Summary

- Socially curated contents reveal underlying contexts
- Develop a novel method for discovering image contexts

Motivations

- Image understanding only from image contents is too difficult
- High performance comparable with humans seems extremely difficult to achieve, especially when dealing with contexts that are often difficult to verbalize.

Social curation as corpora

- One of the most emerging social curation platforms in the world focused on images.
- “Social scrapbooks”: Image contents are manually collected, selected and maintained, so that users can easily and quickly find images they want.

Our key insights

Typical user behaviors
- Pin a web image on one’s own board
- “Repin”: Create a new link to an existing pin to one’s own board
- Repeat 1-2.
- Many images pinned on a single board.
- Re-organize boards, so that users can easily and quickly find images they want.

Key ideas

A pair of boards sharing lots of image contents often share specific context.

The problem to be solved

1. Finding clusters sharing lots of images with each other.
 (The main contribution of this paper)
2. Extracting topics and image features that correspond to every cluster.

Experiments and discussions

Dataset verification: Does a board cluster share a similar context?

- To validate our hypothesis (every board in a cluster share a similar context), and the utility as a corpus of context-aware image classification and retrieval.
- 200K images (150K for training), 10 classes determined by the board name.
 - Architecture, fashion, cupcakes, animals, chocolate, flowers, blue, sea, Christmas and green.
- Features for image classification
 - User info. (192 dim): If user_j pinned image_i → The j-th element=1, otherwise 0.
 - Board info. (963 dim): If image_i was pinned on board_j → The l-th element=1.
- Cluster info. (1570 dim): M-th element = # times image_i was pinned to a board contained in cluster m.

<table>
<thead>
<tr>
<th>Linear regression</th>
<th>kNN</th>
<th>Large regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>k = 1</td>
<td>87.60</td>
<td>85.46</td>
</tr>
<tr>
<td>k = 5</td>
<td>98.94</td>
<td>97.36</td>
</tr>
<tr>
<td>k = 10</td>
<td>97.36</td>
<td>97.13</td>
</tr>
</tbody>
</table>

- Cluster features marked performance comparable to board features
- Clusters discovered by our method appropriately captured image contexts.

Evaluating the effectiveness of our dictionary learning

- Cluster info is used as side information for dictionary learning.
- 12.5K images (5K for training, 5K for test, randomly selected), 10 classes.
- Image features = GIST [Oliva+ IJCV2001]
- Methods to be evaluated:
 - ORI (raw GIST), Graph Reg. (graph-regularized regression [Mahajan+ ACMMM110]), PCA, LFDA (compressed GIST with PCA/LFDA), Prop. (proposed method).

<table>
<thead>
<tr>
<th>m</th>
<th>ORI</th>
<th>Graph Reg.</th>
<th>PCA</th>
<th>LFDA</th>
<th>Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>960</td>
<td>960</td>
<td>900</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Linear reg.</td>
<td>39.7</td>
<td>39.4</td>
<td>33.6</td>
<td>38.7</td>
<td>42.5</td>
</tr>
<tr>
<td>NN</td>
<td>k=15</td>
<td>39.1</td>
<td>39.2</td>
<td>42.7</td>
<td>45.4</td>
</tr>
<tr>
<td>NN</td>
<td>k=20</td>
<td>39.2</td>
<td>36.1</td>
<td>42.8</td>
<td>45.6</td>
</tr>
<tr>
<td>NN</td>
<td>k=25</td>
<td>38.2</td>
<td>36.1</td>
<td>42.8</td>
<td>45.6</td>
</tr>
</tbody>
</table>

- Socially-generated side information can be used to improve the performance of image classification and retrieval.

* Corresponding Author (Mail: akisato@ieee.org, Twitter: @akisato)