(19) **日本国特許庁(JP)**

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2019-161485 (P2019-161485A)

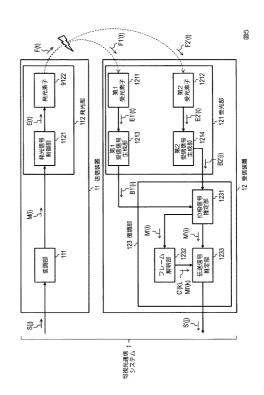
(43) 公開日 令和1年9月19日(2019.9.19)

(51) Int.Cl.		F 1		テーマコード (参考)
HO4B 10/11	6 (2013.01)	HO4B	10/116	5 K 1 O 2

HO4L 27/22 (2006.01) HO4L 27/22 Z HO4B 10/69 (2013.01) HO4B 10/69

審査請求 未請求 請求項の数 7 〇L (全 21 頁)

		番宜請水	,术謂水 請水填の数 / UL (至 21 貝)		
(21) 出願番号	特願2018-46780 (P2018-46780)	(71) 出願人	000004226		
(22) 出願日	平成30年3月14日 (2018.3.14)		日本電信電話株式会社		
			東京都千代田区大手町一丁目5番1号		
		(71) 出願人	304021288		
			国立大学法人長岡技術科学大学		
			新潟県長岡市上富岡町1603-1		
		(74) 代理人	100121706		
			弁理士 中尾 直樹		
		(74) 代理人	100128705		
			弁理士 中村 幸雄		
		(74) 代理人			
			弁理士 義村 宗洋		
		(72) 発明者	木原 涉		
			新潟県長岡市上富岡町1603-1 国立		
			大学法人長岡技術科学大学内		
			スチムハスドスMAI チスチャラ 最終頁に続く		
			AZAR 52 10-10L 1		


(54) 【発明の名称】受信装置、可視光通信システム、受信方法、プログラム

(57)【要約】

【課題】一度の標本化で得られる画素数を犠牲にすることなく、位相偏移変調信号を受信できる受信装置を提供する。

【解決手段】予め定められた値をもつ訓練系列とディジタル伝送信号を位相偏移変調して連結してなる変調信号に基づく光信号を受信して、光信号に、各々異なる露光タイミングで光信号の2分の1周期に渡り露光する複数の受光素子の標本化器に貯まる電荷に基づいて、受光素子のそれぞれに対応する複数の受信信号を生成する受光部と、光信号と露光タイミングの位相差がゼロである場合の受信信号の値を正規化用受信信号値とし、生成された複数の受信信号の値と正規化用受信信号値に基づいて変調信号の位相を推定し、位相の推定結果のうち訓練系列に対応する部分に基づいて、送受信間の位相のずれを表す情報である参照位相情報を推定する復調部を含む。

【選択図】図5

【特許請求の範囲】

【請求項1】

予め定められた値をもつ訓練系列とディジタル伝送信号を位相偏移変調して連結してなる変調信号に基づく光信号を受信して、前記光信号に、各々異なる露光タイミングで前記光信号の2分の1周期に渡り露光する複数の受光素子の標本化器に貯まる電荷に基づいて、前記受光素子のそれぞれに対応する複数の受信信号を生成する受光部と、

前記光信号と前記露光タイミングの位相差がゼロである場合の受信信号の値を正規化用受信信号値とし、生成された複数の前記受信信号の値と前記正規化用受信信号値に基づいて前記変調信号の位相を推定し、位相の推定結果のうち前記訓練系列に対応する部分に基づいて、送受信間の位相のずれを表す情報である参照位相情報を推定する復調部を含む受信装置。

【請求項2】

予め定められた2つの異なる値を交互に配列した訓練系列とディジタル伝送信号を位相偏移変調して連結してなる変調信号に基づく光信号を受信して、前記光信号に、各々異なる露光タイミングで前記光信号の2分の1周期に渡り露光する複数の受光素子の標本化器に貯まる電荷に基づいて、前記受光素子のそれぞれに対応する複数の受信信号を生成する受光部と、

前記光信号と前記露光タイミングの位相差がゼロである場合の受信信号の値を正規化用受信信号値とし、生成された複数の前記受信信号の値と前記正規化用受信信号値に基づいて前記変調信号の位相を推定し、複数の前記受信信号のうち前記訓練系列に対応する部分に基づいて、シンボルが切り替わる露光タイミングにおけるフレームの情報であるエラーフレームのインデックスを推定する復調部を含む

受信装置。

【請求項3】

送信装置と受信装置を含む可視光通信システムであって、

前記送信装置は、

予め定められた値をもつ訓練系列とディジタル伝送信号を位相偏移変調して連結してなる変調信号を生成する変調部と、

前記変調信号に基づく光信号を出力する発光部を含み、

前記受信装置は、

前記光信号に、各々異なる露光タイミングで前記光信号の2分の1周期に渡り露光する 複数の受光素子の標本化器に貯まる電荷に基づいて、前記受光素子のそれぞれに対応する 複数の受信信号を生成する受光部と、

前記光信号と前記露光タイミングの位相差がゼロである場合の受信信号の値を正規化用 受信信号値とし、生成された複数の前記受信信号の値と前記正規化用受信信号値に基づい て前記変調信号の位相を推定し、位相の推定結果のうち前記訓練系列に対応する部分に基 づいて、送受信間の位相のずれを表す情報である参照位相情報を推定する復調部を含む 可視光通信システム。

【請求項4】

送信装置と受信装置を含む可視光通信システムであって、

前記送信装置は、

予め定められた2つの異なる値を交互に配列した訓練系列とディジタル伝送信号を位相偏移変調して連結してなる変調信号を生成する変調部と、

前記変調信号に基づく光信号を出力する発光部を含み、

前記受信装置は、

前記光信号に、各々異なる露光タイミングで前記光信号の2分の1周期に渡り露光する複数の受光素子の標本化器に貯まる電荷に基づいて、前記受光素子のそれぞれに対応する複数の受信信号を生成する受光部と、

前記光信号と前記露光タイミングの位相差がゼロである場合の受信信号の値を正規化用 受信信号値とし、生成された複数の前記受信信号の値と前記正規化用受信信号値に基づい 10

20

30

40

て前記変調信号の位相を推定し、複数の前記受信信号のうち前記訓練系列に対応する部分に基づいて、シンボルが切り替わる露光タイミングにおけるフレームの情報であるエラーフレームのインデックスを推定する復調部を含む

可視光通信システム。

【請求項5】

受信装置が実行する受信方法であって、

予め定められた値をもつ訓練系列とディジタル伝送信号を位相偏移変調して連結してなる変調信号に基づく光信号を受信して、前記光信号に、各々異なる露光タイミングで前記光信号の2分の1周期に渡り露光する複数の受光素子の標本化器に貯まる電荷に基づいて、前記受光素子のそれぞれに対応する複数の受信信号を生成するステップと、

