Objective

Non-parallel multi-domain VC
- Our goal is to learn mappings among multiple domains (e.g., multiple speakers) without relying on parallel data.

Proposed method: StarGAN-VC2
- **Key ideas:** We rethink conditional methods of StarGAN-VC in two aspects: training objectives and network architectures.

1. Rethinking conditional methods in training objectives
 - **i. (Previous) Classification loss**
 - C is learned using real data.
 - G tries to generate classifiable (i.e., far from the decision boundary) data.
 - **ii. (Previous) Target conditional adversarial loss**
 - D needs to simultaneously handle hard negative (e.g., $A \rightarrow A$) and easy negative (e.g., $B \rightarrow A$) samples.
 - **iii. (Proposed) Source and target conditional adversarial loss**
 - This loss brings all the converted data close to the target data in both source-wise and target-wise manners.

2. Rethinking conditional methods in G networks
 - **i. Motivation**
 - Accurate modulation translation is important to achieve high-quality VC (e.g., GV [Toda+2007] & MS [Takamichi+2014] postfilters).
 - **ii. (Previous) Channel-wise**
 - Concatenated domain codes are additively used.
 - They cannot be directly used for modulating data.
 - **iii. (Proposed) Modulation-based**
 - Domain codes are used to select modulation parameters.
 - They can be directly used for modulating data.

Experiments

Experimental conditions
- **i. Data**
 - **Dataset:** Voice Conversion Challenge 2018
 - **Speakers:** 4 Professional US English speakers (VCC2SF1, VCC2SF2, VCC2SM1, and VCC2SM2)
 - **Sentences:** 81 sentences (about 5 min.)
 - **Sampling Rate:** 22.05 kHz
 - **Features:** 34 MCEPs, log F_0, APs (WORLD, 5 ms)
- **ii. Conversion process**
 - **MCEP:** StarGAN-VC2
 - **log F_0:** Linear transformation
 - **AP:** No conversion
 - **WORLD vocoder** [Morise+2016]

Implementation and training
- **Network architectures are based on CycleGAN-VC2** [Kaneko+2019] (G: 2-1-2D CNN, D: 2D CNN).
- In training, no extra data, modules, or time alignment procedure are used.
- $4 \times 3 = 12$ different source-and-target mappings are learned in a single generator.

Subjective evaluation
- **i. MOS for naturalness**
 - **StarGAN-VC2 [Kameoka+2018] vs. StarGAN-VC**
 - StarGAN-VC2 outperforms StarGAN-VC for every category.
- **ii. Preference score on speaker similarity**
 - All
 - StarGAN-VC2: 76.2, StarGAN-VC: 32.4
 - Intra-gender
 - StarGAN-VC2: 80.2, StarGAN-VC: 18.2
 - Inter-gender
 - StarGAN-VC2: 74.2, StarGAN-VC: 34.5

Possible solution
- **StarGAN-VC** [Kameoka+2018]
 - Extends CycleGAN-VC to a conditional setting by incorporating domain codes.
 - Only requires a single generator.
 - However, the quality is still low.
 - **Challenge to address**

Copyright © 2019 Nippon Telegraph and Telephone Corporation