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Abstract In this paper, we propose a method for pose-
invariant facial expression recognition from monocu-

lar video sequences. The advantage of our method is

that, unlike existing methods, our method uses a sim-
ple model, called the variable-intensity template, for de-

scribing different facial expressions. This makes it pos-

sible to prepare a model for each person with very little
time and effort. Variable-intensity templates describe

how the intensities of multiple points, defined in the

vicinity of facial parts, vary with different facial ex-

pressions. By using this model in the framework of a
particle filter, our method is capable of estimating fa-

cial poses and expressions simultaneously. Experiments

demonstrate the effectiveness of our method. A recog-
nition rate of over 90% is achieved for all facial orien-

tations, horizontal, vertical, and in-plane, in the range
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of ±40 degrees, ±20 degrees, and ±40 degrees from the
frontal view, respectively.
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1 Introduction

Facial expression recognition is attracting a great deal

of attention because of its usefulness in many appli-

cations such as human-computer interaction and the

analysis of conversation structure (Otsuka et al., 2007).
Most existing methods for facial expression recognition

assume that the person in the video sequence does not

rotate the head strongly and that the image shows a
nearly frontal view of the face (e.g. Lanitis et al., 1997;

Huang and Huang, 1997; Tian et al., 2001; Fasel et al.,

2004; Chang et al., 2006; Bartlett et al., 2006; Kot-
sia and Pitas, 2007; Koelstra and Pantic, 2008). How-

ever, in situations such as multi-party conversations

(e.g. meetings), people will often turn their faces to look

at other participants. Hence, unless a stressful head-
mounted camera is used, e.g. Pantic and Rothkrantz

(2000a), we must simultaneously handle the variations

in head pose as well as facial expression changes.

The major approach to correctly recognizing facial

expressions in a face image containing head movements
is to prepare a three-dimensional facial shape model

of the user’s neutral expression (rigid model) and its

deformation model for other facial expressions (non-

rigid model). The shape model and the facial expres-
sion model are together referred to as the face model

in this paper. In this approach, facial pose variations

are described by globally translating and rotating the
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shape model in three-dimensional space, and facial ex-

pression changes are described by locally deforming the
shape model according to the facial expression model.

This is often called the geometry-based approach.

Existing methods require an accurate face model,

because image variations caused by facial expression
change are often smaller than those caused by facial

pose change. Accordingly, the use of inaccurate face

models degrades the accuracy of both the facial pose

and the expression estimates because those two com-
ponents cannot be differentiated reliably. One method

generates a face model for each user, a person-specific

model, by using stereo cameras (Gokturk et al., 2002).
Accordingly, this approach cannot be applied to monoc-

ular video sequences. Other methods utilize a general

face model which can be applied to arbitrary users (Zhu
and Ji, 2006; Dornaika and Davoine, 2008). However,

generating an accurate general deformable model is not

so easy in practice. It has been reported that general

models cannot cover the large interpersonal variations
of face shape and facial expression expected with suffi-

cient accuracy (Gross et al., 2005).

Another approach, the region-based approach, has

been reported to be relatively robust for small out-of-
plane head rotations. In this approach, a two-dimensional

(plane) (Black and Yacoob, 1997; Tong et al., 2007) or

three-dimensional rigid shape model, e.g. a cylinder in

Liao and Cohen (2006), is prepared. Facial expressions
are recognized using regional features such as optical

flow (Black and Yacoob, 1997; Liao and Cohen, 2006),

and Gabor-wavelet coefficients (Tong et al., 2007). They
first estimate the head pose, and then calculate regional

features for the aligned face. However, the use of rough

shape models such as plane or cylinder degrades the ac-
curacy of the facial expression estimates, because large

out-of-plane head rotations often cause image appear-

ance variations that are more significant than those

yielded by facial expression changes. In addition, the
optical flow estimation is easily violated by illumina-

tion changes and non-rigid motion. The failure of op-

tical flow estimation directly disturbs facial expression
recognition.

Motivated by these problems, we propose a novel

point intensity-based approach for facial expression recog-

nition. Specifically, we propose variable-intensity tem-

plates for the following reasons:

1. Monocular video capture systems are supported.
2. A face model for each person can be easily prepared.

3. Facial expressions can be estimated even with a

large change in facial pose.

Our idea is to describe the change in facial expression

not as the deformation of a shape model or as optical

flow in facial part regions but as just a change in the in-

tensities of multiple points fixed on a rigid shape model.
The variable-intensity template makes it unnecessary to

estimate non-rigid motion caused by facial expressions.

The variable-intensity template consists of three com-

ponents: a rigid shape model, a set of interest points,
and an intensity distribution model. As the shape model,

we use an average face shape generated from the shapes

of many people. The interest points are sparsely defined
away from the edges of facial parts such as eye corners,

in a frontal and neutral expression face image. The in-

tensity distribution model is the facial expression model
that describes how interest point intensity varies for dif-

ferent facial expressions. The set of interest points and

the intensity distribution model are person-specific.

The mechanism and effect of the use of the variable-
intensity template are as follows. The intensities of the

interest points vary significantly due to the movements

of the facial parts created when showing facial expres-

sions (see Fig.1). Focusing on this characteristic, we rec-
ognize facial expressions by matching the model inten-

sities prepared in advance against the observed intensi-

ties. We want a system that is robust against head pose
variations even if the shape model used produces some

approximation error. To achieve this, we must handle

the problem that the interest points will be shifted from
their actual positions due to the shape model error as

the out-of-plane head rotation angles increase. Hence,

we site the interest points away from the edges of facial

parts to keep the change in intensity small when the
face is rotated (see Fig.1).

Our contribution1 is that we propose a facial expres-

sion recognition method for varying facial poses based

on the key idea that facial expressions can be correctly
recognized by knowing how the interest point inten-

sities vary with the facial expressions. The main ad-

vantage of our method is that a face model for each
person is created simply by capturing frontal face im-

ages of the person making the target facial expressions.

Thus it is more efficient that existing methods that
need measurement instruments (e.g. Gokturk et al.,

2002), time-consuming manual intervention processes

(e.g. Dornaika and Davoine, 2008), large amounts of

training data (e.g. Tong et al., 2007) and so on. Fur-
thermore, we implement a particle filter that utilizes

1 A part of this work appeared in Asian Conference on Com-
puter Vision (ACCV) (Kumano et al., 2007). The present work
extends our previous work in several important aspects. First,
to improve the performance, the face model is changed from the
cylinder previously used to an average face shape model. Second,
an intensity adjustment is applied to handle changes in intensity
of the face caused by such as illumination variations and vertical
head rotations.
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Fig. 1 Our method absorbs errors in shape models and recognizes facial expressions by treating the changes in intensity of multiple

points defined around facial parts.

the variable-intensity template as a face model, to si-
multaneously estimate facial poses and expressions.

The remainder of this paper is organized as follows.

First, a brief overview of related work is presented in
Section 2. Section 3 describes our proposed method.

Then, in Section 4, experimental results are given. Fi-

nally, a summary and future work are given in Section
5.

2 Related work

While most existing facial expression recognition sys-
tems assume that the person in the video sequence does

not rotate the head significantly and that the image

shows a nearly frontal view of the face (e.g. Lanitis

et al., 1997; Huang and Huang, 1997; Tian et al., 2001;
Chang et al., 2006; Bartlett et al., 2006; Fasel et al.,

2004; Kotsia and Pitas, 2007), some methods consider

head pose variations. Facial pose and expression vary
independently, and, image variations caused by facial

expression change are often smaller than those caused

by head movement.

Hence, the precise separation of these two compo-

nents is needed to achieve correct recognition of facial

expressions. Unfortunately, the highly non-linear effect

on face appearance in the image due to large out-of-
plane head rotations is not easy to handle. In addition,

only a few video databases containing non-frontal faces

have been published, e.g. Face Video Database2, so it
is difficult to compare the recognition ability of exist-

ing methods quantitatively. Given these issues, pose-

invariant facial expression recognition can be said to be
an underdeveloped research area.