前記光信号と前記露光タイミングの位相差がゼロである場合の受信信号の値を正規化用受信信号値とし、生成された複数の前記受信信号の値と前記正規化用受信信号値に基づいて前記変調信号の位相を推定し、位相の推定結果のうち前記訓練系列に対応する部分に基づいて、送受信間の位相のずれを表す情報である参照位相情報を推定するステップを含む受信方法。

【請求項6】

受信装置が実行する受信方法であって、

予め定められた2つの異なる値を交互に配列した訓練系列とディジタル伝送信号を位相偏移変調して連結してなる変調信号に基づく光信号を受信して、前記光信号に、各々異なる露光タイミングで前記光信号の2分の1周期に渡り露光する複数の受光素子の標本化器に貯まる電荷に基づいて、前記受光素子のそれぞれに対応する複数の受信信号を生成するステップと、

前記光信号と前記露光タイミングの位相差がゼロである場合の受信信号の値を正規化用受信信号値とし、生成された複数の前記受信信号の値と前記正規化用受信信号値に基づいて前記変調信号の位相を推定し、複数の前記受信信号のうち前記訓練系列に対応する部分に基づいて、シンボルが切り替わる露光タイミングにおけるフレームの情報であるエラーフレームのインデックスを推定するステップを含む

受信方法。

【請求項7】

コンピュータを、請求項1または2に記載の受信装置として機能させるプログラム。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は可視光およびその周辺帯域の電磁波を受信する受信装置、受信方法、プログラムに関する。

【背景技術】

[0002]

近年、可視光源は明かりを得るための照明用途のみならず通信用途にも用いられている。これには可視光源として発光ダイオード(LED: Light Emitting Diode)の普及が進んだことが寄与している。発光ダイオードは素子1つあたりの発光量は白熱電球や蛍光灯などの従来の可視光源には及ばないものの、その寿命や大きさおよび消費電力の面で従来の可視光源に対して優れている。発光ダイオードは上記の特徴に加え、応答速度が非常に速いという特性を持つ。また、発光ダイオードの発光を電気的に制御することは容易である。発光ダイオードには上記のような特性があるため、近年では明かりを得るための照明用途のみならず、可視光の点滅を利用した信号伝送に用いるための研究開発が行われている

[0003]

たとえば非特許文献 1 には発光ダイオードを用いた家庭用照明器具に信号を重畳させて 通信を行うことが開示されている。

[0004]

50

40

10

20

また、現在のところ可視光は電波法の規制の対象外であることから帯域や電力の制限がなく、これらを大きくとることができる。非特許文献2では、このことを利用して発光ダイオードを通信専用に用いることが開示されている。発光ダイオードなどの可視光源を用いて行う通信を可視光通信と呼ぶ。可視光通信では受信機としてフォトディテクタあるいはそのアレーであるイメージセンサを用いる。フォトディテクタでは通常、信号を連続的に得ることが出来る。一方で、イメージセンサは一度に大量のフォトディテクタからの信号を取得できるが、その性質上通常は周期Tsで標本化された信号のみ取得可能である。以下、主に受光デバイスとしてイメージセンサを用いることを想定する。

[00005]

図1に可視光通信で使用される信号の性質を示す。まず、ディジタル伝送信号S(i)(送信シンボルともいう)を位相の値に変換することにより表現し変調信号M(i)を得る。このような変調方式を位相シフト変調(位相偏移変調)という。例えばS(i)が 2 値で表される場合、0 0、1 のように位相の値に変換する(2 値位相偏移変調、BPSK)。ここで、iは時間を示すインデックスである。次に、変調信号M(i)に従い搬送波周波数 1/Tcを持つ矩形波の位相を変更し、発光素子を駆動するための電気信号E(t)を得る。ここで、tは時間を示す実数である。ただし、時間的に離散的な信号M(i)に対して信号E(t)は時間的に連続的な信号である。発光素子は信号E(t)に従って点灯・消灯を繰り返し光信号E(t)を出力する。時間インデックスiに相当するE(t)の出力時間はインデックスiで示される時刻からある一定の遅延を加えた時刻iTfを基準として時刻iTf Tf/2から時刻iTf+Tf/2とする。図 1に示すように、インデックスiによって示される時間は時間幅Tfを持つ。

[0006]

従来の技術(たとえば非特許文献 1)では受光素子によって捉えられたF(t)にノイズが重畳した光信号F'(t)を、電気信号E'(t)に変換する。その後、E'(t)から位相信号M'(i)が推定される。理想的にはF(t)=F'(t)であるが、イメージセンサの性能や媒質中の伝搬、遅延により変化する場合もあるのでここではF(t)とF'(t)を分けて記述する。おおよそF(t+TL)=F'(t)であることが想定される。TLは伝搬遅延を表す。

[0007]

図2を参照して、可視光通信における信号のやり取りの例について説明する。図2は発光素子の点滅をイメージセンサにより受光する様子を説明する図である。送信機(発光素子)の点滅がイメージセンサ上の領域 に結像するものとする。受信機は領域 のすべてのフォトディテクタの出力値の合計を送信機からの受信信号としてとらえる。

[0008]

通信路において情報を伝送する際には元の情報をなんらかのかたちで符号化することが 一般的である。符号化された情報を構成する最小単位の信号をシンボルと呼ぶ。ディジタ ル通信路ではシンボルのクロック(1つのシンボルを伝送する際に使用する時間幅)と位 相を検出することが重要である。これを行うことを受信機と送信機の間でのシンボルタイ ミング同期という。シンボルタイミング同期は通信をしている間常に行われていることが 望ましい。これは、一般に受信機と送信機の間で同じ発振器を共有する手段がないため、 同期が常にずれてしまう可能性があるからである。

[0009]

シンボルタイミング同期を行うためには、例えば非特許文献3のようにシンボルタイミング再生回路を用いる必要がある。これは入力された2つの信号の位相差を検出しフィードバック制御をかけることで位相を同期させるものである。2つの信号のうち片方が発振器からの入力であり、もう片方が同期させたい信号である。受信機としてフォトディテクタを用いる場合、信号を連続的に得ることが出来るのでシンボルタイミング再生回路を用いることは容易である。一方でイメージセンサを用いる場合は、受信処理に用いることができる信号は標本化されたものであるため、離散時間信号となる。この場合は、シンボルタイミング再生回路によるシンボルタイミング同期を行うためにはある程度の標本化周波数が必要である。

[0010]

