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ABSTRACT
This paper proposes a search method for detecting known
objects quickly in 3D environments with a pan-tilt-zoom
camera. In our previous work, we proposed an algorithm
named Active Search that greatly reduces the number of
calculations required to obtain a match between a reference
object and an input image using color histograms. Here, we
describe two improvements we have made to Active Search
for such practical applications as robots and surveillance.
First, we increased the robustness as regards the color his-
togram changes that result from different lighting conditions
and camera angles by using multiple reference images and
a pixel color vector quantization. Second, we reduced the
number of camera operations (pan, tilt and zoom) by using a
best-direction-first and upper bound pruning strategies. We
call this camera control Dynamic Active Search. Experi-
ments show an improvement in object detection accuracy
and a 78% reduction in detection time.

1. INTRODUCTION

This paper proposes an algorithm for detecting target ob-
jects through pan-tilt-zoom cameras quickly and correctly.
This algorithm is devised with practical applications such as
robots and surveillance systems in mind. Conventional sys-
tems [1, 2] that use subtraction or template matching meth-
ods to detect objects are unsatisfactory in term of flexibility
and performance. In 1996, we proposed a quick object de-
tection method based on the color of a target object: ”Ac-
tive Search with color histograms”[3]. However, the method
was insufficiently robust to handle the large changes in il-
lumination conditions and camera angles that are unavoid-
able in practical applications. Moreover, the method was
intended for use with static cameras without pan-tilt-zoom
functions. Therefore, here we focus on improving robust-
ness while maintaining quickness, and providing effective
pan-tilt-zoom control mechanisms. To improve robustness,
we introduce a pixel color vector quantization and multi-
ple reference images taken under various conditions. To
maintain quickness, we add an efficient algorithm to Active
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Fig. 1. Dynamic Active Search system

Search method to handle multiple reference histograms. In
addition, we use a best-direction-first control strategy to re-
duce the number of pan-tilt-zoom operations.

2. DYNAMIC ACTIVE SEARCH

Figure 1 outlines the Dynamic Active Search system. With
this system, we correct multiple reference images under var-
ious illumination conditions, poses, zoom rates, and camera
angles. We encode each pixel color by Pixel color Vector
Quantization (PVQ) and construct histograms. We also en-
code input images from the camera by PVQ and search for
the target object using the enhanced Active Search method
with multiple reference histograms. The system uses this
search result to direct the camera to the most probable area
and controls the zoom operation to detect the target.

2.1. Pixel Color Vector Quantization

With the original Active Search approach, the color his-
tograms are obtained by evenly sampling along each RGB
axis and counting the number of times each discrete color
occurs in the image. However, these histograms cannot
withstand large changes in illumination conditions. The
idea of using PVQ for histogram construction may be more
promising if we use many sample reference images under
various conditions. We construct a PVQ representation for
pixel color as follows.

1. Each pixel’s RGB color bit length is reduced from 8
bits to 6 bits by simply removing the two least signif-
icant bits.



2. Representative color vectors of all pixel colors in the
reference images are calculated by an iterative vector
splitting method used in the LBG algorithm [4]. The
number of representative color vector is set so that
the variation in the distances between each pixel color
and its nearest representive color vector falls below an
empirically determined value σ.

3. The nearest representative color vector is found for
each color. If the color distance is smaller than a
pre-defined threshold θ, then the color vector number
is assigned to the color as code, otherwise a special
code ”0” is assigned, meaning that the color is not
contained in the reference images.

2.2. Quick Image Search Algorithm

2.2.1. Active Search

To detect and locate a reference object in the input image,
Active Search [3] calculates the similarity between a refer-
ence histogram and a histogram for a focus region (cropped
sub area) of an input image by histogram intersection. The
intersection S (R, F ) of two histograms, R and F , is de-
fined as follows:

S (R, F ) =
N∑

i

min(Ri, F i)
|R| , where |R| =

N∑

i

Ri (1)

i is the code of the representative color and N is the num-
ber of codes. If the similarity value exceeds the predefined
threshold, we conclude that the object is located in that fo-
cus region. If the similarity value S(R, Fa) of the reference
histogram R and a focus region Fa is far below the thresh-
old, the upper bound of similarity value S(R, F b) of R and
another focus region Fb that overlaps Fa is estimated as fol-
lows:

|R| · S (R, Fb) < |R| · S (R, Fa) + |Fb − Fa| (2)

where |Fb − Fa| denotes the number of pixels in Fb but not
in Fa. Active Search calculates the pruning search space
by using Eq.2. That is, Active Search skips focus regions
whose calculated upper bound is lower than the threshold.

