StarGAN-VC2 samples

Introduction

Objective

Non-parallel multi-domain VC

- Our goal is to learn mappings among multiple domains (e.g., multiple speakers) without relying on parallel data.

StarGAN-VC2:

2019

Rethinking Conditional Methods for StarGAN-Based Voice Conversion

Takuhiro Kaneko Hirokazu Kameoka Kou Tanaka Nobukatsu Hojo NTT Communication Science Laboratories, NTT Corporation, Japan

Limitations of one-to-one VC

E.g., CycleGAN-VC [Kaneko+2017]

- Achieves one-to-one VC in a non-parallel setting.
- However, requires many generators to achieve multi-domain VC.

Possible solution

StarGAN-VC [Kameoka+2018]

- Extends CycleGAN-VC to a **conditional** setting by incorporating domain codes.
- Only requires a **single generator**.
- However, the quality is still low.

Proposed method: StarGAN-VC2

- Key ideas: We rethink conditional methods of StarGAN-VC in two aspects: training objectives and network architectures.

1. Rethinking conditional methods in training objectives

i. (Previous) Classification loss

- C is learned using real data.
- G tries to generate **classifiable** (i.e., far from the decision boundary) data.

ii. (Previous) Target conditional adversarial loss

0

0 0

 \circ \circ

0

Real

А

 $D(\hat{y}, c, c')$

Rea

А

Fake

 $B \rightarrow A$

2. Rethinking conditional methods in G networks

i. Motivation

- Accurate **modulation translation** is important to achieve high-quality VC (e.g., GV [Toda+2007] & MS [Takamichi+2014] postfilters).

ii. (Previous) Channel-wise

- Concatenated domain codes are **additively** used.
- They cannot be directly used for modulating data.

- D needs to simultaneously handle hard negative (e.g., $A \rightarrow A$) and easy **negative** (e.g., $B \rightarrow A$) samples.

iii. (Proposed) Source and target conditional adversarial loss

- This loss brings **all the converted** data close to the target data in both source-wise and target-wise manners.

Experiments

Experimental conditions

- i. Data
 - **Dataset:** Voice Conversion Challenge 2018
 - **Speakers:** 4 Professional US English speakers (VCC2SF1, VCC2SF2, VCC2SM1, and VCC2SM2)
 - **Sentences:** 81 sentences (about 5 min.)
 - Sampling Rate: 22.05 kHz
 - **Features:** 34 MCEPs, log F₀, APs (WORLD, 5 ms)

 $D \neg A$ Easy negative

iii. (Proposed) Modulation-based

- Domain codes are used to

select modulation parameters.

- They can be **directly used for** modulating data.

Conditional instance normalization [Dumoulin+2017]

Objective evaluation

Hard negative

Fake

 $A \rightarrow A$

- i. Evaluation metrics
 - Mel-cepstral distortion (MCD):

Global structural difference (smaller is better)

- Modulation spectra distance (MSD): Local structural difference (smaller is better)

ii. Comparison of training objectives

-	- -	
Objective	MCD [dB]	MSD [dB]

Subjective evaluation

StarGAN-VC [Kameoka+2018] vs. StarGAN-VC2

i. MOS for naturalness

- ii. Conversion process (Follow VCC 2018 baseline) - MCEP: StarGAN-VC2
 - log F₁: Linear transformation - **AP:** No conversion
 - \rightarrow WORLD vocoder [Morise+2016]

iii. Implementation and training

- Network architectures are based on CycleGAN-VC2 [Kaneko+2019] (G: 2-1-2D CNN, D: 2D CNN).
- In training, no extra data, modules, or time alignment procedure are used. - 4 × 3 = 12 different source-and-target mappings are learned in a **single generator**.

0	L J	L J
\mathcal{L}_{cls}	$7.73 \pm .07$	$1.96 \pm .03$
$\mathcal{L}_{t\text{-}adv}$	$7.21 \pm .16$	$2.87 \pm .51$
$\mathcal{L}_{t-adv} + \mathcal{L}_{cls} $ (StarGAN-VC)	$7.11 \pm .10$	$2.41\pm.13$
\mathcal{L}_{st-adv} (StarGAN-VC2)	$6.90\pm.07$	$1.89\pm.03$

- Improves both MCD and MSD.
- Note: We fix the conditional method in *G* networks as modulation-based.

iii. Comparison of G networks

G network	MCD [dB]	MSD [dB]
Channel-wise (StarGAN-VC)	$6.90 \pm .08$	$2.55\pm.20$
Modulation-based (StarGAN-VC2)	$6.90 \pm .07$	$1.89\pm.03$

- Improves MSD.

Note: We fix the conditional method in the training objectives as \mathcal{L}_{st-adv} .

StarGAN-VC StarGAN-VC2

- StarGAN-VC2 outperforms StarGAN-VC for every category.

ii. Preference score on speaker similarity

Copyright © 2019 Nippon Telegraph and Telephone Corporation