In this section, we briefly overview the facial ex-

pression recognition methods that allow some out-of-
plane head rotations with regard to their face shape

models. Excellent reviews of a number of recent stud-

ies assuming near-frontal faces can be found in Pantic

2 Face Video Database of the Max Planck Institute for Biologi-
cal Cybernetics in Tuebingen: http://vdb.kyb.tuebingen.mpg.de/.

and Rothkrantz (2000b); Fasel and Luettin (2003); Tian
et al. (2005); Pantic and Bartlett (2007).

In what follows, we divide the existing methods into

the following five groups with regards to the shape
model used: (1) face shapes directly measured, (2) face

shapes recovered from images, (3) general face shapes,

(4) parametric shapes, and (5) shape-free approach.

These shape models, except for group (2) and (5), are
detailed below in descending order of their approxima-

tion accuracy. Group (1-4) are divided into two classes

by the following three kinds of classifications: measured
models (1) versus non-measured models (2-4), person-

specific models (1,2) versus person-independent models

(3,4), and deformable models (1-3) versus rigid models
(4).

(1) Face shapes directly measured

The most conclusive way to make the estimation ro-
bust against head rotations is to directly measure the

actual three-dimensional shape of each user with an in-

strument other than monocular camera. Gokturk et al.
(2002) use a stereo cameras to accurately measure the

three-dimensional positions of 19 facial feature points

defined on the user’s face and their deformations due
to change in facial expression. In the test stage, they

classify facial expressions using deformation parame-

ters estimated by using an optical-flow-like technique.

Their experimental results suggest that their method
can recognize facial expressions in a variety of head

poses. In the field of head tracking, there is a similar ap-

proach to handle facial expression variations, e.g. Oka
and Sato (2005). However, these methods cannot be

applied to monocular video sequences, because they re-

quire stereo cameras to measure the three-dimensional
positions of feature points in the initial frame of test

video sequences. Dispensing with images, the systems

of Wang et al. (2006); Tang and Huang (2008) correctly

recognize facial expressions regardless of head pose from
face range data acquired by a three-dimensional digi-

tizer.
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(2) Face shapes recovered from images

Some methods try to recover the actual three-dimensional
shape of the user from a monocular video sequence by

using a structure-from-motion technique. Xiao et al.

(2004) propose 2D+3D Active Appearance Models (AAM)
where first the positions of the set of feature points in

the video sequence are tracked by using a common two-

dimensional AAM and then the three-dimensional face
shape is recovered by using a non-rigid structure-from-

motion technique. Lucey et al. (2006) apply 2D+3D

AAM to recognize facial expressions. However, in their

experiments, the recovered three-dimensional shapes were
inaccurate which rather degraded the recognition rates.

(3) General face shapes
Some methods utilize models that can be applied to

arbitrary users, i.e. person-independent models. Cohen

et al. (2003) utilize the Piecewise Bezier Volume Defor-
mation (PBVD) tracker which tracks feature points de-

fined on a generic three-dimensional wireframe model

of the face. They classify facial expressions using its

motion parameters as the temporal cues. Dornaika and
Davoine (2008) describe a system that uses a existing

deformable face mesh model; its deformation parame-

ters are related to action units. They estimate facial
expressions in the framework of a particle filter (Is-

ard and Blake, 1998), after estimating the head pose

by a gradient-based method. However, generating an
accurate general deformable model is not so easy in

practice. Gross et al. (2005) suggest that such person-

independent models cannot cover the large interper-

sonal variations in face shape and facial expression ex-
pected with sufficient accuracy.

(4) Parametric shapes
Some methods utilize simple rigid shapes rather than

complicated deformable shapes. Black and Yacoob (1997),

Tong et al. (2007), and Liao and Cohen (2006) approxi-
mate the human face as plane (the first two) and cylin-

der (the last), respectively. As the feature, Black and

Yacoob (1997) and Liao and Cohen (2006) utilize the

optical flow in the face region, while Tong et al. (2007)
use Gabor wavelet coefficients. However, using the sim-

ple parametric shape causes large error in the alignment

of the face. Hence, facial expressions at large head rota-
tion angles tend to be misrecognized in the absence of a

mechanism for handling the face misalignment. Tong et

al. introduced Dynamic Bayesian Network (DBN) infer-
ence, where the relationships between action units are

modeled. Their experiments suggest that this frame-

work can compensate some misclassification of action

units. However, it is reasonable to expect that it can-
not handle heavy face misalignments caused by large

out-of-plane head rotations. Furthermore, note that op-

tical flow estimation is easily corrupted by illumination
changes and non-rigid motion.

(5) Shape-free approach
Hu and his colleagues developed a facial expression rec-

ognizer that does not utilize any face shape model (Hu

et al., 2008). By utilizing Support Vector Machines (SVMs),
they discriminated horizontal head orientations (dis-

cretized at 15 degree or larger angle interval) and facial

expressions sequentially or simultaneously. Although their

system can handle faces in the range of frontal- to profile-
view, the discretization error for head pose in real situ-

ations, where the head pose is continuous, is expected

to degrade the facial expression recognition. Note that
preparing a large number of classifiers (each of which

covers a small angle range) is undesirable in terms of

processing time and memory resources. Furthermore,
they assume that the face regions in input data are

precisely extracted. This, however, remains difficult for

current computer vision technologies.

Overall, to the best of our knowledge, there is no work

that matches all of our goals:

– Monocular video capture systems are supported.
The approach that directly measures face shapes (1)

does not have this advantage.

– A face model for each person can be easily prepared.

The general model-based approach (3) and shape-
free approach (5) fail to achieve this advantage be-

cause of model complexity.

– Facial expressions can be estimated even with a
large change in facial pose.

The recovered face shape model-based approach (2)

and the parametric model-based approach (4) have
not achieved this end.

The method proposed herein is a novel point intensity-

based approach that can realize all of the above goals.

We describe a change in facial expression not as the de-
formation of the shape model or as optical flow in facial

part regions, but just as a change in the intensities of

local face regions. In addition, none of the existing pa-
pers, other than Wang et al. (2006); Hu et al. (2008),

describe how the recognition rate of facial expressions

varies with out-of-plane head rotation angle. Hence,

pose-invariability of their methods cannot be quantified
while the problem of the difference in test data remains.

In this paper, we also describe experiments that assess

the impact of head pose on the recognition rate.
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3 Proposed method

Our method consists of two stages (see Fig.2). First, we

prepare a variable-intensity template for each person
from just one frontal face image for each facial expres-

sion (referred to as the training images in this paper).

Second, we estimate facial pose and expression simul-
taneously within the framework of a particle filter.

3.1 Variable-intensity template

The variable-intensity template M consists of the fol-

lowing three components:

M = {S,P, I} (1)

where S, P, and I denote a rigid face shape model, a set

of interest points, and an intensity distribution model,

respectively. The intensity distribution model describes
the intensity distribution of each interest point for dif-

ferent facial expressions.

The variable-intensity template is generated from a
set of training images and the rigid face shape model.

The training image set consists of one face image for

each facial expression, {ge=1, . . . , ge=Ne
}, as shown in

Fig.2, where ge denotes the image labeled with facial

expression e(∈ {1, · · · , Ne}), and Ne is the number of

target expressions. In particular, the training image for
neutral expression is denoted by gNEU. The face in each

image g is frontal, and virtually fixed. The way to gen-

erate such training images is described in Section 3.3.

As the face shape model S, we use the average face

shape model3 shown in Fig.2 in this paper. The ap-

proach used to fit it to each user is described in Section
3.4.

3.1.1 Set of interest points P

The multiple interest points are sparsely defined away

from the edges of facial parts such as eye corners in the
training image in neutral expression gNEU, as shown in

the lower part of Fig.3. All interest points are fixed on

the rigid shape model S. The set of interest points P is
described as

P =
{
p1, · · · ,pNp

}
(2)

where pi denotes the image coordinates of the i-th in-

terest point in the training image gNEU, andNp denotes
the number of interest points. The set of interest points

P is different for each subject.