50

10

20

30

図3を参照して、従来の技術を用いた位相偏移変調を利用する可視光通信システムの構成を説明する。同図に示すように、従来の可視光通信システム9は、送信装置91と受信装置92を含み、送信装置91は、変調部911、発光部912を含み、発光部912は、受光部912は、受光部921と、同期部922と、復調部923を含み、受光部921は、受光素子9211と、受信信号生成部9212を含み、同期部922は、クロック素子9221と、シンボルタイミング再生回路922を含み、復調部923は、位相信号推定部9231と、伝送信号推定部9232を含む。以下、図4を参照して各部の入出力、動作について説明する。

[0011]

<変調部911>

入力:変調部 9 1 1 には、ディジタル伝送信号S(i)の系列S(1),S(2), が入力される。ディジタル伝送信号S(i)は、 1 ビットの情報であり、iはディジタル伝送信号の番号を表す整数とする。

出力:変調部911からは、変調信号M(i)の系列M(1),M(2), が出力される。変調信号M(i)は0または の値を持つ位相の情報である。また、iは時間を表すインデックスとしても用いる。

動作:変調部911は、入力されたディジタル伝送信号S(i)の系列S(1),S(2), を変調して変調信号M(i)の系列M(1),M(2), を生成する(S911)。例えば、変調部911は、S(i) = 0であればM(i) = 0、S(i) = 1であればM(i) = 0 として、変調信号を生成する。 具体例:例えば、ディジタル伝送信号S(i)の系列がS(1) = 0、S(2) = 1、S(3) = 1、S(4) = 1、であった場合、変調結果はM(1) = 0、M(2) = 0、M(3) = 0 となる。

[0012]

<発光部912>

上述したように、発光部 9 1 2 は、発光信号制御部 9 1 2 1 と発光素子 9 1 2 2 を含む。発光素子 9 1 2 2 は例えば L E D である。

入力:発光部912には、変調信号M(i)の系列M(1),M(2), が入力される。

出力:発光部912からは光信号F(t)が出力される。

動作:発光部912の発光信号制御部9121は、入力された変調信号M(i)が0である場合は、時刻iTf Tf/2から所定時間Tf経過した時刻iTf+Tf/2までの間、周波数1/Tc、位相0の矩形波(電気信号)を生成して、発光素子9122に与え、入力された変調信号M(i)がである場合は、時刻iTf Tf/2から所定時間Tf経過した時刻iTf+Tf/2までの間、周波数1/Tc、位相の矩形波(電気信号)を発光素子9122に与える(S9121)。発光素子9122は発光信号制御部9121から与えられた電気信号により発光する(S9122)。これらにより、発光部912から光信号が出力される。ただし、発光信号制御部9121が生成する電気信号は発光素子の性能や特性を考慮し、発光素子の光信号F(t)が所望の値になるように制御されているものとする。

[0013]

< 受光部 9 2 1 >

上述したように受光部921は、受光素子9211と受信信号生成部9212を含む。 受光素子9211は、たとえばフォトディテクタである。また、受光素子9211の前段 に光学レンズを設けてもよい。受光素子9211はフォトディテクタを格子状に並べたイ メージセンサでもよい。

入力:受光部921には、発光部912から出力された光信号F(t)が入力される。

出力:受光部921からは、時間的に連続な受信信号E''(t)が出力される。

動作:受光部921の受光素子9211は、入力された光信号F(t)に対応する電気信号E'(t)を受信信号生成部9212に対して出力する(S9211)。受光部921の受信信号生成部9212は入力された電気信号E'(t)に基づいて受信信号E''(t)を同期部922、復調部923に対して出力する(S9212)。

[0014]

< 同期部 9 2 2 >

10

20

30

40

上述したように同期部922は、クロック素子9221とシンボルタイミング再生回路 9222を含む。

入力:同期部922には、受光部921から出力された受信信号E''(t)が入力される。

出力:同期部922からは、位相の情報、周波数の情報が出力される。

動作:同期部922のクロック素子9221はクロック情報を出力する(S9221)。 同期部922のシンボルタイミング再生回路9222はクロック素子9221から入力さ れたクロック情報と、入力された受信信号E''(t)に基づいて、 2 つの信号の位相差を検出 してフィードバック制御をかけて、位相を同期し、位相の情報、周波数の情報を出力する (S9222)。

[0015]

<復調部923>

上述したように復調部923は、位相信号推定部9231と、伝送信号推定部9232 を含む。位相信号推定部9231、伝送信号推定部9232はメモリ、演算装置などから なる。

入力:復調部 9 2 3 には、受光部 9 2 1 から出力された受信信号E''(t)と、同期部 9 2 2 から出力された位相の情報、周波数の情報が入力される。

出力:復調部 9 2 3 からは、推定結果S'(i)が出力される。

動作:復調部923の位相信号推定部9231は受信信号E''(t)と、位相の情報、周波数 の情報を用いて、位相信号M'(i)を生成する(S9231)。復調部923の伝送信号推 定部9232は、位相信号M'(i)に基づいてディジタル伝送信号を推定し推定結果S'(i)を 出力する(S9232)。

【先行技術文献】

【非特許文献】

[0016]

【非特許文献1】小峯敏彦、田中裕一、中川正雄、「白色LED照明信号伝送と電力線信 号伝送の融合システム」、電子情報通信学会技術研究報告、社団法人電子情報通信学会、 2002年3月12日、Vol.101,No.726,pp.99 104

【非特許文献2】石田正徳、春山真一郎、中川正雄、「並列可視光無線通信方式における 通信速度限界の検討」、電子情報通信学会技術研究報告CS通信方式、社団法人電子情報 通信学会、2007年1月4日、Vol.106,No.450,pp.37 41

【非特許文献 3】Bertrand, C.; Sehier, P.; , "A novel approach for full digital m odems implementing asynchronous sampling techniques," Global Telecommunications Conference, 1996. GLOBECOM '96. 'Communications: The Key to Global Prosperity, vol.2, no., pp.1320 1324 vol.2, 18 22 Nov 1996

【発明の概要】

【発明が解決しようとする課題】

[0017]

上述したシステムでは位相の復調に必要な標本化周波数は搬送波周波数の2倍以上大き な周波数となる。一方で、イメージセンサは一般的に一度の撮像で得られる画素数と時間 当たりの撮像回数、すなわち標本化周波数、の積の上限が一定に制約されている。したが って、上記のようなシステムの受光部としてイメージセンサを用いて、復調のために大き な標本化周波数を採用した場合には、一度の標本化で得られる画素数を犠牲にせざるを得 なくなる。

[0018]

そこで本発明は、一度の標本化で得られる画素数を犠牲にすることなく、位相偏移変調 信号を受信できる受信装置を提供することを目的とする。

【課題を解決するための手段】

[0019]