2.2.2. Active Search with Multiple Reference Histograms

A simple strategy for handling many reference histograms
is to apply Active Search to each reference histogram. This
paper proposes two, more efficient, algorithms : Active Search
with Union Histograms and Parallel Active Search.

a) Active Search with Union Histograms
Union Histograms of the reference histograms are defined
as:

U i = max
(
R0

i, R1
i, R2

i, · · · ) (3)
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Fig. 2. Parallel Active Search

Union Histograms have the following property.

S (U, F ) ≥ S (Rm, F ) (4)

Therefore, if Active Search is performed with these Union
Histograms, a negative result (i.e. the target object is not
found), guarantees the absence of the target object even if
Active Search is performed with every reference histogram.
In contrast, a positive result does not guarantee the presence
of the target object. Therefore, candidate regions detected
with Union Histograms are further checked with reference
histograms.

b) Parallel Active Search
If two reference histograms Rm and Rn are given and the
similarity value of Rm and Rn is not small, the similar-
ity value S(Rm, Fa) of Rm and a focus region Fa can be
used to estimate the upper bound of the similarity value
S(Rn, Fb) of Rn and the other focus region Fb that over-
laps Fa as follows:

|Rn| · S(Rn, Fb) ≤ |Rm| · S(Rm, Fa)
+ |Rn| · (1 − S(Rm, Rn))
+ |Fb − Fa| (5)

because |Rn| · S(Rn, Fa) is at most only the rest of Rn not
including Rm larger than |Rm| · S(Rm, Fa) shown in Fig.
2(b). Therefore, the pruning area for the other reference
histograms can be calculated during Active Search with a
reference histogram Rm.

Reference images vary in size. The order of pixel counts
of reference images ranges from 100 to 10, 000. The prun-
ing area size also depends on the pixel count of the reference
image. Usually, the bigger the pixel count is, the larger the
pruning area becomes. Therefore, the system selects ref-
erence histograms in descending order of the pixel count.
Recognition accuracy also depends on the pixel count. As
the pixel count increases, the accuracy improves. We call
histograms with a pixel count smaller than a threshold value
c (around 900 ) “Candidate Detection Histograms” and his-
tograms with a pixel count larger than c “Object Detection
Histograms”.
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Fig. 3. Difference of camera control strategy

2.3. Dynamic Camera Control

Let the camera’s maximum zoom depth be d, zoom steps
be i, and zoom rate be δ. Then the total search space in
an optimal pan-tilt-zoom position with no redundancy and
sufficient capture becomes:

total search space = S

d∑

i=0

δ2i (6)

S is the search space at the widest angle. The camera’s
zoom rate δ is very small and d becomes very large. We
select δ so that it is coarse enough to reduce the total search
space and fine enough to maintain the object detection ac-
curacy.

The total search space is 6 million pixels and more. To
search effectively through this large space, we adopt the fol-
lowing search strategies: (1) Wide angle first, (2) Best direc-
tion first. The detailed algorithm is as follows:
Initialization:

1. Set the pan and tilt parameters to the top left corner.

2. Set the zoom parameter to the widest angle.

3. Perform the procedure: Search.

Procedure: Search:

1. Obtain an image. Apply Active Search with multiple
reference histograms.

2. If one positive result is obtained by Object Detection
Histograms, namely the target object is found, then
finish.

3. If multiple positive results are obtained with Candi-
date Detection Histograms, sort the results by descend-
ing order of obtained focus region size and then simi-
larity. For each obtained focus region result, perform
a zoom operation and perform the procedure: Search.