3 Average head dummy of Japanese young males contains over
100,000 polygons without texture. It is published by Digital Hu-
man Research Center, Advanced Industrial Science and Technol-
ogy, http://www.dh.aist.go.jp/research/centered/facedummy/.
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Fig. 3 Upper: The method used to extract interest points P.
Lower: Example of a set of paired interest points P, shown as
128 green dots. The large rectangles represent the boundaries of

facial parts, detected by the method described in Section 3.3. The

right side shows the expanded right eyebrow and eye regions.

An interest point constitutes a pair of points (herein
called paired interest points or paired points) (Matsub-

ara and Shakunaga, 2005) that straddle and are cen-

tered on the edge, to detect the bidirectional motions
of the facial parts. The paired points are selected in

the four facial part regions (eyebrows, eyes, nose, and

mouth) in the training image, gNEU. These facial part
regions are detected by the method described in Sec-

tion 3.3. Examples of these pairs are shown in the lower

part of Fig.3: The total number of interest points for

each subject is set to be 128 (eyebrows: 20 × 2, eyes:
12× 2, nose: 24, and mouth: 40). This number was de-

cided after conducting preliminary evaluations of the

performance metrics of accuracy and processing speed.

The paired points are extracted in each facial part

as follows (see also the upper part of Fig.3).
(1) Edges are detected in each of the four facial parts

as zero-cross boundaries of the Laplacian-Gaussian fil-

tered image.

(2) All paired point candidates that straddle and are
centered on the edge are extracted. These candidates

are, then, grouped into eight according to their direc-

tion of intensity gradient (up, down, left, right, or one
of four oblique directions). The distance between the

points in each pair was empirically set to be 1/60 and

1/45 of the face width for eye and other regions, respec-
tively. The short distance set in eye regions is based on

the small movements of eyes.

(3) The pairs are selected from the candidates one by

one in ascending order of the interpair difference in in-
tensity. The current target candidate is selected, if the

center of the target candidate is separated from all of

the centers of pre-selected pairs by at least a threshold
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Fig. 4 Intensity distribution model I: The intensity distribu-
tions of interest points, described as normal distributions, indi-
cate the change in facial expressions. The colors in the right part
correspond to the interest points in the left part.

distance. After one candidate is selected in the current
target group or no candidate can be selected, the next

target group is selected. The initial group is the upmost

group, and the initial threshold distance is set to one-

fifth of the width of the target facial part region. They
were empirically decided.

(4) The selection is terminated, as soon as the number

of pairs reaches the limit. If the total number of selected
pairs does not reach the limit, the current threshold of

the interpair distance is decreased and the selection pro-

cess is reentered at (3).
Note that the resulting locations of the interest points

are different for subjects due to the differences in posi-

tions of the edges.

3.1.2 Intensity distribution model I

The intensity distribution model describes how the in-

terest point intensity varies for different facial expres-
sions. As shown in Fig.4, the interest point intensity

changes strongly due to the shift of its associated fa-

cial part. Focusing on this property, we recognize facial
expressions from the changes in observed interest point

intensities.

The observed intensity of each interest point is var-
ied by small position shifts of the interest point. This is

caused by error in the shape model as well as the errors

in the intensity adjustment, described in Section 3.2.2.

Such variation is represented as a normal distribution

in our method. The intensity distribution model I is
described as:

I =
{N1, · · · ,NNp

}
, Ni = N (μi(e), σi(e)) , (3)

σi(e) = kμi(e) (4)

whereN (μ, σ) denotes a normal distribution with mean

μ and standard deviation σ, and μi(e) and σi(e) de-

note the mean and standard deviation of the intensity
of point i for expression e, respectively. We set the in-

tensity mean μi(e) to be the value recorded from the

training image labeled with expression e, ge, at image
coordinate pi. Furthermore, we assume that standard

deviation σi is proportional to mean μi, and set the

proportionality factor, k, to be 0.3.

3.2 Simultaneous estimation of facial pose and

expression by using a particle filter

Our method simultaneously estimates the facial pose
and expression by calculating their likelihood given the

observed intensity of interest points with the intensity

distribution model. The joint distribution of facial pose
and expression at time t given all face images up to that

time (z1:t) is recursively represented as follows:

p(ht, et|z1:t) = αp(zt|ht, et)

∫
p(ht|ht−1)∑

et−1

P (et|et−1)p(ht−1, et−1|z1:t−1)dht−1 (5)

where facial pose state ht and expression state et follow

first order Markov processes (see Fig.5); ht and et are

assumed to be conditionally dependent given image zt;
Bayes’ rule and conditional dependence are used along

with marginalization (e.g. Russell and Norvig, 2003);

α = 1/P (zt) is a normalization constant.

The facial pose state ht consists of the following
six continuous variables: the coordinate of the center

of the template on the image plane, three-dimensional

rotation angles (yaw, pitch, and roll), and scale. For
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Fig. 5 Dynamic Bayesian Network for head poses, facial expres-
sions, and face images.

the head motion model, p(ht|ht−1), we utilize a ran-
dom walk model where the components of head pose

state are considered to be independent each other. The

system noise for each component is created by a zero-
mean Gaussian process. The variances of the system

noises were empirically decided.

With regards to facial expression, we set P (et|et−1)

to be equal for all expression combinations in this pa-

per. Any expression transition matrix can be utilized
in our framework, but it is difficult to obtain the ac-

tual transition. Accordingly, in this paper, we adopt the

simple distribution model, where no prior knowledge of
facial expression transitions is assumed.

Equation (5), unfortunately, cannot be calculated
exactly, because parameters of facial pose ht are con-

tinuous, and their distributions are complex due to oc-

clusion, etc. Hence, we use a particle filter (Isard and
Blake, 1998), which calculates Equation (5) by approx-

imating the posterior density as a set of weighted sam-

ples called particles. Each particle expresses a state and

its weight. In our method, the state and weight of the
l-th particle are expressed as [h

(l)
t , e

(l)
t ] and ω

(l)
t , where

ω
(l)
t is proportional to p(zt|h(l)

t , e
(l)
t ) calculated using

Equation (6) and
∑

l ω
(l)
t = 1 is satisfied.

3.2.1 Likelihood of facial poses and expressions

The likelihood of facial pose ht and expression et for

face image zt is expressed as p(zt|ht, et). Assuming that

the intensities of the interest points are independent, we

can transform likelihood p(zt|ht, et) as follows:

p(zt|ht, et) =
∏
i∈P′

p(z̃i,t|ht, et) (6)

where z̃i,t denotes the illumination-adjusted intensity

(see Section 3.2.2) of interest point i at time t, and P ′

denotes the set of non-occluded interest points. Here,
we consider that the interest point is not occluded if

the surface normal of its corresponding point on the

face shape model is pointing toward the camera.

We define the likelihood of facial pose ht and ex-

pression et for the illumination-adjusted intensity z̃i,t,

)(xρ

x0 00

)(xw )(exp )(x−ρ

c
-ce

Fig. 6 Shape of robust function ρ(x), weight function w(x) =
(dρ(x)/dx)/x, and exp(−ρ(x)), similar to the likelihood function.

p(z̃i,t|ht, et), by adopting a robust estimation as:

p(z̃i,t|ht, et) =
1√

2πσi(et)
exp

[
−1

2
ρ (di)

]
, (7)

di =
z̃i,t − μi(et)

σi(et)
(8)

where function ρ(·) denotes a robust function. In this

paper, we use the Geman McClure function (Geman

and McClure, 1987) with scaling factor c(= 9) which

regulates an infinite input (see Fig.6):

ρ(x) = c · x2

1 + x2
. (9)

This robust function ρ(·) makes the estimation more

robust against such noise as imaging noise, intensity
adjustment error, and large position shifts due to shape

model error.

3.2.2 Intensity adjustment

We should adjust the intensity of interest points ob-

served in the input image to make the estimation robust
against changes in intensity of face itself. Such changes

in intensity caused by changes in illumination as well

as head movements, especially up-down head rotations,
which changes the orientation of the light source to the

face.