本発明の受信装置は、受光部と、復調部を含む。受光部は、予め定められた値をもつ訓 練系列とディジタル伝送信号を位相偏移変調して連結してなる変調信号に基づく光信号を 10

20

30

40

受信して、光信号に、各々異なる露光タイミングで光信号の2分の1周期に渡り露光する複数の受光素子の標本化器に貯まる電荷に基づいて、受光素子のそれぞれに対応する複数の受信信号を生成する。復調部は、光信号と露光タイミングの位相差がゼロである場合の受信信号の値を正規化用受信信号値とし、生成された複数の受信信号の値と正規化用受信信号値に基づいて変調信号の位相を推定し、位相の推定結果のうち訓練系列に対応する部分に基づいて、送受信間の位相のずれを表す情報である参照位相情報を推定する。

【発明の効果】

[0020]

本発明の受信装置によれば、一度の標本化で得られる画素数を犠牲にすることなく、位相偏移変調信号を受信できる。

【図面の簡単な説明】

[0021]

- 【図1】ディジタル伝送信号を、変調信号、電気信号、光信号に順次変換した例を示す図
- 【図2】発光素子の点滅をイメージセンサにより受光する様子を説明する図。
- 【図3】従来の可視光通信システム9の構成を示すブロック図。
- 【図4】従来の可視光通信システム9の動作を示すシーケンス図。
- 【図5】実施例1の可視光通信システム1の構成を示すブロック図。
- 【図6】実施例1の可視光通信システム1の動作を示すシーケンス図。
- 【図7】実施例2の可視光通信システム2の構成を示すブロック図。
- 【図8】実施例2の可視光通信システム2の動作を示すシーケンス図。
- 【図9】第1受光素子と第2受光素子の露光タイミングの違いを示す図。
- 【図10】相対位相の変化に伴う第1受光素子により観測される画素値の変化の例を示す図。
- 【図11】実施例2の変調部が生成する変調信号の例を示す図。
- 【図12】第1の受光素子による画素値を横軸、第2の受光素子による画素値を縦軸とした理論軌跡を示す図。
- 【図13】第1の受光素子による画素値を横軸、第2の受光素子による画素値を縦軸とした理論軌跡を示す図。
- 【図14】変形例5で用いる正規化用訓練系列を例示する図。

【発明を実施するための形態】

[0022]

以下、本発明の実施の形態について、詳細に説明する。なお、同じ機能を有する構成部には同じ番号を付し、重複説明を省略する。

【実施例1】

[0023]

以下、図5を参照して実施例1の可視光通信システムの構成を説明する。同図に示すように、本実施例の可視光通信システム1は、送信装置11と受信装置12を含み、送信装置11は、変調部111と、発光部112を含み、発光部112は、発光信号制御部1121と、発光素子9122を含み、発光素子9122は従来の送信装置91における発光素子9122と同じである。受信装置12は、受光部121と、復調部123を含み、受光部121は、第1受光素子1211と、第2受光素子1212と、第1受信信号生成部1213と、第2受信信号生成部1214を含み、復調部123は、位相信号推定部1231と、フレーム解釈部1232と、伝送信号推定部1233を含む。

[0024]

以下、図6を参照して従来と異なる各部の入出力、動作について説明する。

<変調部111>

変調部111はメモリ、演算装置などからなる。

入力:変調部111には、ディジタル伝送信号S(j)の系列S(1),S(2), ,S(J)が入力される。伝送信号S(j)は、1ビットまたはlog2Gビットの情報であり、jは伝送信号の番号を表

10

20

30

40

す整数である。

出力:変調部111からは、変調信号M(i)の系列M(1),M(2), が出力される。変調信号M(i)は、ディジタル伝送信号S(j)および予め定められた訓練系列に指定された値に対応した値を持つ位相の情報である。また、iは変調信号の番号を表す番号である。iは時間を表すインデックスとしても用いる。

動作:変調部111は、入力されたディジタル伝送信号S(j)の系列の変調信号MM(j)の系列MM(1),MM(2)、 ,MM(J)を生成する(S 1 1 1)。変調部111は、例えばS(j)の値がLであればMM(j)を2* /G*Lとして、変調信号を生成する。さらに変調部111は、訓練系列の変調信号MT(jj)の系列MT(1),MT(2)、 ,MT(JJ)を生成する(S 1 1 1)。系列MT(1),M T(2)、 ,MT(JJ)は予め決められた位相 Rの変調信号である。変調部111はJJ個の訓練系列の変調信号の系列MT(1),MT(2)、 ,MT(JJ)をM(1),M(2)、 ,M(JJ)とし、J個の変調信号の系列MM(1),MM(2)、 ,MM(J)をM(JJ+1),M(JJ+2)、 ,M(JJ+J)として出力する。すなわち、変調部111は下表のように2つの変調信号の系列MM,MTを生成したうえでこれらを連結して変調信号Mとし、変調信号M(i)の系列M(1)、 ,M(JJ),M(JJ+1)、 ,M(JJ+J)を出力する

[0 0 2 5]

【表1】

伝送信号S				S(1)	•••	S(J)
系列 MM				MM(1)	• • •	MM (J)
系列 MT	MT (1)		MT(JJ)			
変調信号M	M(1)	•••	M(JJ)	M(JJ+1)	* • •	M(JJ+J)

[0026]

<発光部112>

上述したように、発光部 1 1 2 は、発光信号制御部 1 1 2 1 と、発光素子 9 1 2 2 を含む。発光素子 9 1 2 2 は例えば L E D である。

入力:発光部112には、変調信号M(i)の系列M(1),M(2), が入力される。

出力:発光部112からは、光信号F(t)が出力される。

動作:発光部 1 1 2 の発光信号制御部 1 1 2 1 は、入力された変調信号M(i)が M(Mは任意の値)である場合は、時刻iTf Tf/2から所定時間Tf経過した時刻iTf+Tf/2までの間、周波数1/Tc、位相 Mの矩形波(電気信号)を生成して、発光素子 9 1 2 2 に与える(S 1 1 2 1)。発光素子 9 1 2 2 は発光信号制御部 1 1 2 1 から与えられた電気信号により発光する(S 9 1 2 2)。これらにより、発光部 1 1 2 から光信号F(t)が出力される。ただし、発光信号制御部 1 1 2 1 が生成する電気信号は発光素子の性能や特性を考慮し、発光素子の光信号F(t)が所望の値になるように制御されているものとする。

[0027]

< 受光部 1 2 1 >

上述したように本実施例では、受光部121は、受光素子と受信信号生成部の組を2組含む構成であるが、受光素子と受信信号生成部の組は2組に限定されない。

[0028]

