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1 Introduction

The spectral envelope of speech contains rich in-
formation about the voice characteristics of the
speaker. According to the source-filter model for
speech production, spectral envelopes correspond to
the resonance characteristics of the vocal tract. If
we can assume that the vocal tract spectra observed
at each time frame can be approximated as a lin-
ear sum of spectral templates scaled by time-varying
amplitudes, the vocal tract spectrogram, interpreted
as a non-negative matrix, can be approximated as
the product of two non-negative matrices, one con-
taining the time-independent spectral templates ar-
ranged as column vectors and the other containing
the time-varying amplitudes arranged as row vec-
tors. This way of representing a data matrix is
called non-negative matrix factorization (NMF) and
applying it to a vocal tract spectrogram has several
attractive features.
First, it allows us to decouple vocal tract spectra

into time-independent and time-dependent factors,
namely the spectral templates and the temporal ac-
tivations. This decomposition is noteworthy since
the former factor roughly describes the voice char-
acteristics of the speaker whereas the latter contains
information about the transcription of the uttered
sentence. Thus, if we convert the spectral templates
while keeping the temporal activations unchanged,
we can modify a speaker’s voice to sound like it were
spoken by another speaker [1, 2]. This technique is
called voice conversion.
It also provides a novel solution for tackling the

source-filter decomposition problem. The source-
filter model assumes that a speech spectrum is given
as the product of the vocal tract and the glottal ex-
citation spectra. Source-filter decomposition refers
to the problem of estimating the vocal tract and
the excitation source spectra solely from a speech
spectrum. Within a voiced segment where we as-
sume the excitation source signal to be a periodic
pulse train, the spectrum of the produced speech is
given by the product of the vocal tract spectrum
and the equally spaced pulses with an interval equal
to the fundamental frequency (F0). This process
is shown in Fig. 1. Thus, a speech spectrum can
be seen as a sampled version of the vocal tract spec-
trum with missing information between the harmon-
ics. Widely used vocoders such as STRAIGHT [3]
and WORLD [4] provide ways of extracting a spec-
tral envelope from a voiced spectrum by smoothly
interpolating between the harmonics. However, it
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Fig. 1 Source-filter model

is generally impossible to impute the missing data
and restore the true vocal tract spectrum only from
the speech spectrum observed at a particular frame.
This illustrates the limitation of the frame-by-frame
analyzers that perform source-filter decomposition
at each time frame independently. An attempt has
recently been made to overcome this limitation by
leveraging multi-frame observations. The idea is to
employ a missing data imputation technique using
NMF to estimate the entire vocal tract spectrogram
[5]. The underlying assumption behind this method
is that the vocal tract spectra are expected to be
represented fairly well as a linear sum of a limited
number of spectral templates. This expectation may
be supported by the fact that the number of vowel
types is usually limited in normal speech.
As these examples show, factorization of vocal

tract spectrogram has significant potential. In the
previous work, NMF provides a template-based rep-
resentation of spectral magnitude. However, spec-
tral magnitude is not the only important factor in
characterizing speech. As shown in Fig. 2, vocal
tract spectrograms are typically characterized by
several dominant peaks varying continuously over
time. These peaks are often called formants. The
frequencies of these peaks correspond to the reso-
nance frequencies of the vocal tract and the frequen-
cies of the first two formants are known to be im-
portant in determining the quality of vowels. Fig. 3
shows an example of the spectrogram of Fig. 2 as a
result when NMF is applied to the decomposition of
spectral magnitude only. By looking at the flat for-
mant trajectories in this example, we can confirm
that the NMF model is not well suited to express
the continuous trajectories of the formant frequen-
cies. This is because the NMF model is only able to
apply a linear sum of spectral templates in express-
ing a spectrum and does not have the ability to in-
terpolate the peak frequencies of the templates. To
obtain a template-based representation better suited
to express vocal tract spectrogram, we propose yet
another model consisting of formant frequency set
templates.
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Fig. 2 Vocal tract spectrogram.
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Fig. 3 NMF applied to the spectrogram of Fig. 2.

2 Model

2.1 Motivation

Each type of vowels is characterized by a for-
mant frequency set. During the transition from
a phoneme to another, one formant frequency set
varies continuously towards another formant fre-
quency set. Since the phoneme number is limited, it
would be reasonable to assume that the formant fre-
quency set at each time frame can be represented as
a linear combination of formant frequency set tem-
plates. This idea implies that a matrix that contains
the formant frequency values at different time frame,
which we hereafter call “formant frequency matrix”,
can be modeled as the product of two matrices. In
the following, we propose a novel vocal tract spec-
trogram model by incorporating this formant fre-
quency matrix model. We also derive a convergence-
guaranteed algorithm for estimating the parameters
from an observed spectrogram.