We obtain the illumination-adjusted intensity z̃i,t
as:

z̃i,t = γb,tzi,t (10)

where zi,t denotes the intensity of interest point i, and

γb,t represents the intensity adjustment factor for fa-

cial block b at time t. That is, we divide the face into
four blocks, {left eyebrow and eye, right eyebrow and

eye, left parts of nose and mouth, and right parts of

nose and mouth}, and assume that the rate of change
in interest point intensity is uniform in each block. Al-

though this assumption is not strictly valid, the small

error present in intensity adjustment estimation does

not severely disturb facial expression recognition. The
reason is that the interest points defined in the vicinity

of facial parts yield significant differences in intensity

between facial expressions.
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Intensity zi,t is obtained as follows. The image co-

ordinate of the i-th interest point under head pose ht is
obtained via three processes: (1) orthogonal projection

from the training image plane onto the shape model S,
(2) translation and rotation of S according to pose ht,
and (3) projection of the interest point i on the shape

model S onto the target image plane.

We define the intensity adjustment factor γb,t as the

maximum likelihood estimator (MLE) of p(γbzi,t|ht, et).

This estimation of γb,t can be simplified to the following
equation by considering the log likelihood:

γ̂t,b = arg max
γb

∏
i∈P′

b

p( ˜zi,t|γb,ht, et) (11)

= arg min
γb

∑
i∈P′

b

ρ

(
γbzi,t − μi(et)

σi(et)

)
(12)

where P ′
b denotes the set of non-occluded interest points

in facial block b. It is noted that this robust estima-
tion problem can be effectively solved by using an itera-

tive method such as iteratively reweighted least squares

(Beaton and Tukey, 1974). The estimation of the inten-

sity adjustment factor γ̂b,t by the iteratively reweighted
least squares technique proceeds as follows:

1. InitializeNb×Nb weight matrixW = diag [1, · · · , 1]T,

where Nb denotes the number of elements in set P ′
b.

2. Estimate current intensity adjustment factor γ(m)

using the previous weight matrix W (m−1):

γ(m) = (zT
b W

(m−1)zb)
−1zT

b W
(m−1)µb (13)

where m denotes the iteration step number, and zb

and µb denote Nb × 1 vectors of observed intensity

and mean of intensity distribution model divided

by standard deviation, zb = [· · · , zi/σi, · · · ]T and

µb = [· · · , μi/σi, · · · ]T , i ∈ P ′
b.

3. Update weight matrix W :

W
(m)
ii = w

(
γ(m)zi − μi

σi

)
(14)

whereWii denotes the i-th diagonal element of weight

matrix W , and w(·) denotes the weight function re-
lated to the robust function ρ(·) as w(x) = (dρ(x)

/dx)/x (see Fig.6).

4. Steps 2 and 3 are repeated until convergence.

3.2.3 Estimators of facial pose and expression

Estimators of facial pose and expression at time t, ĥt

and êt, are calculated as:

ĥt =
∑
l

ω
(l)
t h

(l)
t , (15)

êt = arg max
e

∑
l

ω
(l)
t δe(e

(l)
t ) (16)

where the recognized facial expression êt is defined to be

the expression that maximizes the marginal probability
p(et|z1:t). The function δe(e

′) is the indication function

such that δe(e
′) = 1 if e = e′, and δe(e

′) = 0 otherwise.

3.3 Generating training images and detecting facial
parts

Generating training images

We prepare training images, g, where the iris centers
are laid on a horizontal line. Such training images are

generated from source face images (referred to as train-

ing source images) that contain a human face in one
of the target facial expressions. We assume that the

face in the training source images is stationary between

neutral expression and non-neutral expressions for the
same subject. The position and size of the faces, how-

ever, may be different for each person. The training

images are the training source images that are rotated

in-plane until iris centers fall on a horizontal line. The
iris centers are detected in the eye regions by utilizing

Fast Radial Symmetry (Loy and Zelinsky, 2003; Zhang

et al., 2006). This rotation is calculated with each train-
ing source image only for neutral expression. The non-

neutral expression images are rotated by the same ro-

tation matrix for the neutral expression image of the
same person.

Detection of face and facial parts

Before selecting the interest points (described in Sec-
tion 3.1.1), the face and the four facial parts (eyebrows,

eyes, nose and mouth) are detected in the neutral train-

ing image gNEU. The face region is roughly detected by
using a cascaded AdaBoost detector based on Haar-like

features (Viola and Jones, 2001). The four facial parts

are detected as rectangular boundaries in the face re-
gion, as shown in Fig.3.

Eye and mouth regions are detected by using cas-

caded AdaBoost detectors (Castrillon et al., 2007), re-

spectively. These detectors often return multiple can-
didates and we select the most likely candidate. We

empirically defined the likelihoods with rough previ-

ous knowledge about their positions and sizes: L(y) =∏
k N (yk;μk, σk), where L(y) is the likelihood of the

feature vector of target candidate y(= [X,Y,W,H]T).

Vector [X,Y ]T denotes the position of the center of
the candidate region, and W and H are its width and

height, respectively. Variables μk and σk describe the

empirically defined mean and standard deviation of the

k-th component of y, respectively.
Nose region is given by the position of nostrils ex-

tracted as the valley in the horizontal and vertical in-

tensity profiles between eye and mouth regions. Eye-
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Fig. 7 Example of the shape model fitted to a person.

brow regions are simply set as the regions that contact

(above) the eye regions with the same size.

3.4 Shape model fitting

We fitted the average face shape to each user as fol-
lows: (1) fit the center of the shape model to the center

of face region in the training image in neutral expres-

sion, gNEU, detected by the method of Viola and Jones
(2001), (2) stretch the shape model in the horizontal

and vertical directions to match both face width and

height; stretching in the depth direction used the scal-
ing factor given as the square root of the product of

vertical and horizontal scaling factors. An example of

the fitting results is given in Fig.7.

4 Experimental Results

To evaluate the estimation performance of the proposed

method, we performed three experiments: The objec-

tive of the first test was to evaluate the accuracy of
our system in recognizing facial expressions when the

face does not face the camera. The second test evaluates

the performance of our system with person-independent
strategy. The third test evaluates the performance of

the system in head pose tracking.

At the same time, to evaluate the effectiveness of

our interest points (paired points described in Section

3.1.1), we prepared two other kinds of variable-intensity

templates: those with randomly allocated points and
those with points defined on the edges (these points

are hereinafter referred to as random points and edge

points, respectively). These points are also defined in
each of the four facial part regions as shown in Fig.8.

In the following experiments, the recognition rates
were calculated as the ratio between the number of

frames wherein the estimated expression matched the

ground truth to the total number of target frames.

In this paper, we ran our system offline to evaluate
the recognition rates of facial expression. The number

of particles was set to 1,500, and the processing time

was about 80 ms/frame on a Pentium D processor at

Fig. 8 Example of two kinds of set of interest points: randomly

allocated (left) and defined on edges (right). These points are

used for the comparison with our interest points shown in Fig.3.

3.73GHz with 3.0GB RAM. Currently, the identity of
a person is given a priori.

4.1 Performance evaluation for Non-frontal-view faces

Unless the true face shape model is used, the interest
points are misaligned due to error in the shape model.

Such shift increases as the head is more rotated in out-

of-plane. Accordingly, it is important to evaluate the
robustness of the system against head rotation. Unfor-

tunately, to the best of our knowledge, there is no fa-

cial expression database that contains video sequences
where the face moves together with various changes

in facial expression. Hence, we generated such video

datasets and used them to evaluate our system.

4.1.1 Our original facial expression datasets

Our datasets contain the following two kinds of video
sequences: fixed-pose dataset and free-pose dataset. Both

datasets contain facial expression categories of neutral,

angry, sad, surprise and happy. Both sets include train-
ing images and test video sequences for each subject.

The training images were captured immediately prior

to the capture of the test video sequences. That is, each

couple of training images and test sequences was cap-
tured in the same situation on the same day. These

video sequences were captured by the same IEEE 1394

XGA (1024× 768 pixel) color camera at 15 fps. In this
paper, we utilized these video sequences after convert-

ing them into grayscale 512× 384 pixel sequences.

