Information-theoretical analysis of index searching

Akisato Kimura1,2, Tomohiko Uyematsu2

1 Media Information Laboratory, NTT Communication Science Laboratories, NTT Corporation

2 Department of Communications and Integrated Systems, Graduate School of Science and Engineering, Tokyo Institute of Technology
Abstract

- Present an information-theoretical viewpoint for similarity-based retrieval with indexes
 - This type of retrieval is formulated as a certain kind of multi-terminal source coding problem
- Clarify the optimal retrieval performance and certain relationships between retrieval parameters

Remark. *We presented the same topic at SITA2005. However, we have since found several flaws in the models and results provided in the previous report.*
Contents

• Introduction
 ◦ Background
 ◦ Association with implementation
 ◦ Related work

• Problem formulation

• Main result
 ◦ Coding theorem
 ◦ Interpretation of the coding theorem

• Conclusion
Background

- Possibility to capture a huge number of music clips, images and movies easily.
 - Spread of broadband network and capturing devices
 - Large amounts of low-cost storage

- Media information retrieval must be developed that extracts desired information through the multimedia archives quickly and accurately.

- Research issues on media information retrieval
 - Huge amounts of information to be retrieved → search speed
 - Signal degradation caused by noise and distortion → robustness
 - Signal fluctuation caused by viewpoint changes and music arrangement → signal models
Index searching

- Commonly used as a core technique to accelerate retrieval
 - Ex. Hashing, tree structures (B-tree, R-tree [BK90])
 - Associate data items with indexes that represent the items concisely
 - First check indexes to eliminate irrelevant data items
Main contributions

- Similarity-based retrieval with indexes can be formulated as a certain kind of multi-terminal source coding problem.
- The achievable rate-distortion region implies
 - the optimal performance of index searching
 - relationships between index size and search time.
The first stage

Database items

n samples

Feature extraction

Indexing

Index searching

Query item

Results of index search (including false alarms)

1101000111

Features

Indexes associated with features

Detection flags

0 : not similar
1 : similar

length of n

Features Indexes associated with features

Results of index search (including false alarms)
Association with implementation (2/3)

Detection flags

\[z_i \quad \text{def.} \quad \psi(x_i, y) \quad \text{def.} \quad \left\{ \begin{array}{ll} 1 & x_i \in \mathcal{C}_\delta(y), \\ 0 & \text{Otherwise}, \end{array} \right. \quad \text{(actual)} \]

\[\hat{z}_{(j)i} \quad \text{def.} \quad \psi(\hat{x}_{(j)i}, y), \quad \forall i \in \mathcal{I}_n, j = 1, 2 \quad \text{(estimated)} \]

\[\Delta(x_i, \hat{x}_{(j)i}; y) \quad \text{def.} \quad h(z_i, \hat{z}_{(j)i}) \quad \text{(Hamming distance)} \]

\[\psi(x_1, y) = 1 \]

\[\psi(x_2, y) = 0 \]
Association with implementation (3/3)

The second stage

- Feature extraction
- Feature selection
- Feature matching
- Index searching

Database items

n samples

Selected features

Query item

Which indexes are selected?

Which features are selected?

Index searching

length of n

1001000000

Search results (exactly correct)

0 : not similar
1 : similar
Related work: analysis of retrieval performance

- **Geometrical approach**
 - A lot of studies for nearest neighbor search (e.g. Friedman et al. [FBF77], Berchtold et al. [BBK+97])
 - Item distributions are supposed to be uniform.
 - Make it possible to consider volumes as “probabilities”
 - Difficult to evaluate the performance for other types of distributions

- **Information-theoretical approach** (Tuncel et al. [TKR04])
 - Formulate approximate similarity search as a kind of multi-terminal source coding problem (Wyner-Ziv coding + successive refinement)
 - Clarify some relationships between search time, search threshold, and amount of storage, based on rate-distortion theory
Preliminaries

- $\mathcal{X}, \mathcal{Y}, \hat{\mathcal{X}}$: finite alphabets, \mathcal{B}: binary alphabet, \mathcal{R}: set with real values.
- $\mathcal{X}^* = \bigcup_{n \geq 0} \mathcal{X}^n$: a set of all sequences with finite length over \mathcal{X} (includes null string)
- $\mathcal{X} = \{X_i\}_{i=1}^\infty (X_i \in \mathcal{X})$: source to be encoded (i.i.d.)
- $Y \in \mathcal{Y}$: side information available only at decoder
- $\mathcal{X}(j) = \{\hat{X}_{(j)i}\}_{i=1}^\infty (\hat{X}_{(j)i} \in \hat{\mathcal{X}}) (j = 1, 2)$: outputs obtained from j-th decoder
- $\Delta: \mathcal{X} \times \hat{\mathcal{X}} \times \mathcal{Y} \rightarrow \mathcal{R}$: distortion function that depends on side information
- $\Delta^n: \mathcal{X}^n \times \hat{\mathcal{X}}^n \times \mathcal{Y} \rightarrow \mathcal{R}$: $\Delta^n(x, \hat{x}; y) = \frac{1}{n} \sum_{i=1}^n \Delta(x_i, \hat{x}_i; y)$
Definition 1. (Index Searching (IS) code)
A set \((\varphi_{(01)}^n, \varphi_{(02)}^n, \varphi_1^n, \varphi_2^n, \bar{\varphi}_1^n, \bar{\varphi}_2^n) \) of encoders and decoders is an IS code for the source \(X \) and the side information \(Y \) if and only if