受光部 1 2 1 の動作を一般的に表現すると以下のように表現できる。受光部 1 2 1 は、予め定められた値をもつ訓練系列とディジタル伝送信号 S(j) を位相偏移変調して連結してなる変調信号 M(i) に基づく光信号 F1(t), F2(t), …を受信して、光信号 F1(t), F2(t), …に、各々異なる露光タイミングで光信号 F1(t), F2(t), …の 2 分の 1 周期に渡り露光する複数の受光素子の標本化器に貯まる電荷に基づいて、受光素子のそれぞれに対応する複数の受信信号 B1'(t), B2'(t), …を生成する(S 1 2 1)。

10

30

40

[0029]

以下、図6を参照し、受光素子と受信信号生成部の組を2組含む前提として、受光部121の動作を詳細に説明する。従来技術と同様に、第1、第2受光素子1211、1212は、たとえばフォトディテクタである。また、第1、第2受光素子1211、1212の前段に光学レンズを設けてもよい。さらに、第1、第2受光素子1211、1212はフォトディテクタを格子状に並べたイメージセンサでもよい。第1、第2受信信号生成部1213、1214は標本化素子及びメモリ、演算装置などからなる。

入力:受光部 1 2 1 には、発光部 1 1 2 から出力された第 1 光信号F1'(t)、第 2 光信号F2 '(t)が入力される。

出力:受光部121からは、第1受信信号B1'(i)の系列B1'(1),B1'(2), および第2受信信号B2'(i)の系列B2'(1),B2'(2), が出力される。

動作:受光部121の第1受光素子1211は、入力された第1光信号F1'(t)に対応する第1電気信号E1'(t)を第1受信信号生成部1213に対して出力する(S1211)。第1受光素子1211がイメージセンサの場合、具体的には図9のように、各フォトディテクタは時刻TI+iTs Ts/2からTI+iTs Ts/2+ までに標本化器にたまった電荷を測定する。ただし、TIは相対位相(オフセット)、iTsは、i番目のシンボルの中心にあたる時刻、iTs Ts/2はi番目のシンボルの先頭にあたる時刻、 は露光時間である。

[0030]

同様に、受光部 1 2 1 の第 2 受光素子 1 2 1 2 は、入力された第 2 光信号F2'(t)に対応する第 2 電気信号E2'(t)を第 2 受信信号生成部 1 2 1 4 に対して出力する(S 1 2 1 2)。第 2 受光素子 1 2 1 2 がイメージセンサの場合、具体的には図 9 のように、各フォトディテクタは時刻TI+iTs Ts/2+Tc/4からTI+iTs Ts/2+ +Tc/4までに標本化器にたまった電荷を測定する。Tc/4は、第 1 受光素子 1 2 1 1 と、第 2 受光素子 1 2 1 2 の露光タイミングのずれを表し、搬送波の周期Tcの 4 分の 1 である。

[0031]

第1受信信号生成部1213は、入力された第1電気信号E1'(t)の強度を時間間隔Ts毎に計測し、第1受信信号B1'(i)として出力する(S1213)。第1受光素子1211がイメージセンサの場合、第1受信信号生成部1213は、予め定められた範囲にわたって電荷の測定結果の和をとり、測定結果の和を第1受信信号B1'(i)として出力する(S1213)。同様に、第2受信信号生成部1214は、入力された第2電気信号E2'(t)の強度を時間間隔Ts毎に計測し、第2受信信号B2'(i)として出力する(S1214)。第2受光素子1212がイメージセンサの場合、第2受信信号生成部1214は予め定められた範囲にわたって電荷の測定結果の和をとり、測定結果の和を第2受信信号B2'(i)として出力する(S1214)。

[0032]

<復調部123>

上述したように復調部123は、位相信号推定部1231と、フレーム解釈部1232と、伝送信号推定部1233を含む。位相信号推定部1231、フレーム解釈部1232、伝送信号推定部1233はメモリ、演算装置などからなる。

[0033]

復調部123の動作を一般的に表現すると以下のように表現できる。復調部123は、光信号F1(t),F2(t),...と露光タイミングの位相差がゼロである場合の受信信号の値を正規化用受信信号値R1,R2,...とし、生成された複数の受信信号B1'(t),B2'(t),...の値と正規化用受信信号値R1,R2,...に基づいて変調信号の位相を推定し、位相の推定結果M'(i)のうち訓練系列に対応する部分に基づいて、送受信間の位相のずれを表す情報である参照位相情報MI'(k)を推定する(S123)。

[0034]

以下、図6を参照し、受光素子と受信信号生成部の組を2組含む前提として、復調部123の動作を詳細に説明する。

入力:復調部123には、受光部121から第1受信信号B1'(i)の系列、および第2受信

10

20

30

40

信号B2'(i)の系列が入力される。

出力:復調部123からは、推定結果S'(j)が出力される。

動作:復調部123の位相信号推定部1231は、第1受信信号B1'(i)の系列、および第2受信信号B2'(i)の系列に基づいて、相対的な位相の推定結果M'(i)を生成し、フレーム解釈部1233はよび伝送信号推定部1233に出力する(S1231)。

[0035]

具体的には、位相信号推定部1231は、第1受信信号B1'(i)および第2受信信号B2'(i)のそれぞれについて、露光タイミングと搬送波の位相差が0であるときの受信信号の値を正規化用受信信号値R1、R2として予め保持している(図10参照、同図におけるTI=0のときの輝度値(画素値)をR1とする)。これらの正規化用受信信号値は何らかのかたちで外部から与えるか、予め推定しておくものとする。位相信号推定部1231は第1受信信号B1'(i)および第2受信信号B2'(i)に基づいて、受信信号の相対的な位相を推定し、相対的な位相の推定結果 M'(i)として出力する。

[0036]

通常、位相信号推定部 1 2 3 1 は、ある程度の数(=LLとする)のB1'(i)とB2'(i)の組を使って位相の推定を行う。この時出力される相対的な位相の推定結果M'(i)の数はやはりLLである。上記の相対的な位相の推定は具体的には下記の数式(式 1)によって実行することができる。

[0037]

【数1】

$$M'(i)=$$

$$\begin{cases} \pi(1-B1''(i)), & (B1''(i)>0.5, B2''(i)\leq 0.5) \\ \pi(\frac{1}{2}+B2''(i)), & (B1''(i)\leq 0.5, B2''(i)\leq 0.5) \\ \pi(1+B1''(i)), & (B1''(i)\leq 0.5, B2''(i)>0.5) \\ \pi(\frac{5}{2}+B2''(i)), & (B1''(i)>0.5, B2''(i)>0.5) \end{cases}$$

[0038]

ただし、B1''(i)は、B1'(i)をR1で、B2''(i)は、B2'(i)をR2で割ることによって正規化した値である。

[0039]