In the fixed-pose dataset, subjects exhibited multi-

ple facial expressions with the head fixed in one of three

directions relative to the camera: 0/± 20/± 40 degree
in yaw (horizontal), 0/ ± 20 degree in pitch (vertical),

or 0/± 20/± 40 degree in roll (in-plane) (see Fig.9-11).

Yaw, pitch, and roll sequences contain nine subjects

(seven males and two females in their 20s to 40s), four
subjects (four males of the nine subjects), and one sub-

ject (one male of the four males), respectively. For each

direction, each subject provided one sequence.

All sequences start with neutral expression face look-

ing toward the camera, then move to one direction rel-
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Table 1 Average recognition rates of facial expressions for a va-
riety of head orientations with fixed-pose dataset by comparing
two types of interest points: Pair: our paired interest points. Ran-
dom: points randomly defined in each facial part region.

Point type Total Angle [deg]
-40 -20 0 20 40

Yaw (Horizontal): nine sequences.

Pair 92.3 83.3 94.3 95.4 95.9 92.5
Random 90.1 90.2 92.1 95.4 96.1 76.7

Pitch (Vertical): four sequences.

Pair 94.0 N/A 87.0 97.5 97.6 N/A
Random 86.4 N/A 74.1 98.1 87.0 N/A

Roll (In-plane): one sequence.

Pair 100.0 100.0 100.0 100.0 100.0 100.0
Random 100.0 100.0 100.0 100.0 100.0 100.0

unit is (%)

ative to the camera. Finally, the subjects create five fa-
cial expressions one by one without moving their head,

each for a duration of 60 frames followed by a 60 frame

interval with relaxed face as indicated by the instruc-
tions displayed on a monitor, which are used as truth

of the facial expression.

The free-pose dataset, on the other hand, contains

one sequence of the subject, who is also contained in the

fixed-pose dataset. The subject freely shows five facial
expressions one by one while shaking the head left and

right.

To capture the training images, we gave the subjects

the following instructions: (1) face the head directly at

the camera during the capture process, (2) show facial
expressions one by one as requested by the instructions

with category name on the monitor, (3) press a key on

a keyboard, when the target expression was being ex-

pressed, to have a facial image captured as the training
image.

4.1.2 Evaluation with fixed-pose dataset

First, by using the fixed-pose dataset, we evaluate how

accurately our system can recognize facial expressions

for various head orientations. In calculating the recog-

nition rates, we excluded the first 20 frames of each
expression just after the instruction was displayed, be-

cause of the time lag between the instruction and the

creation of the facial expression.

Figures 9, 10, and 11 show some estimation results

of facial poses and expressions by using our paired points
for horizontal, vertical and in-plane head rotations, re-

spectively. They show the facial poses and expressions

were correctly estimated for all subjects.

Table 1 shows a comparison of our paired points

and random points with the average facial expression

Table 2 Average confusion matrix of facial expressions with
fixed-pose dataset for horizontal and vertical directions: GT and
RCG denote ground truth and recognition, respectively. The over-
all recognition rate is 93.1[%].

GT \ RCG Neutral Angry Sad Surprise Happy

Neutral 88.9 1.5 7.9 1.6 0.1
Angry 0.4 97.6 0.9 1.1 0.0

Sad 3.2 8.0 85.4 3.3 0.1
Surprise 0.0 0.0 4.2 95.8 0.0
Happy 0.2 1.1 0.0 1.1 97.7

unit is (%)

Fig. 11 Some estimation results of facial poses and expressions
with the fixed-pose dataset (In-plane rotation): The expression
in the upper part of each image denotes the recognized result.

recognition rates for each target head rotation angle.
For out-of-plane (yaw and pitch) rotations, the recogni-

tion rate decreased as the head rotation angle increased.

Nevertheless, our paired interest points are more ro-

bust against the out-of-plane rotations, than the ran-
dom points. For in-plane direction, our method recog-

nized all facial expressions perfectly, because the mis-

alignment of interest points due to error in the shape
model does not occur with in-plane rotation. Accord-

ingly, we evaluated it just for one subject. Our paired

points achieved at least 90(%) in average for all rota-
tions, yaw, pitch and roll.

Table 2 shows the confusion matrix for the average

recognition rates with the paired interest points. These
results suggest that, for many subjects, the difference

in face appearance between sad expression and both

neutral and angry expressions is smaller than for other
expression combinations, accordingly, they were some-

times confused with each other.

On the other hand, with the edge interest points,

head tracking was lost for many video sequences. The

reason for this seems to be that such interest points are

too sensitive to misallocation of interest points. The
misallocation is caused by errors in the shape model

and slight differences in facial expression between the

test sequences and training images.
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Ground truth:   Angry

Neutral
Angry
Sad
Surprise
Happy

Interest points
(Small points)

Estimated probabilities of
  facial expressions

Ground truth:   Neutral

Recognition result

Neutral

Surprise

Surprise

Ground truth:   Angry Neutral

Ground truth:   Sad HappyNeutral

Ground truth:   Sad HappyNeutral
40 [deg] -40 [deg]0 [deg]

40 [deg] -40 [deg]

Fig. 9 Some estimation results of facial poses and expressions with fixed-pose dataset (Horizontal): The expression in the upper
part of each image denotes the recognized result. The width of each bar in the upper right part of each image denotes the estimated
probability of each facial expression, P (et|z1:t). Small points on each face denote interest points.

4.1.3 Evaluation with free-pose dataset

We next evaluated our system with the free-pose dataset,

where the subject changes both the facial expression
and the head’s horizontal orientation.

Five frames of the video sequence of the free-pose

dataset and the estimated results of facial expression

and pose in each frame4 are shown in (a), (b) and
(c) of Fig.12, respectively. The ground truth of the

facial expression in every frame was hand-labeled by

the subject. Figure 12(b) shows that facial expressions

4 A part of video sequences for the result with both the
fixed-pose dataset and the free-pose dataset are available from
http://www.hci.iis.u-tokyo.ac.jp/˜kumano/papers/IJCV2008/.
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Ground truth:   Neutral Angry Sad

Ground truth:  Neutral Surprise Happy

Ground truth:   Neutral Angry Sad
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0 
[d

eg
]

20
 [d

eg
]

20
 [d

eg
]

0 
[d

eg
]

20
 [d

eg
]

20
 [d

eg
]

-2
0 

[d
eg

]
-2

0 
[d

eg
]

Fig. 10 Some estimation results of facial poses and expressions with the fixed-pose dataset (Vertical): The expression in the upper
part of each image denotes the recognized result. The width of each bar in the upper right part of each image denotes the estimated
probability of each facial expression, P (et|z1:t). Small points on each face denote interest points.

were recognized correctly in almost all frames. In addi-

tion, the correct expressions were assigned significantly
higher probabilities than other expressions. A quanti-

tative evaluation for head pose is given in Section 4.3.

4.2 Performance evaluation with person-independent

strategy

The main advantage of our system is that our system
makes it possible to generate the variable-intensity tem-

plate for each person with very little time and effort.

As demonstrated in Section 4.1.2, by using our person-

specific model, we can achieve the high facial expression
recognition performance. Such a person-specific strat-

egy is useful for applications where the number of users

is small. However, some applications require that it can

be applied to arbitrary users without such training for

each user. Accordingly, we evaluate the potential of our
system to be extended to the person-independent strat-

egy.

To compare our system (with person-independent
strategy) against existing methods, we utilized a widely

used public facial expression database, the Cohn-Kanade

DFAT-504 database (Kanade et al., 2000). The Cohn-
Kanade database consists of FACS-coded (Ekman and

Friesen, 1978) video sequences of 104 subjects, start-

ing from a neutral expression and ending in the peak
of the facial expression. For each person, there are on

average 8 frames for each expression. The desired facial

displays were described and modeled before the mate-

rial was recorded.