4. If no match is found, select next pan-tilt position and
perform the procedure: Search.

5. If all regions are checked and the target object is not
found, then finish.

Fig. 4. Example reference images

Fig. 5. Room environment

3. EXPERIMENTS

We conducted experiments to detect objects in a room en-
vironment. The specifications of the computer and camera
we used are listed in Table 1. We select three objects for the
experiments. For each object, we prepare about 100 refer-
ence images (5 different lighting conditions, 3 poses, 3∼10
zoom steps). Example reference images for three objects
are shown in Fig. 4. Figure 5 shows the room environment.
Rectangles A, B, C, D, and E show the positions we used for
the reference images. Circles a, b, and c show the positions
we used for locating objects in our detection experiments.

3.1. Experiment 1: Search Accuracy

Object detection accuracy depends on both the pixel count
of the objects and the pixel color coding scheme (PVQ and
non-PVQ). Table 2 shows the experimental results. We used
15 images taken at the widest angle as test images. Here,
the accuracy is the average of the precision rate and the re-
call rate. By using a reference image whose pixel count is
greater than 900, the objects are perfectly detected with both
PVQ and non-PVQ. The object detection accuracy with PVQ
is more tolerant of a lower pixel count than that with non-
PVQ. This implies that the number of useless candidate-
directions detected with Candidate Detection Histograms
can be reduced with PVQ.

Table 1. Experimental Specification

Computer SGI O2

CPU R10000(250MHz)
Camera Sony EVI-D30
Resolution 320 × 240



3.2. Experiment 2: Search Time

We measured the CPU time needed to search an input image
for an object with multiple reference histograms (Table 3)
for the following configurations:

1. non-PVQ + Active Search
2. PVQ + Active Search

3. PVQ + Parallel Active Search

4. PVQ+ Active Search with Union Histograms
There are two reasons for PVQ being faster than the original
Active Search (non-PVQ) . First, PVQ reduces the number
of histogram bins and there are fewer histogram intersection
calculations. Second, PVQ is more discriminating than the
original color scheme. The codes for PVQ tend to increase
the similarity value within the reference histograms and the
introduction of “0” code reduces the similarity value of a
reference histogram and a focus region that does not contain
the target. Thus PVQ reduces the upper bound similarity
value of adjacent focus regions and increases the number of
pruning regions. Moreover, there is a greater increase in the
PVQ search speed for smaller reference images because the
similarity value of the reference histograms decreases as the
size of the reference images decreases and this decrease in
similarity value with non-PVQ is more severe than that with
PVQ.

In this experiment, the similarity values of the reference
histograms are rather small and so the performance pro-
vided by Parallel Active Search is not large. Active Search
with Union Histograms is very effective in reducing compu-
tation time, and the reduction in the search accuracy when
using Union Histograms is not large.

3.3. Experiment 3: Total Search Time

We measured the total time needed to search the room envi-
ronment for an object (Table 4) for the following configura-
tions:

1. Active Search + Simple Camera Control(SCC)

2. Parallel Active Search + Dynamic Camera Control(DCC)

3. Active Search with Union Histograms + DCC

The time required for one mechanical camera operation was
around 1.0 second. We performed about 100 camera oper-
ations with Simple Camera Control and half that number
with Dynamic Camera Control. The number of camera op-
erations with Union Histograms was nearly the same as that

Table 2. Accuracy(average of precision rate and recall rate)
of PVQ and non-PVQ

900 ∼ pixels 100 ∼ 900 pixels
non-PVQ 100% 57%

PVQ 100% 89%

with Parallel Active Search. Most of the search time with
Union Histograms was spent on camera operations. The de-
tection accuracy was 100% for all configurations.

4. CONCLUSION

In this paper, we proposed the Dynamic Active Search method,
which can search for objects quickly in 3D environments.
We improved the search efficiency by developing three ex-
tensions: Pixel color Vector Quantization, Active Search
with multiple reference histograms and Dynamic Camera
Control. We demonstrated our method for several objects
in a room environment. The average search time was a
fourth that with the original Active Search method and Sim-
ple Camera Control with no prediction. In the future, we
will expand the Dynamic Active Search method from single
pan-tilt-zoom camera search to multiple camera search.
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Table 3. Search time for an image

900 ∼ pixels 100 ∼ 900 pixels
non-PVQ 2.7s 9.1s

PVQ 1.7s 3.9s
Parallel Search 1.5s 3.5s

Union Search 0.33s 0.35s

Table 4. Search time in room environment

time
Active Search + SCC 44.6s

Parallel Active Search + DCC 20.5s
Union Histograms + DCC 9.6s


