and consider marginalizing
P (o, θ, s|y) ∝ P (y|o)P (o|s, θ)P (s) with respect to s
to obtain the objective P (o, θ|y). The auxiliary function
(as known as the “Q-function”) can be written as

Q(o, θ,o′, θ′) =
∑

s

P (s|y,o′, θ′) log P (o,θ, s|y)

c= log P (y|o) +
∑

s

P (s|y, o′,θ′) log P (o|s, θ)P (s),

where c= denotes equality up to constant terms.
An iterative algorithm that consists of computing
P (s|y, o′, θ′) (via the Forward-Backward algorithm), in-
creasing Q(o, θ, o′, θ′) with respect to o and θ, and then
substituting o and θ into o′ and θ′ locally maximizes the
posterior P (o, θ|y). Here, care must be taken that in-
creasing Q(o,θ, o′,θ′) with respect to o must be per-
formed subject to non-negativity. This can be done by
invoking the idea of [7]. By using the Jensen’s inequality
we obtain an inequality

−
( ∑

i∈{p,a,b}

∑
l

Gi[k − l]ui[l]
)2

≥ −
∑

i∈{p,a,b}

∑
l

G2
i [k − l]u2

i [l]
λi,k,l

, (12)

where Gb[k] = δ[k] (Kronecker’s delta), λi,k,l ≥ 0 is an
auxiliary variable satisfying

∑
i

∑
l λi,k,l = 1. We can

use this inequality to construct a lower bound function

Figure 3: An example of command sequence matching.

for Q(o, θ, o′, θ′). The maximization of this lower bound
function w.r.t. o (subject to non-negativity) and λ can be
achieved analytically, which guarantees a certain increase
of Q(o, θ,o′, θ′).

After convergence, we search for the optimal state se-
quence s by using the Viterbi algorithm.

5. Experiment
One important contribution of our work is that the Fu-
jisaki model has successfully been translated into a sta-
tistical model. We believe that this will open the door to
combining our model and the various statistical speech
applications so that the Fujisaki-model parameters as
well as the spectral parameter sequences can be learned
from a speech corpus in a unified manner. In this re-
gard, our model is already superior to conventional “non-
statistical” methods such as [4]. However, it is not yet
clear whether our statistical model is able to estimate the
Fujisaki model parameters from real speech data as accu-
rately as the state-of-the-art technique. Thus, we quan-
titatively evaluated the parameter estimation accuracy of
the present algorithm using real speech data, excerpted
from the ATR Japanese speech database B-set [8]. This
database consists of 503 phonetically balanced sentences.
We selected speech samples of one male speaker (MHT).
We used Fujisaki model parameters that had been manu-
ally annotated by an expert in the field of speech prosody
as the ground truth data, where the baseline component
was set at log 60 Hz. F0 contours were extracted using
a method we had previously developed [9], from which
the Fujisaki model parameters were estimated using the
present algorithm. The constant parameters were fixed
respectively at N = 10, t0 = 8 ms, α = 3.0 rad/s, β =
20.0 rad/s, υ2

p[k] = 0.22, υ2
a [k] = 0.12, υ2

b = 0.0012,
υ2

n[k] = 1015 for unvoiced regions and υ2
n[k] = 0.22 for

voiced regions. µb was set at the minimum log F0 value
in the voiced regions. The initial values of Θ were set
at the values obtained with the non-statistical method [4].
The EM algorithm was then run for 20 iterations. The
number of substates in the HMM and the transition prob-
ability ϕi′,i were determined according to the manually
annotated data of the first 200 sentences. The parame-
ter estimation algorithm was then tested on the remaining
303 sentences. We evaluated the accuracy of the parame-
ter estimation based on the following two criteria: log F0

RMSE (root mean squared error) and detection rates. Our
aim was to confirm whether the present model and al-
gorithm can achieve high model reconstruction accuracy



(a): The previous model (b): The proposed model

Figure 4: (1) An observed F0 contour in voiced regions (in solid line) and the estimated F0 contours (in dotted line) along
with (2) the estimated phrase and accent commands.

Table 1: Detection rates and log F0 RMSE (S=0.3s).

Detection rates log F0[Hz] RMSE
Init 0.688 0.1719
Estimated 0.695 0.0611

while keeping the meaningfulness of the model parame-
ters. log F0 RMSE was used to evaluate the reconstruc-
tion accuracy, which measures the root mean squared er-
ror between an observed F0 contour and the estimated
F0 contour. The detection rate was used to evaluate the
meaningfulness of the parameter estimates, which was
calculated in the following way: We performed match-
ing between the estimated and ground truth command
sequences as illustrated in Fig. 3 on a command-by-
command basis by using an dynamic programming al-
gorithm. If the time difference between the estimated
and ground truth phrase commands was shorter than S
seconds, the estimated phrase command was considered
“matched” and the local distance was set at zero. Oth-
erwise the local distance was set at 1. As for the accent
commands, we took the average of the time difference
between the onsets of the estimated and ground truth ac-
cent commands and the time difference between the off-
sets of the estimated and ground truth accent commands.
In the same way, when the average time difference was
shorter than S seconds, the estimated accent command
was considered matched. The magnitudes of the phrase
and accent commands were not taken into account in our
evaluation. This is because the magnitude estimation was
very sensitive to the baseline F0 value, which was set dif-
ferently in the present method and in the manual anno-
tation. Let NE, NA be the total numbers of commands
in the estimated and ground truth command sequences,
NM be the number of the matched commands between
the two sequences, NEsum, NAsum, and NMsum be the
sum of NE, NA, NM for all 303 sentences. We defined
the insertion error rate EI as (NEsum −NMsum)/NAsum,
the deletion error rate ED as (NAsum −NMsum)/NAsum,
and the detection rate D as 1 − EI − ED.

Tab. 1 shows the result of our quantitative evalua-
tion with S = 0.3 s. The “Init” row shows the detection
rate and log F0 RMSE of the initial command sequence
(which was obtained with the non-statistical method [4]),
and the “Estimated” row shows that of the estimated com-

mand sequence after the EM iterations. From the results,
we confirmed that our method was comparable to a state-
of-the-art Fujisaki model extractor in terms of the detec-
tion rate. On the other hand, our method was superior
to the conventional method in terms of the model recon-
struction accuracy. We can also confirm from Fig. 4 that
the present model is able to fit an observed F0 contour
more accurately than our previous model.

6. Conclusion
In this paper, we proposed a statistical model of speech
F0 contours and parameter estimation algorithm. We
evaluated the parameter estimation accuracy of the pro-
posed method using real speech data, and confirm the ad-
vantage of the proposed method. Future work will in-
clude incorporating the present model into the statisti-
cal speech applications such as the HMM-based speech
synthesis system (HTS) in such a way that the Fujisaki-
model parameters can be learned from a speech corpus in
a unified manner.
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