Although there are a variety of facial expression se-

quences coded with Action Units (Ekman and Friesen,
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(a) Input video sequence (from left to right, frame number 100, 290, 400, 560, 660).

0

1

 

 

0

1

 

 

0

1

P
ro

ba
bi

lit
y

 

 

0

1

 

 

0 100 200 300 400 500 600
0

1

Frame number

 

 

NEUTRAL

ANGRY

SAD

SURPRISE

HAPPY

GT

(b) Ground truth (top) and recognition results (others) of facial expression: The probability of correct expression is remarkably
higher than that of other expressions.

0 100 200 300 400 500 600
−60

−40

−20

0

20

40

60

Frame number

A
ng

le
(d

eg
re

es
)

 

 
PITCH YAW ROLL

(c) Estimation results of facial pose (horizontal axis equals that of (b)): Facial poses are estimated with enough accuracy to detect
three cycles of head shake movement (red solid line).

Fig. 12 Images and estimation results in the free-pose dataset.

1978), or components of facial expression, in the Cohn-

Kanade database, they are not labeled with facial ex-
pression categories. Hence, we hand-labeled the last

frame of them with one of the non-neutral expressions,

following the FACS rule (Ekman et al., 2002). We ex-

cluded about one third of sequences that were not la-
beled with six basic facial expressions (Ekman and Friesen,

1975): angry, sad, surprise, happy, fear, and disgust.

Next, we excluded about one half of the remaining se-
quences where the stationary head assumption (described

in Section 3.3) was violated, that is, where the head

moved while the facial expressions were being demon-
strated. 129 video sequences were finally selected (13,

20, 14, 43, 12, and 27 for angry, sad, surprise, happy,

fear, and disgust expressions, respectively) from the 53

subjects. All initial frames of the selected 129 sequences
were inevitably labeled as neutral. All labeled frames,

i.e. the first and last frames in each selected video se-

quence, were used as training image candidates. That is,
our target facial expressions in the person-independent

strategy are seven categories: neutral and six basic fa-

cial expressions.

The average facial expression recognition rates were

calculated as follows. First, we tracked (estimated facial
pose and expression) over all video sequences for each

subject in the database. Next, we picked up the recog-

nition results of the first frames and the last frames

for all tracked sequences. Thus, the total number of
the target frames for neutral expression is the sum of

those for the non-neutral expression (each of the six

categories started with a neutral expression). Finally,
we calculated the recognition rate separately for each

of the seven expressions.

Learning stage

We developed a fully automatic system for learning a

person-independent, or general, variable-intensity tem-

plate. Given training images, it proceeds as follows.

First, facial parts are detected in the rotationally

aligned training image (Section 3.3) in neutral expres-

sion of each subject. The face part regions in non-neutral
expressions are set to be the same as those of the same

subject in neutral expression. Hereinafter, these detected

face images are just referred to as training images, and
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Fig. 14 Left: Example of set of interest points defined in the
average facial part images ge,p that are learned with the Cohn-
Kanade DFAT-504 database. Right: The set of interest points
P generated by projecting the average facial part image into the
initial frame, or the training image for neutral expression gj,NEU,
of a target subject.

those in expression e for the j-th subject are denoted

as gj,e, especially those in neutral expression also as

gj,NEU.

Next, all training images of each subject are nor-

malized to remove the effect of global lighting, skin

color, etc. The normalization is given by g̃j,e = (gj,e −
α(j)1)/β(j). The normalization factors for the j-th sub-
ject, α(j) and β(j), are calculated as the mean and vari-

ance of intensity, respectively, in the rectangle in gj,NEU

that encloses eyebrow and mouth regions.

Then, average face images of each facial expression

e, ge, are generated individually for every facial part p

with the normalized images g̃j,e for all subject j. This
average images of each facial part p are hereinafter re-

ferred to as average facial part images, and denoted as

ge,p. An example of the average facial part image ge,p

is shown in Fig.13.

Finally, a set of interest points is selected in the

average facial part images ge,p as described in Section

3.1.1. A sample of the resulting set of interest points is
shown in the left side of Fig.14.

Testing stage
In the test stage, the variable-intensity template for the

person is prepared by using the average face images ge.

First, the facial parts are detected in the initial

frame of the test video sequence, after rotating the
frame until the iris centers fall on a horizontal line us-

ing the approach described in Section 3.3 (hereafter this

rotated image is just referred to as the initial frame).

Next, the coordinates of the i-th interest point in the

initial frame, pi, is calculated by scaling and translating

its coordinates in the average facial part images ge,p.

This mapping adapts the average facial part image to
the same facial part region in the initial frame both in

size and position. The right part of Fig.14 shows the

mapping results.

Fig. 15 Sample recognition results with the set of interest points
P shown in the right part of Fig.14.

Finally, the mean intensity in the intensity distri-

bution in each facial expression μ(e) is restored via de-
normalization of the average facial part images: ĝe,p =

β(j) ge,p + α(j)1, where ĝe,p is the restored (training)

image, α(j) and β(j) are calculated as described in the

above test stage process, where the face region in the
initial frame is used as gj,NEU. Finally, the mean in-

tensity μi(e) is set to be the intensity of the restored

training image, ĝe,p, at coordinates pi.

Recognition performance

We evaluated the recognition performance achieved by

this person-independent strategy, based on the leave-
one-subject-out cross-validation. The results with our

paired points and those with random points are shown

in Table 3 (also in Fig.15) and Table 4, respectively.
The overall recognition rate was about 60% with our

paired points, and about 70% with the random points.

In both results, fear expression recorded significantly

lower recognition rates than the other expressions. The
average recognition rate excluding fear expression with

random points is about 80%.

We were encouraged by these results with the person-

independent strategy, even though these recognition rates

are lower than those with our person-specific strategy
in Section 4.1.2 and those of state-of-the-art methods

such as Littlewort et al. (2006); Sebe et al. (2007); Zhao

and Pietikainen (2007)5; Kotsia and Pitas (2007); Yang
et al. (2008) (over 90% for all methods). Note that,

our original target is the person-specific strategy, and

the objective of this evaluation was to assess if our ap-
proach has the potential to be extended to the person-

independent version.

The main difference between the person-specific strat-

egy and the person-independent strategy is whether the

interest points are correctly allocated. With the person-

specific strategy, the paired points are correctly allo-
cated directly to the face image of the target subject,

as show in Fig.3. On the other hand, with the person-

independent strategy, we locate the paired points in the

5 The neutral expression was not one of their targets.
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HAPPYNEUTRAL ANGRY SAD SURPRISE DISGUSTFEAR

Fig. 13 The average face image for each facial expression, ge, learned from the Cohn-Kanade DFAT-504 database. Each average face
image consists of the average facial part images. ge,p.

Table 3 Confusion matrix with the Cohn-Kanade DFAT-504 database by using our paired interest points with person-independent
strategy. The overall recognition rate is 59.8[%].

GT \ RCG N A Sd Sp H F D

Neutral (N) 82.9 5.7 1.9 1.6 0.3 5.7 1.9
Angry (A) 23.1 30.7 7.7 7.7 7.7 7.7 15.4
Sad (Sd) 20.0 15.0 35.0 5.0 5.0 10.0 10.0
Surprise (Sp) 0.0 0.0 0.0 100.0 0.0 0.0 0.0
Happy (H) 5.0 3.7 0.0 2.5 73.8 2.5 12.5
Fear (F) 16.7 0.0 8.3 8.3 33.4 25.0 8.3

Disgust (D) 3.8 19.2 3.8 0.0 0.0 1.9 71.3
unit is (%)

Table 4 Confusion matrix with the Cohn-Kanade DFAT-504 database by using randomly defined points with person-independent
strategy. The overall recognition rate is 70.2[%].