2.2 Formant frequency matrix factorization

We start by describing a spectral envelope using a
Gaussian mixture model (GMM) [6, 7], interpreted
as a function of frequency (see Fig. 4 for its graph-
ical illustration):

F (ω, t) = β(t)
I∑

i=1

αi(t)Gi(ω, t), (1)

Gi(ω, t) =
1√

2πσi(t)
e
− (ω−µi(t))

2

2σ2
i
(t) , (2)

where ω and t denote frequency and time, respec-
tively, and I is the number of Gaussian mixture com-
ponents. This representation consists of parameters
(roughly) corresponding to the frequency and power
of spectral peaks and is particularly convenient for
incorporating the above idea. µi(t), σ

2
i (t) and αi(t)

Fig. 4 GMM representation for spectral envelope.

are the mean, variance and weight of each Gaussian
component, corresponding to the frequency, peaki-
ness and power of a dominant peak in the spectral
envelope. To eliminate an indeterminacy in the scal-
ings of β(t) and αi(t), we assume αi(t) to satisfy a
sum-to-one constraint so that β(t) represents the en-
ergy of the spectrum in each frame.
If we assume that each Gaussian corresponds to a

formant, µi(t) can be seen as the frequency of the i-
th formant at time t. As discussed in 2.1, we assume
µi(t) to be represented as a weighted sum of K for-
mant frequency set templates wi,1, . . . , wi,K . K can
thus be thought of as the number of vowel types.
In the same way, we assume the magnitude ai,k to
be represented as a weighted sum of K magnitude
set templates ai,1, . . . , ai,K . Here, we constrain the
weight coefficients hk(t) for wi,k and ai,k to be equal:

µi(t) =
∑
k

wi,khk(t), (3)

αi(t) =
∑
k

ai,khk(t). (4)

The way these parameters are tied to each other is
extremely important since we may want to associate
a {wi,k, ai,k} pair with a particular shape of the i-
th prototype spectral envelope. Similarly, for the
variance we assume

σ2
i (t) =

∑
k

ci,kdk(t). (5)

Since formant frequencies usually vary continu-
ously over time, we may want hk(t) to be a smooth
function. One convenient way of ensuring smooth-
ness is to express hi(t) as a weighted sum of half-
overlapping Hanning functions g1(t), . . . , gJ(t) that
cover the entire time range:

hk(t) =
∑
j

gj(t)lj,k, (6)

and treat lj,k as the parameter to estimate instead
of hk(t). In this way, the smoothness of hk(t) can
be easily controlled by window size settings.
We place the first Gaussian function to center at

ω = 0 to account for the large energy present at
lower frequencies in the vocal tract spectrogram.
Namely, we set w1,k = 0.

3 Parameter estimation

We use Θ to denote the set of the parameters:

W = {wi,k}i,k, (7)
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A = {ai,k}i,k, (8)

L = {lj,k}j,k, (9)

C = {ci,k}i,k, (10)

D = {dk(t)}k,t, (11)

β = {β(t)}t. (12)

Note that all these values must be non-negative.
Here we derive a parameter estimation algorithm
that fits the present model F (ω, t) to an observed
spectrogram Y (ω, t). For convenience of the deriva-
tion of the optimization algorithm, we use the
Kullback-Leibler (KL) divergence (also known as
the I divergence) to measure the difference between
the present model and an observed spectrogram:

I(Θ) =

∫∫ (
Y (ω, t) log

Y (ω, t)

F (ω, t)

− Y (ω, t) + F (ω, t)

)
dωdt. (13)

Note that the integral taken over the interval [0,∞)
of the first Gaussian centered at ω = 0 is 1/2 and
that of each of the other Gaussians is approximately
equal to 1. Thus, to make them consistent, we rede-

fineG1(ω, t) as
2√

2πσ1(t)
exp{− (ω−µ1(t))

2

2σ2
1(t)

}. Since the
Hanning functions are set to satisfy

∑
j gj(t) = 1,

we can show that the integral of F (ω, t) taken over
the interval [0,∞) is β(t) when

I∑
i=1

ai,k = 1, (14)∑
k

lj,k = 1, (15)

are satisfied. (13) can therefore be rewritten as

I(Θ) =

∫∫ (
Y (ω, t) log

Y (ω, t)

F (ω, t)
− Y (ω, t)

)
dωdt

+

∫
β(t)dt, (16)

under the redefined G1(ω, t) and the conditions (14)
and (15).
In addition, since we want each Gaussian to be as-

sociated with a dominant peak in a spectrum, we do
not want the magnitude of any of the Gaussians to
be extremely small. Thus, to prevent the magnitude
matrix ai,k from becoming sparse in the process of
model fitting, we incorporate a penalty term given
by the negative logarithm of a symmetric Dirichlet
distribution. A symmetric Dirichlet distribution is
maximized when all the arguments become exactly
equal. The penalty term is thus given as

R(A) = − log

(∏
i,k

ai,k
φ

)
. (17)

Hence, our objective function to be minimized is

J(Θ) = I(Θ) +R(A). (18)

Although it is difficult to analytically find the
global minimum point of the current optimization
problem, we can search for a stationary point us-
ing a majorization-minimization (MM) algorithm.
An MM algorithm refers to an iterative algorithm
that consists of iteratively minimizing an auxiliary
function called a “majorizer”. Suppose J (Θ) is an
objective function that we wish to minimize with re-
spect to Θ. A majorizer J +(Θ,Ξ) is then defined as
a function satisfying J (Θ) = minΞ J +(Θ,Ξ), where
Ξ is called an auxiliary variable. An algorithm that
consists of iteratively minimizing J +(Θ,Ξ) with re-
spect to Θ and Ξ is guaranteed to converge to a
stationary point of the objective function. For our
objective function, we can show that