次に、復調部123のフレーム解釈部1232は、相対的な位相の推定結果M'(i)に基づいて、制御信号C'(k)および参照位相情報MI'(k)を生成し、制御信号C'(k)および参照位相情報MI'(k)を伝送信号推定部1233に出力する(S1232)。kは制御信号C'(k)の番号を表す整数である。フレーム解釈部1232は予め定められた位相情報 Rおよび、訓練系列の変調信号の系列の長さJおよびシンボルの変調信号の系列の長さJを予め保持しているものとする。フレーム解釈部1232は相対的な位相の推定結果M'(i)の系列の先頭からJJ個に基づいて、参照位相情報MI'(k)を推定する。具体的には、以下の数式(式2)に基づく操作を行う。

[0040]

【数2】

$$MI'(k) = \underset{MI' \in \{0,2\pi\}}{\operatorname{arg min}} \sum_{i=1}^{JJ} (g \operatorname{mod}(M'(i) - MI', 2\pi/G) - \theta_R)^2 \quad (\sharp 2)$$

[0041]

参照位相情報MI'(k)は、送受信間の位相のずれを表す情報である。また、フレーム解釈部1232はJJ個の訓練系列のインデックスを保持し、制御信号C'(k)とする。

[0042]

復調部123の伝送信号推定部1233は相対的な位相の推定結果M'(i)の系列のうち

10

20

30

40

制御信号C'(k)により指し示されたJJ個の訓練系列以外の系列M'(JJ+1)からM'(JJ+J)の系列から下記のように最小二乗法などを用いてシンボルの系列S'(j)を推定する(S 1 2 3 3)。具体的には以下の数式(式3)に基づく操作を行う。

[0043]

【数3】

$$S'(j) = \arg\min_{S \in \{0,1,\dots,G-1\}} (g \mod(M'(i) - MI'(k), 2\pi/G) - 2\pi S/G)^2 (\stackrel{\sim}{\bowtie} 3)$$

[0044]

ただし、演算子gmod(,2 /G)は

[0045]

【数4】

$$g \bmod(\theta, 2\pi/G) = \begin{cases} \theta, & \left(-\pi/G \le \theta < (2G-1)\pi/G\right) \\ \theta - 2\pi, & \left((2G-1)\pi/G \le \theta < 2\pi\right) \\ \theta + 2\pi, & \left(-2\pi \le \theta < -\pi/G\right) \end{cases}$$

[0046]

を意味する。

【実施例2】

[0047]

以下、図7を参照して実施例2の可視光通信システムの構成を説明する。同図に示すように、本実施例の可視光通信システム2は、送信装置21と受信装置22を含み、送信装置21は、変調部211と、発光部112を含み、発光部112は、実施例1の送信装置11における発光部112と同じである。ただし、搬送波周期TcはTfの(N+1)倍とする。ここで、Nは自然数である。受信装置22は、受光部221と、復調部223を含み、受光部221は、第1受光素子1211と、第2受光素子1212と、第1受信信号生成部2213と、第2受信信号生成部2214を含み、第1、第2受光素子1211、1212は実施例1の受光部121における第1、第2受光素子1211、1212と同じである。復調部223は、位相信号推定部2231と、フレーム解釈部2233と、伝送信号推定部2233を含む。

[0048]

以下、図8を参照して従来および実施例1と異なる各部の入出力、動作について説明する。

[0049]

<変調部211>

変調部211はメモリ、演算装置などからなる。

入力:変調部 2 1 1 には、ディジタル伝送信号S(j)の系列S(1),S(2), $_{,}S(J)$ が入力される。伝送信号S(j)は、1ビットまたはlog2Gビットの情報であり、 $_{j}$ は伝送信号の番号を表す整数である。

出力:変調部 2 1 1 からは、変調信号 M(i)の系列 M(1), M(2), が出力される。変調信号 M(i)は、ディジタル伝送信号 S(j)および予め定められた訓練系列に指定された値に対応した値を持つ位相の情報である。また、i は変調信号の番号を表す番号である。i は時間を表すインデックスとしても用いる。

,M(JJ)とし、J個の変調信号の系列MM(1),MM(2), ,MM(J)をM(JJ+1),M(JJ+2), ,M(JJ+J

10

20

30

40

)として出力する。すなわち、変調部 2 1 1 は、 2 つの変調信号の系列MM,MTを生成したうえでこれらを連結して変調信号Mとし、変調信号M(i)の系列M(1), ,M(JJ),M(JJ+1), ,M(JJ+J)を出力する。

[0050]

< 受光部 2 2 1 >

実施例1と同様に、第1、第2受信信号生成部2213、2214は標本化素子及びメモリ、演算装置などからなる。上述したように、本実施例では、受光部221は、受光素子と受信信号生成部の組を2組含む構成であるが、受光素子と受信信号生成部の組は2組に限定されない。

[0051]

受光部 2 2 1 の動作を一般的に表現すると以下のように表現できる。受光部 2 2 1 は、予め定められた 2 つの異なる値を交互に配列した訓練系列とディジタル伝送信号 S(j) を位相偏移変調して連結してなる変調信号 M(i) に基づく光信号 F1(t), F2(t), …を受信して、光信号 F1(t), F2(t), …に、各々異なる露光タイミングで光信号 F1(t), F2(t), …の 2 分の 1 周期に渡り露光する複数の受光素子の標本化器に貯まる電荷に基づいて、受光素子のそれぞれに対応する複数の受信信号 B1'(t), B2'(t), …を生成する(S221)。

[0052]

以下、受光素子と受信信号生成部の組を2組含む前提として、受光部221の動作を詳細に説明する。入力:受光部221には、発光部112から出力された第1光信号F1'(t)、第2光信号F2'(t)が入力される。

出力:受光部221からは、第1受信信号B1'(ii)の系列B1'(1),B1'(2), および第2受信信号B2'(ii)の系列B2'(1),B2'(2), が出力される。

動作:第1受信信号生成部2213は、入力された第1電気信号E1'(t)の強度を時間間隔 Ts毎に計測し、第1受信信号B1'(ii)として出力する(S2213)。ここでインデックスiiは、撮像の番号を表すインデックスであり、変調信号の番号を表すインデックスiとは異なる。例えば、インデックスi=1,...,5で表される5つの送信シンボルに対応する光信号に対し、ii=1,...,6とし、計6回の撮像(露光)を割り当てることができる。第1受光素子1211がイメージセンサの場合、第1受信信号生成部2213は、予め定められた範囲 にわたって電荷の測定結果の和をとり、測定結果の和を第1受信信号B1'(ii)として出力する(S2213)。同様に、第2受信信号生成部2214は、入力された第2電気信号E2'(t)の強度を時間間隔Ts毎に計測し、第2受信信号B2'(ii)として出力する(S2214)。第2受光素子1212がイメージセンサの場合、第2受信信号生成部2214は予め定められた範囲 にわたって電荷の測定結果の和をとり、測定結果の和を第2受信信号B2'(ii)として出力する(S2214)。