GT \ RCG N A Sd Sp H F D

Neutral (N) 82.1 4.1 4.6 3.8 0.0 1.6 3.8
Angry (A) 7.7 69.2 0.0 0.0 0.0 15.4 7.7
Sad (Sd) 15.0 5.0 70.0 5.0 0.0 5.0 0.0
Surprise (Sp) 0.0 0.0 0.0 100.0 0.0 0.0 0.0
Happy (H) 0.0 3.7 0.0 2.5 83.8 5.0 5.0

Fear (F) 25.0 0.0 8.3 8.3 33.4 25.0 0.0
Disgust (D) 9.6 3.8 3.8 3.8 0.0 17.3 61.7

unit is (%)

Fig. 16 Example of misallocation of interest points in eyebrow
region. Left: interest points defined in the average face. Right:
those allocated in the actual face image. Both images shows neu-
tral expression. The interest points on the eyebrow in the average
image do not so in the actual image.

average faces learned with the database. Hence, with-

out precise facial part detection, these interest points

are likely to be misallocated in the actual face im-
age for each subject, as shown in Fig.16. Consequently,

the recognition rates with person-independent strategy

seem to be significantly degraded. By improving the fa-
cial part detection, the performance of our paired points

with the person-independent strategy is expected to

outperform those with the random points.

The interest point misallocation affects more severely

for the facial expressions that produce similar appear-

ances each other. For example, as shown in Fig.13, an-

gry, sad and disgust expressions resemble each other,

especially in the eyebrow regions. Inevitably, the eye-
brow regions are likely to yield large localization er-

rors, especially with our rectangle-based detector, due

to their large interpersonal variation in position, size,

and shape. Furthermore, misrecognition of some neutral
expressions, in both Table 3 and Table 4, also seems to

be caused by the facial part mislocalization. The neu-

tral eyebrow image in the right part of Fig.16 associates
angry and disgust expressions (lowered eyebrow).

We suggest that the low recognition rates for fear
expression are caused by the large interpersonal differ-

ence in the display of fear expression in the database,

especially in the eyebrow regions (the mouth region is
chiefly determiner of the fear expression). Consequently,

the eyebrow regions in average face image in Fig.13 are

significantly blurred compared to the other expressions.

Such a variety of fear expressions are hardly to be rec-
ognized correctly with the degenerated intensity distri-

bution model. Consequently, many fear expressions are

mistakenly recognized as happy expression, where the
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Fig. 17 Comparison between the estimated poses and the
ground truth. Dashed: estimations by our method; Solid: the
ground truth. Black: yaw; Red: pitch; Blue: roll.

mouth region resembles those in fear expression. This

issue could be mitigated by modifying our method to
divide the intensity distribution model into upper and

lower face regions (c.f. Action Units).

4.3 Performance evaluation for head tracking

Finally, we evaluate the performance of the proposed

method for head tracking, separated from those for fa-

cial expression recognition, by using the Boston Univer-
sity (BU) face tracking database6 (Cascia et al., 2000).

The BU face tracking database contains sets of 30[fps]

QVGA (320 × 240 pixel) MPEG compressed video se-

quences. These sequences were captured under uniform
illumination or varying illumination together with head

pose recorded by a magnetic sensor. Subjects were asked

to perform free head motion, which included translation
and rotation. We use the set of video sequences cap-

tured under uniform illumination. Moreover, the BU

database does not contain any frames with distinctive
facial expression. Accordingly, we generated the inten-

sity distribution model that describes only neutral ex-

pression.

The tracking result for one sequence is shown in

Fig.17. The mean absolute angular error of our head

pose estimation module for yaw, pitch, and roll is shown
in Table 5 together with the results of two existing

methods listed in Murphy-Chutorian and Trivedi (2008).

Our system is ranked between them. Table 5 also shows
that vertical head pose detection is more accurate than

horizontal detection.

These results demonstrated that the performance

of head pose estimation with the paired points almost

matches that with random points and bests that with
edge points. The cause of the low accuracy with edge

points seems that they are sensitive to the misalignment

caused by shape model error and to the slight change

in neutral expression. Compared to the random points,

6 http://www.cs.bu.edu/groups/ivc/HeadTracking/

Fig. 18 Sample tracking results on BU face tracking database.

Table 5 Comparison with mean absolute error in head pose es-
timation between the proposed method, its variations in interest
points, and existing methods. The accuracies of these two existing
methods are taken from Murphy-Chutorian and Trivedi (2008).

Methods Errors [deg]
yaw pitch roll

Pair 7.1 4.2 2.9
Edge 9.5 6.6 5.5
Random 7.1 4.9 3.0

Cascia et al. (2000) 3.3 6.1 9.8
Xiao et al. (2003) 3.8 3.2 1.4

little effect of the use of the paired points is found in
Table 5.

4.4 Discussion

This section evaluated the estimation performance of

the proposed method in three aspects: facial expres-
sions in non-frontal-view with person-specific strategy,

person-independent strategy, and head tracking accu-

racy.

The results with person-specific strategy using our

dataset demonstrate that our method (person-specific)
can achieve the high performance for facial expression

recognition even with a large head rotation in almost

all orientations. This is because it avoids the problem

of personal differences in terms of the geometric ar-
rangement of facial parts and facial expressions. These

results suggest that locating interest points away from

the edges of facial parts can suppress the severe impact
of interest point shift produced by out-of-plane rotation

of the head with shape model error.

By enhancing interest point selection module, the

performance of our system would be increased. First,

the interest point selection module in this paper uses
only a neutral expression image. However, selecting salient

points for each facial expression is expected to increase

the recognition performance. Second, the head tracking
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will become more stable by more accurately fitting the

face shape model.

Our experiments also demonstrate the potential of

our approach in supporting person-independent appli-

cations. The performance of the person-independent

version is expected to be improved by enhancing the fa-
cial part detection module using techniques such as ac-

tive contours (Kass et al., 1988) or profile-based match-

ing (Huang and Huang, 1997), i.e. shifting each paired
point along the line connecting the interpair points to

be centered on the edge.

Based on these results with both strategies, we be-

lieve that our person-independent version could handle
large head rotations as well as the person-specific ver-

sion. Compared to the existing deformation-based fa-

cial expression recognition methods, our approach has
the large advantage that facial expression models can

be learned just from monocular images, that is, many

facial expression databases can be utilized. Further-

more, unlike the dense-feature-based approach (such
as optical-flow-based one), our approach can introduce

any three-dimensional face shape model to improve the

robustness against large head rotations, without increas-
ing the computational cost.

5 Summary and future work

In this paper, we presented a particle filter-based method

for estimating facial pose and expression simultaneously;

it uses a novel face model called the variable-intensity
template. Our method has the distinct advantage that

a face model for each person can be prepared very easily

with a simple step. Our method recognized the five fa-
cial expressions with overall accuracy of 95.4% for hor-

izontal, vertical and in-plane facial orientations in the

range of ±40, ±20, and ±40 degrees from the frontal

view, respectively.

We intend to tackle the recognition of subtle spon-

taneous facial expressions. To this end, we would like

to apply unsupervised learning with an online cluster-

ing technique, and to estimate the intensity of facial
expressions from changes in interest point intensity by

referring to optical flow estimation.

References

Bartlett MS, Littlewort G, Frank MG, Lainscsek C,
Fasel IR, Movellan JR (2006) Automatic recognition

of facial actions in spontaneous expressions. Journal

of Multimedia 1(6):22–35

Beaton AE, Tukey JW (1974) The fitting of power

series, meaning polynomials, illustrated on band-
spectroscopic data. Technometrics 16(2):147–185

Black MJ, Yacoob Y (1997) Recognizing facial expres-

sions in image sequences using local parameterized
models of image motion. International Journal of

Computer Vision 25(1):23–48

Cascia ML, Sclaroff S, Athitsos V (2000) Fast, reli-
able head tracking under varying illumination: An

approach based on registration of texture-mapped 3D

models. IEEE Transactions on Pattern Analysis and

Machine Intelligence 22(4):322–336
Castrillon M, Deniz O, Guerra C, Hernandez M (2007)

Encara2: Real-time detection of multiple faces at

different resolutions in video streams. Journal of
Visual Communication and Image Representation

18(2):130–140

Chang Y, Hu C, Feris R, Turk M (2006) Manifold based
analysis of facial expression. Image and Vision Com-

puting 24(6):605–614

Cohen I, Sebe N, Garg A, Chen LS, Huang TS (2003)

Facial expression recognition from video sequences:
temporal and static modeling. Computer Vision and

Image Understanding 91(1-2):160–187

Dornaika F, Davoine F (2008) Simultaneous facial ac-
tion tracking and expression recognition in the pres-

ence of head motion. International Journal of Com-

puter Vision 76(3):257–281
Ekman P, Friesen WV (1975) Unmasking the Face: A

Guide to Recognizing Emotions from Facial Expres-

sions. Prentice Hall.