J+(Θ,Ξ) =∫∫
Y (ω, t)

[
log Y (ω, t)− log β(t)

−
∑
i

λi(ω, t)

{∑
k,j

θi,k,j(t) log
ai,kgj(t)lj,k
θi,k,j(t)

− 1

2

(∑
k ci,kdk(t)− ζi(t)

ζi(t)
+ log ζi(t)

)
− 1

2

(∑
k

ρ2i,k(t)

ci,kdk(t)

)
×

(
ω2 − 2ω

∑
k,j

wi,kgj(t)lj,k +
∑
k,j

w2
i,kg

2
j (t)l

2
j,k

γi,k,j(t)

)

+ log λi(ω, t)

}]
dωdt+ η

+

∫
β(t)dt+R(A), (19)

is an auxiliary function where Ξ is the set of the
auxiliary variables

λ = {λi(ω, t)}i,ω,t, (20)

θ = {θi,k,j(t)}i,k,j,t, (21)

ζ = {ζi(t)}i,t, (22)

ρ = {ρi,k(t)}i,k,t, (23)

γ = {γi,k,j(t)}i,k,j,t, (24)

that must satisfy 0 ≤ λi(ω, t) ≤ 1,
∑

i λi(ω, t) =
1, 0 ≤ θi,k,j(t) ≤ 1,

∑
k,j θi,k,j(t) = 1, 0 ≤

ρi,k(t) ≤ 1,
∑

k ρi,k(t) = 1, 0 ≤ γi,k,j(t) ≤ 1, and∑
k,j γi,k,j(t) = 1. The update equation for each of

the parameters and the auxiliary variables can be
obtained in closed form through (19). The details
are omitted owing to space limitations.

4 Experiments

4.1 Experimental Conditions

To show the ability of the proposed method to
express a vocal tract spectrogram with natural for-
mant trajectories using a compact template-based
representation, we tested the proposed method on
the spectrogram obtained with the STRAIGHT
analysis.
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The STRAIGHT analysis was executed with 5
[ms] time shift and the sampling frequency of the
test signal was 16 [kHz]. In the experiment, we used
K = 10 templates in our model. wi,k describing the
i-th formant location in the k-th template was ini-
tialized by observing the formant locations from the
STRAIGHT spectrogram. In addition, it was ini-
tialized to include I = 5 Gaussians. The Hanning
function gj(t) was designed to half-overlap with each
covering approximately 100 [ms] time span. We used
speech samples from the ATR speech database. The
parameter update process is divided into a total of 5
parts: during the initial fitting, basis matrix wi,k is
unchanged while other parameters are updated for
70 iterations. This is done under the expectation
that with other parameters initialized to proper val-
ues, the subsequent update on wi,k, the key to this
experiment, will therefore be more efficient and less
error-prone. Then follows the part where formant
location set wi,k joins the update along with all oth-
ers for 120 iterations. In the last 3 parts, the num-
ber of Gaussians is further doubled (9, 17 and 33) to
make the fitting more accurate and each part runs
for 120 iterations.

4.2 Experimental Results

To confirm the model fitting accuracy, we plotted
the spectrograms of specific segments obtained with
the proposed method along with the estimated for-
mant trajectories µi(t). These graphs can be found
in Figs. 5 and 6. We can see from these graphs
that the estimated formant trajectory is not over-
smoothed and follows the formant transition well.
To verify the reliability of extracted formant loca-

tions, columns of matrix wi,k and ai,k were swapped
in a certain way to obtain a new speech signal. By
listening to this speech signal, the speech was con-
verted in an utterance with a completely different
sentence while it still sounded natural enough as if
it was spoken by the same speaker. Modified spec-
trogram is plotted to show the same segments as in
the previous step, as in Fig. 7.
As the final step of evaluation, the distance be-

tween first and second formant locations in wi,k is
expanded. By listening to the generated speech, we
concluded that speech element sounds more distin-
guished from each other. The modified spectrogram
can be seen in Fig. 8.

5 Conclusion

To obtain a template-based representation well
suited to express vocal tract spectrograms, this pa-
per proposed a vocal spectrogram model that allows
us to co-factorize the formant frequency/magnitude
matrices in the process of model fitting. We devel-
oped an update algorithm for the model parameters
based on an auxiliary function approach. We con-
firmed through experiments that the formant con-
tour factorization is able to represent speech formant
trajectory, which resulted in natural-sounding syn-
thetic speech.
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Fig. 5 STRAIGHT spectrogram Y (ω, t).
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Fig. 6 F (ω, t) fitted to Y (ω, t) along with µi(t).
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Fig. 7 Reconstructed F (ω, t) obtained by swapping
columns of W and A.
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Fig. 8 Reconstructed F (ω, t) with modified W .
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