[0053]

<復調部223>

上述したように復調部223は、位相信号推定部2231と、フレーム解釈部2232と、伝送信号推定部2233を含む。位相信号推定部2231、フレーム解釈部2232、伝送信号推定部2233はメモリ、演算装置などからなる。

[0054]

復調部 2 2 3 の動作を一般的に表現すると以下のように表現できる。復調部 2 2 3 は、光信号 F1(t), F2(t), と露光タイミングの位相差がゼロである場合の受信信号の値を正規化用受信信号値 R1, R2, とし、生成された複数の受信信号 B1'(t), B2'(t), ... の値と正規化用受信信号値 R1, R2, ... に基づいて変調信号の位相を推定し、複数の受信信号 B1'(t), B2'(t), ... のうち訓練系列に対応する部分に基づいて、シンボルが切り替わる露光タイミングにおけるフレームの情報であるエラーフレームのインデックスを推定する(S223)。

[0055]

以下、受光素子と受信信号生成部の組を2組含む前提として、復調部223の動作を詳細に説明する。

10

20

30

10

20

30

40

50

入力:復調部223には、受光部221から第1受信信号B1'(ii)の系列、および第2受信信号B2'(ii)の系列が入力される。

出力:復調部223からは、推定結果S'(j)が出力される。

動作:復調部223の位相信号推定部2231は、第1受信信号B1'(ii)の系列、および第2受信信号B2'(ii)の系列に基づいて、相対的な位相の推定結果M'(ii)を生成し、フレーム解釈部2232および伝送信号推定部2233に出力する(S2231)。

[0056]

具体的には、位相信号推定部 2 2 3 1 は、第 1 受信信号B1'(ii)および第 2 受信信号B2'(ii)のそれぞれについて、露光タイミングと搬送波の位相差が0であるときの受信信号の値を正規化用受信信号値R1、R2として予め保持している。これらの正規化用受信信号値は何らかのかたちで外部から与えるか、予め推定しておくものとする。位相信号推定部 2 2 3 1 は第 1 受信信号B1'(ii)および第 2 受信信号B2'(ii)に基づいて、受信信号の相対的な位相を推定し、相対的な位相の推定結果M'(ii)として出力する。

[0057]

通常、位相信号推定部 2 2 3 1 は、ある程度の数 (=LLとする)のB1'(ii)とB2'(ii)の組を使って位相の推定を行う。この時出力される相対的な位相の推定結果M'(ii)の数はやはりLLである。上記の相対的な位相の推定は具体的には下記の数式(式4)によって実行することができる。

[0058]

【数5】

$$M'(ii) =$$

$$\begin{cases}
\pi(1-B1''(ii)), & (B1''(ii)>0.5, B2''(ii)\leq 0.5) \\
\pi(\frac{1}{2}+B2''(ii)), & (B1''(ii)\leq 0.5, B2''(ii)\leq 0.5) \\
\pi(1+B1''(ii)), & (B1''(ii)\leq 0.5, B2''(ii)>0.5) \\
\pi(\frac{5}{2}+B2''(ii)), & (B1''(ii)>0.5, B2''(ii)>0.5)
\end{cases}$$
(\$\frac{1}{2}\$

[0059]

ただし、B1''(ii)は、B1'(ii)をR1で、B2''(ii)は、B2'(ii)をR2で割ることによって正規化した値である。

[0060]

次に、復調部 2 2 3 のフレーム解釈部 2 2 3 2 は、第 1 受信信号 B1'(ii) および第 2 受信信号 B2'(ii) に基づいて、制御信号 C'(k)を生成し、制御信号 C'(k)を伝送信号推定部 2 2 3 3 に出力する(S 2 2 3 2)。 kは制御信号 C'(k) の番号を表す整数である。フレーム解釈部 2 2 3 2 は予め定められた位相情報 R1, R2 および、訓練系列の変調信号の系列の長さJ3 およびシンボルの変調信号の系列の長さJを予め保持しているものとする。フレーム解釈部 2 2 3 2 は相対的な位相の推定結果 M'(ii) の系列の先頭から $JJ^*(N+1)/N$ 個に基づいて(ただし、撮像の頻度は元の変調信号のシンボルの送信頻度の (N+1)/N 倍であるとする)、下記のようにエラーフレームの検出を行う。なお、フレーム解釈部 2 2 3 2 は、正規化用受信信号値 R1,R2を保持しており、B1"(ii),B2"(ii)の計算に適宜用いる。

[0061]

B1"(ii)とB2"(ii)が訓練系列のうちの同じシンボルに対応している場合、図12の正方形で表される軌跡の近くに(B1"(ii),B2"(ii))はプロットされる。したがって、先頭のJJ*(N+1)/N個(すなわち訓練系列に対応する個数)のB1"(ii)とB2"(ii)の組のうち、この軌跡からの距離が遠い方から上位JJ/N個の組(B1"(ii 1),B2"(ii 1)),(B1"(ii 2),B2"(ii 2)), ,(B1"(ii {JJ/N}),B2"(ii {JJ/N}))では訓練系列の位相の遷移が発生していると判断し、これらのインデックスをエラーフレームのインデックスの組とみなす。【0062】

フレーム解釈部2232は上記訓練系列のインデックスの組および、エラーフレームの

インデックスの組から、シンボルに対応する位相の系列に対応するインデックス、ii {J $J^*(N+1)/N+1,JJ^*(N+1)/N+2$, $J^*(N+1)/N+J^*(N+1)/N$ }のうち、エラーフレームになるインデックスの組を推定した結果を合わせて、制御信号C'(k)として出力する。

[0063]

上記のパラメータについて、下記のように設定した際のフレーム解釈部 2 2 3 2 の具体的な動作について述べる。JJ=5、N=5、J=20とした場合において、訓練系列に関する(B1''(1),B2''(1)),(B1''(2),B2''(2)), ,(B1''(6),B2''(6))のうちエラーフレームに対応するインデックスが2であったとする。このとき、シンボル系列に関する系列(B1''(7),B2''(7)),(B1''(8),B2''(8)), ,(B1''(30),B2''(30)), のうち、エラーフレームのインデックスは、8、14、20、26であると推測できる。フレーム解釈部 2 2 3 2 はこのインデックスの集合 $\{1,2,3,4,5,6,8,14,20,26\}$ を制御信号C'(1)として、伝送信号推定部 2 2 3 3 に送る。

[0064]