\[
\begin{align*}
\varphi_1^n &: \mathcal{X}^n \rightarrow \mathcal{B}^*, \\
\varphi_{(01)}^n &: \mathcal{A}_n^{(1)} \times \mathcal{Y} \rightarrow \mathcal{B}^* , \\
\varphi_{(02)}^n &: \mathcal{A}_n^{(1)} \times \mathcal{Y} \rightarrow \mathcal{B}^* , \\
\varphi_2^n &: \mathcal{A}_n^{(01)} \times \mathcal{X}^n \rightarrow \mathcal{B}^* , \\
\bar{\varphi}_1^n &: \mathcal{A}_n^{(1)} \times \mathcal{Y} \rightarrow \hat{\mathcal{X}}^n, \\
\bar{\varphi}_2^n &: \mathcal{A}_n^{(02)} \times \mathcal{A}_n^{(2)} \times \mathcal{Y} \rightarrow \hat{\mathcal{X}}^n ,
\end{align*}
\]

and images of encoders and decoders are all prefix sets, where

\[
\begin{align*}
\mathcal{A}_n^{(1)} &= \varphi_1^n(\mathcal{X}^n), & \mathcal{A}_n^{(01)} &= \varphi_{(01)}^n(\mathcal{A}_n^{(1)}, \mathcal{Y}), \\
\mathcal{A}_n^{(02)} &= \varphi_{(02)}^n(\mathcal{A}_n^{(1)}, \mathcal{Y}), & \mathcal{A}_n^{(2)} &= \varphi_2^n(\mathcal{A}_n^{(01)}, \mathcal{X}^n).
\end{align*}
\]
Achievability

Definition 2. (IS-achievable rate quadruplet)
\((R_{01}, R_{02}, R_1, R_2)\) is an IS-achievable rate quadruplet of the source \(X\) and side information \(Y\) for a given distortion pair \((D_1, D_2)\) if and only if there exists a sequence of IS codes \(\{(\varphi_{(01)}^n, \varphi_{(02)}^n, \varphi_{(1)}^n, \varphi_{(2)}^n, \hat{\varphi}_{(1)}^n, \hat{\varphi}_{(2)}^n)\}_{n=1}^{\infty}\) for \(X\) and \(Y\) such that

\[
\limsup_{n \to \infty} \frac{1}{n} E \left[l(A_n^{(i)}) \right] \leq R_i, \quad (i = 01, 02, 1, 2)
\]

\[
\limsup_{n \to \infty} E \left[\Delta_n^n(X^n, \hat{X}_{n(i)}^n; Y) \right] \leq D_j, \quad (j = 1, 2)
\]

where

\[
A_n^{(1)} = \varphi_{(1)}^n(X^n), \quad A_n^{(01)} = \varphi_{(01)}^n(A_n^{(1)}, Y),
\]

\[
A_n^{(02)} = \varphi_{(02)}^n(A_n^{(1)}, Y), \quad A_n^{(2)} = \varphi_{(2)}^n(A_n^{(01)}, X^n).
\]
Achievable rate-distortion region

Definition 3. (IS-achievable rate region)

\[
R_{IS}(X, Y | D_1, D_2) = \{(R_{01}, R_{02}, R_1, R_2) : \\
(R_{01}, R_{02}, R_1, R_2) \text{ is an IS-achievable rate quadruplet of } (X, Y) \\
\text{for } (D_1, D_2) \}.
\]
Main Theorem (1/2)

Theorem 1.

\[\mathcal{R}_{IS}(X, Y | D_1, D_2) \subseteq \{ (R_{01}, R_{02}, R_1, R_2) : \text{ (outer bound)} \]
\[R_1 \geq I(X; UV), \quad R_{01} \geq 0, \quad R_{02} \geq I(X; V), \quad R_2 \geq I(X; W|V) \} \]

where random variables \(U \in \mathcal{U}, V \in \mathcal{V} \) and \(W \in \mathcal{W} \) are selected s.t.

- The alphabet sizes are bounded as
 \[|\mathcal{U}| \leq |\mathcal{X}| + 1, \quad |\mathcal{V}| \leq |\mathcal{U} \times \mathcal{X} \times \mathcal{Y}| + 4, \quad |\mathcal{W}| \leq |\mathcal{U} \times \mathcal{V} \times \mathcal{X}| + 1, \]

- The Markov chain \(U \rightarrow X \rightarrow Y \) is satisfied,
- There exist functions \(\phi_{(1)} \) and \(\phi_{(2)} \), which satisfy

\[D_1 \geq E \left[\Delta \left(X, \phi_{(1)}(U,Y); Y \right) \right], \]
\[D_2 \geq E \left[\Delta \left(X, \phi_{(2)}(W,V,Y); Y \right) \right]. \]
Theorem 1. (Contd.) An inner bound is obtained in the same functional forms, while the Markov chain is replaced as

\[UV \to X \to Y, \]

\[W \to VXY \to U. \]
Interpretation of the main theorem (1/2)

The first stage

- Outer bound: $U \rightarrow X \rightarrow Y$
- Inner bound: $UV \rightarrow X \rightarrow Y$
Interpretation of the main theorem (2/2)

The second stage

Which indexes are selected?
Which features are selected?
rate = 0

Index searching

Selected features

Search results (exactly correct)

0 : not similar
1 : similar

Selected features

n samples

Database items

Feature extraction

Feature selection

Feature matching

rate = 0

$V^n \approx \hat{Z}^n_{(1)}$

W^n

$\hat{Z}^n_{(2)}$

length of n

1001000000

SITA2006 in Hakodate 2006.11.29 – p. 18
Conclusions

- Presented an information-theoretical model of similarity-based retrieval with indexes
- Clarified the optimal performance of the retrieval and some relationships between retrieval parameters from an information-theoretical viewpoint

Future work

- Extend the results to other classes of information sources
- Evaluate existing indexing methods from an information-theoretic point of view
- Model and evaluate other types of retrieval
Thank you

References

Some materials will be available at http://www.brl.ntt.co.jp/people/akisato/