Exploiting Socially-Generated Side Information in Dimensionality Reduction
in 2nd International Workshop on Socially-Aware Multimedia (IWSAM 2013)

Alejandro Marcos Alvarez*‡ Makoto Yamada†‡
Akisato Kimura‡

* intern from University of Liège
† currently with Yahoo Labs
‡ NTT Communication Science Laboratories

October 21, 2013
Motivation

Side information available

- text (labels, descriptions)
- geo (lat/long, locations)
- popularity (ratings, diffusions)
- users (owners, networks)
- etc.

already used to solve some problems.

How can we use side information for all applications?
Pinterest is now an emerging social network
Pinterest 2.0

Source: www.pinterest.com
Problem setting

- Original features: x
- Side information: v
- Class label: y

$$D = \{(x_i, v_i, y_i)\}_{i=1}^n$$

Linear dimensionality reduction

Find a transformation matrix T from D such that

$$z = T^\top x \quad \text{with} \quad \dim(z) \ll \dim(x)$$

Note: no need of side information for new images
Local Fisher Discriminant Analysis (LFDA)

- supervised method
- idea: minimize the within-class scatter S_w while maximizing the between-class scatter S_b
- T is obtained by eigendecomposition
Local Fisher Discriminant Analysis

\[
S_b = \frac{1}{2} \sum_{i,j=1}^{n} D_{i,j}^b (x_i - x_j) (x_i - x_j)^\top
\]

\[
S_w = \frac{1}{2} \sum_{i,j=1}^{n} D_{i,j}^w (x_i - x_j) (x_i - x_j)^\top
\]

where

\[
D_{i,j}^b = \begin{cases}
A_{i,j} \left(1/n - 1/n_c\right) & \text{if } y_i = y_j = c, \\
1/n & \text{if } y_i \neq y_j,
\end{cases}
\]

\[
D_{i,j}^w = \begin{cases}
A_{i,j}/n_c & \text{if } y_i = y_j = c, \\
0 & \text{if } y_i \neq y_j.
\end{cases}
\]
Affinity matrix A

Original approach

\[
A_{i,j} = \exp \left(-\frac{\|x_i - x_j\|^2}{\sigma_i \sigma_j} \right)
\]

where $\sigma_i = \|x_i - x_K\|$ where x_K is the K-th nearest neighbor of x_i.

Original approach

- uses only x and y
- if features x are very noisy, then A is noisy and A leads poor dimensionality reduction
Affinity matrix A

Proposed approach

$$A_{i,j} = \exp \left(-\frac{\|v_i - v_j\|^2}{2\sigma^2} \right)$$

Proposed approach
- very simple modification
- uses x, y and v
- adds new information
- can be seen a kind of regularization of LFDA
Side information

We propose three types of side information for Pinterest:

- users
- boards
- clusters of boards
Users’ information

\[U = \text{set of users} \]

\[v^\text{user}_i \in \{0, 1\}^{|U|} \]

where

\[v^\text{user}_i = \begin{bmatrix} 1 & 0 & \cdots & 1 & 0 & \cdots & 1 \end{bmatrix} \]

\[\rightarrow \text{user } j \text{ pinned image } i \]

Boards’ information

\[B = \text{set of boards} \]

\[v^\text{board}_i \in \{0, 1\}^{|B|} \]

where

\[v^\text{board}_i = \begin{bmatrix} 1 & 1 & \cdots & 1 & 0 & \cdots & 0 \end{bmatrix} \]

\[\rightarrow \text{image } i \text{ is pinned to board } j \]
Clusters of boards information

Preliminary step: board clustering

(Kimura et al. ‘Image Context Discovery from Socially Curated Contents’ in ACM MM 2013)

\[K = \text{set of clusters} \]

\[\mathbf{v}_{i}^{\text{cluster}} \in [0, 1]^{|K|} \]

such that

\[\mathbf{v}_{i}^{\text{cluster}}(k) = \frac{n_{i,k}}{n_{i}} \]

where

- \(n_{i,k} \) = the number of times image \(i \) is pinned to a board that is part of cluster \(k \)
- \(n_{i} \) = the number of times image \(i \) has been pinned
Supervised side-information-based dimensionality reduction

Results

Methods comparison

- 12,500 images downloaded from Pinterest
- compute GIST features and side info vectors for each image
- 1/2 for learning and 1/2 for testing

<table>
<thead>
<tr>
<th>m</th>
<th>GIST</th>
<th>PCA</th>
<th>LFDA</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>960</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Linear reg.</td>
<td>39.7</td>
<td>33.6</td>
<td>38.7</td>
<td>42.5</td>
</tr>
<tr>
<td>$k=15$</td>
<td>37.9</td>
<td>35.7</td>
<td>42.5</td>
<td>45.1</td>
</tr>
<tr>
<td>NN</td>
<td>$k=20$</td>
<td>38.1</td>
<td>36.2</td>
<td>42.7</td>
</tr>
<tr>
<td></td>
<td>$k=25$</td>
<td>38.2</td>
<td>36.4</td>
<td>42.8</td>
</tr>
</tbody>
</table>

Classification accuracy (%)
Conclusions:
- generic, simple and easy-to-implement approach
 - does not depend on the application
 - does not degrade applications’ performances
 - applicable to other dimensionality reduction methods
- no need to have side information for new images

Open questions:
- platform-dependent side information vectors
- evolution of the side information space
Acknowledgments

Makoto Yamada (Yahoo Labs)
Akisato Kimura (NTT CS Labs)
Louis Wehenkel (ULg)
and NTT Communication Science Laboratories
Local Fisher Discriminant Analysis

\[T^* = \arg \max_{T \in \mathbb{R}^{d \times m}} \text{tr} \left[\left(T^\top (S_w + \eta I_d) T \right)^{-1} T^\top S_b T \right] \]

(1)

where \(I_d \in \mathbb{R}^{d \times d} \) is the identity matrix and \(\eta > 0 \) is a regularization parameter.

\[T^* = (\varphi_1 | \varphi_2 | \cdots | \varphi_m) \]

where \(\{ \varphi_i \}_{i=1}^d \) represent the generalized eigenvectors associated with the generalized eigenvalues \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d \) of the following generalized eigenvalue problem:

\[S_b \varphi = \lambda (S_w + \eta I_d) \varphi \]

(2)
Appendix

Methods comparison

(a) Linear regression

(b) 25-Nearest neighbors
Side information comparison

(c) Linear regression

(d) 25-Nearest neighbors
2-D visualization

(a) PCA visualization

(b) LFDA visualization

(c) Proposed method visualization
Image retrieval

Original

PCA

LFDA

Proposed

Images’ source: www.pinterest.com
Unsupervised case: classification accuracy

<table>
<thead>
<tr>
<th></th>
<th>LPP Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>10</td>
</tr>
<tr>
<td>Linear reg.</td>
<td>33.46</td>
</tr>
<tr>
<td>$k=15$</td>
<td>30.65</td>
</tr>
<tr>
<td>$k=20$</td>
<td>30.95</td>
</tr>
<tr>
<td>$k=25$</td>
<td>31.27</td>
</tr>
</tbody>
</table>

![Graphs showing accuracy for different methods under varying numbers of dimensions.](image-url)