Ekman P, Friesen WV (1978) The Facial Action Coding
System: A Technique for the Measurement of Facial

Movement. Consulting Psychologists Press

Ekman P, Friesen WV, Hager JC (2002) FACS Investi-
gator’s Guide. A Human Face. A Human Face

Fasel B, Luettin J (2003) Automatic facial expression

analysis: Survey. Pattern Recognition 36:259–275
Fasel B, Monay F, Gatica-Perez D (2004) Latent se-

mantic analysis of facial action codes for automatic

facial expression recognition. In Proceedings of the

ACM SIGMM international workshop on Multime-
dia information retrieval pp 181–188

Geman S, McClure DE (1987) Statistical methods for

tomographic image reconstruction. Bulletin of the In-
ternational Statistical Institute LII:5–21

Gokturk SB, Tomasi C, Girod B, Bouguet J (2002)

Model-based face tracking for view-independent fa-
cial expression recognition. In Proceedings of the

IEEE International Conference on Automatic Face

and Gesture Recognition pp 287–293

Gross R, Matthews I, Baker S (2005) Generic vs. person
specific Active Appearance Models. Image and Vision



18

Computing 23(11):1080–1093

Hu Y, Zeng Z, Yin L, Wei X, Zhou X, Huang TS (2008)
Multi-view facial expression recognition. In Proceed-

ings of the IEEE International Conference on Auto-

matic Face and Gesture Recognition
Huang CL, Huang YM (1997) Facial expression recogni-

tion using model-based feature extraction and action

parameters classification. Journal of Visual Commu-
nication and Image Representation 8(3):278–290

Isard M, Blake A (1998) Condensation – conditional

density propagation for visual tracking. International

Journal of Computer Vision 29(1):5–28
Kanade T, Cohn J, Tian YL (2000) Comprehensive

database for facial expression analysis. In Proceed-

ings of the IEEE International Conference on Auto-
matic Face and Gesture Recognition pp 46–53

Kass M, Witkin A, Terzopoulos D (1988) Snakes: Ac-

tive contour models. International Journal of Com-
puter Vision 1(4):321–331

Koelstra S, Pantic M (2008) Non-rigid registration us-

ing free-form deformations for recognition of facial

actions and their temporal dynamics. In Proceedings
of the IEEE International Conference on Automatic

Face and Gesture Recognition

Kotsia I, Pitas I (2007) Facial expression recognition
in image sequences using geometric deformation fea-

tures and Support Vector Machines. IEEE Transac-

tions on Image Processing 16(1):172–187
Kumano S, Otsuka K, Yamato J, Maeda E, Sato Y

(2007) Pose-invariant facial expression recognition

using variable-intensity templates. In Proceedings of

Asian Conference on Computer Vision 1:324–334
Lanitis A, Taylor CJ, Cootes TF (1997) Automatic in-

terpretation and coding of face images using flexible

models. IEEE Transactions on Pattern Analysis and
Machine Intelligence 19(7):743–756

Liao WK, Cohen I (2006) Belief propagation driven

method for facial gestures recognition in presence of
occlusions. In Proceedings of the IEEE Computer So-

ciety Conference on Computer Vision and Pattern

Recognition Workshop pp 158–163

Littlewort G, Bartlett MS, Fasel IR, Susskind J, Movel-
lan JR (2006) Dynamics of facial expression ex-

tracted automatically from video. Image and Vision

Computing 24(6):615–625
Loy G, Zelinsky A (2003) Fast radial symmetry for de-

tecting points of interest. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence 25(8):959–973
Lucey S, Matthews I, Hu C, Ambadar Z, Torre F, Cohn

J (2006) AAM derived face representations for ro-

bust facial action recognition. In Proceedings of the

IEEE International Conference on Automatic Face
and Gesture Recognition pp 155–160

Matsubara Y, Shakunaga T (2005) Sparse template

matching and its application to real-time object
tracking. IPSJ Transactions on Computer Vision and

Image Media 46(9):17–40 (In Japanese)

Murphy-Chutorian E, Trivedi MM (2008) Head pose es-
timation in computer vision: A survey. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence

(To be appeared)
Oka K, Sato Y (2005) Real-time modeling of face defor-

mation for 3D head pose estimation. In Proceedings

of the IEEE International Conference on Automatic

Face and Gesture Recognition pp 308–320
Otsuka K, Sawada H, Yamato J (2007) Automatic infer-

ence of cross-modal nonverbal interactions in multi-

party conversations: ”who responds to whom, when,
and how?” from gaze, head gestures, and utterances.

In Proceedings of the International Conference on

Multimodal Interfaces pp 255–262
Pantic M, Bartlett M (2007) Machine Analysis of Fa-

cial Expressions, I-Tech Education and Publishing,

pp 377–416

Pantic M, Rothkrantz L (2000a) Expert system for au-
tomatic analysis of facial expression. Image and Vi-

sion Computing 18:881–905

Pantic M, Rothkrantz LJM (2000b) Automatic analy-
sis of facial expressions: the state of the art. IEEE

Transactions on Pattern Analysis and Machine Intel-

ligence 22:1424–1445
Russell S, Norvig P (2003) Artificial Intelligence – A

Modern Approach. Pearson Education

Sebe N, Lew MS, Sun Y, Cohen I, Gevers T, Huang

TS (2007) Authentic facial expression analysis. Image
and Vision Computing 25(12):1856–1863

Tang H, Huang TS (2008) 3D facial expression recogni-

tion based on properties of line segments connecting
facial feature points. In Proceedings of the IEEE In-

ternational Conference on Automatic Face and Ges-

ture Recognition
Tian YL, Kanade T, Cohn JF (2001) Recognizing ac-

tion units for facial expression analysis. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence

23(2):97–115
Tian YL, Kanade T, Cohn J (2005) Facial expression

analysis. Springer

Tong Y, Liao W, Ji Q (2007) Facial action unit recog-
nition by exploiting their dynamic and semantic re-

lationships. IEEE Transactions on Pattern Analysis

and Machine Intelligence 29(10):1683–1699
Viola P, Jones M (2001) Rapid object detection using

a boosted cascade of simple features. In Proceedings

of the IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition pp 511–518



19

Wang J, Yin L, Wei X, Sun Y (2006) 3D facial expres-

sion recognition based on primitive surface feature
distribution. In Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition pp 1399–1406
Xiao J, Moriyama T, Kanade T, Cohn J (2003) Robust

full-motion recovery of head by dynamic templates

and re-registration techniques. International Journal
of Imaging Systems and Technology 13:85–94

Xiao J, Baker S, Matthews I, Kanade T (2004) Real-

time combined 2D+3D Active Appearance Models.

In Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition

2:535 – 542

Yang P, Liu Q, Cui X, Metaxas DN (2008) Facial ex-
pression recognition based on dynamic binary pat-

terns. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recog-
nition

Zhang W, Chen H, Yao P, Li B, Zhuang Z (2006) Pre-

cise eye localization with AdaBoost and fast radial

symmetry. In Proceedings of the International Con-
ference on Computational Intelligence and Security

1:725–730

Zhao G, Pietikainen M (2007) Dynamic texture recog-
nition using local binary patterns with an application

to facial expressions. IEEE Transactions on Pattern

Analysis and Machine Intelligence 29(6):915–928
Zhu Z, Ji Q (2006) Robust real-time face pose and fa-

cial expression recovery. In Proceedings of the IEEE

Computer Society Conference on Computer Vision

and Pattern Recognition pp 681–688