次に、復調部 2 2 3 の伝送信号推定部 2 2 3 3 は相対的な位相の推定結果 M'(ii)の系列のうち制御信号 C'(k)により指し示された訓練系列およびエラーフレームに対応するインデックスの推定結果を取り除いた系列から下記のように最小二乗法などを用いてシンボルの系列 S'(j)を推定する(S 2 2 3 2)。具体的には以下の数式(式5)に基づく操作を行う。

[0065]

【数6】

$$S'(j) = \arg\min_{S \in \{0,1,\dots,G-1\}} (g \mod(M'(ii) - MI', 2\pi/G) - 2\pi S/G)^2 \quad (35)$$

[0066]

ただし、演算子gmod(,2 /G)は

[0067]

【数7】

$$g \operatorname{mod}(\theta, 2\pi/G) = \begin{cases} \theta, & \left(-\pi/G \le \theta < (2G - 1)\pi/G\right) \\ \theta - 2\pi, & \left((2G - 1)\pi/G \le \theta < 2\pi\right) \\ \theta + 2\pi, & \left(-2\pi \le \theta < -\pi/G\right) \end{cases}$$

[0068]

を意味する。

[0069]

「変形例1]

上述の実施例 1 と実施例 2 を組み合わせてもよい。すなわち、フレーム解釈部において、予め定められた位相の組 R1および R2を保持し、これと訓練系列に対応する(B1'(ii),B2'(ii))の組から参照位相情報MI'(k)を式2によって推定し、かつ訓練系列からエラーフレームのインデックスを推定し、これらを伝送信号推定部に出力してもよい。

[0070]

[変形例2]

上述の実施例 2 において、差動位相偏移変調を用いてもよい。伝送信号推定部において M'(ii)とM'(ii+1)のように隣接する位相信号の差分を用いて復調を行うため、参照位相情報 MI'(k)を保持する必要がなくなる。

[0071]

「変形例3]

上述の実施例、変形例において、受光素子と受信信号生成部の数はそれぞれ2つであったが、これを3つ以上にしてもよい。この場合も露光タイミングが近接する2つの受光素子において露光タイミングを搬送波周期Tcの4分の1ずらすことで、実施例1、2と同様に位相の推定を第1受光素子および第2受光素子の間、第2受光素子および第3受光素子

10

20

40

の間、第3受光素子および第4受光素子の間 でそれぞれ行うことにより、ノイズ耐性を増すことができる。

[0072]

「変形例4]

上述の実施例、変形例において、位相信号推定部は位相を式1(式4)を用いて推定したが、この前段の処理として、図13に示すように、予め期待される受信信号の値に最小二乗法等によって写像したのちにこれを行ってもよい。

[0073]

「変形例5]

上述の実施例、変形例において、搬送波周期がTcより十分に大きい信号MB(jjj)の系列、MB(1),MB(2), ,MB(JJJ)のJJJ個を他のM(j)に先立って出力してもよい(図 1 4 参照)。MB(jjj)を正規化用訓練系列と呼ぶ。フレーム解釈部においては、MB(jjj)に相当する受信信号B1'(ii)およびB2'(ii)をそれぞれ平均し、正規化用受信信号値R1、R2を求めてもよい。これにより正規化用受信信号値R1、R2を予め共有する必要がなくなる。

[0074]

「変形例6]

送信装置が複数(H個)ある場合でも、上述の実施例、変形例に記載したシステムを適用することが出来る。この場合は、上述の実施例、変形例の受信信号生成部、復調部を複数用意すればよい。この場合は復調信号の推定はそれぞれの送信装置に対応して実行される。

[0075]

[変形例7]

上述の実施例、変形例において、訓練系列に加えて、送信の開始を知らせるプリアンブルを挿入してもよい。

[0076]

[変形例8]

上述の実施例、変形例において、復調部内の構成から、伝送信号推定部を省略してもよい。伝送信号推定部を省略する場合、受信装置からの出力は、相対的な位相の推定結果M'と、参照位相情報MI'(k)と、制御信号C'(k)である。これらの情報を別の装置に送信し、別の装置が伝送信号推定部と同様の処理を実行し、推定結果S'(j)を取得してもよい。

[0077]

<補記1>

イメージセンサを用いた可視光通信では可能な限り時間当たりの撮像回数を減らすことが望ましい。そこで2つのカメラを用い、図9に示したように撮像することで伝送信号の相対的な位相を知ることができる。これをもちいて、時間当たりの撮像回数を時間当たりのシンボルの送信回数と同程度にしたとしても位相偏移変調による通信を行うことができる。ところが上記の方法には下記の2つの課題a),b)がある。

a)位相偏移変調された符号語の位相と観測可能な相対的な位相との対応関係が自明でない。図9に示したように撮像を行った結果を用いて伝送された信号の位相を知ろうとする場合、基準となる位相、すなわち位相偏移変調された符号語がどの位相に対応しているか、を知る必要がある。しかしながら、2つのカメラを用いるだけでは基準となる位相を知ることができない。

b)露光時間中にシンボルが切り替わってしまう。図9に示したように撮像を行った場合、シンボルが切り替わるタイミングで撮像を行った場合、画素値が想定されるような値にならず、相対的な位相を求めることができなくなる。

[0078]

上述の実施例、変形例に係る可視光通信システム、送信装置、受信装置によれば、予め定められた位相の値をもつ訓練系列MTを挿入して変調を行う変調部、当該訓練系列MTに基づいて参照位相情報MI'(k)を推定するフレーム解釈部、あるいは予め定められた2種類の位相を交互に繰り返す訓練系列MTに基づいてエラーフレームのインデックスを推定するフ

20

10

30

40

レーム解釈部により、上述の課題a),b)を解決することができた。

[0079]

<補記2>

本発明の装置は、例えば単一のハードウェアエンティティとして、キーボードなどが接続可能な入力部、液晶ディスプレイなどが接続可能な出力部、ハードウェアエンティティの外部に通信可能な通信装置(例えば通信ケーブル)が接続可能な通信部、CPU(Cent ral Processing Unit、キャッシュメモリやレジスタなどを備えていてもよい)、メモリであるRAMやROM、ハードディスクである外部記憶装置並びにこれらの入力部、出力部、通信部、CPU、RAM、ROM、外部記憶装置の間のデータのやり取りが可能なように接続するバスを有している。また必要に応じて、ハードウェアエンティティに、CD-ROMなどの記録媒体を読み書きできる装置(ドライブ)などを設けることとしてもよい。このようなハードウェア資源を備えた物理的実体としては、汎用コンピュータなどがある。

[0800]

ハードウェアエンティティの外部記憶装置には、上述の機能を実現するために必要となるプログラムおよびこのプログラムの処理において必要となるデータなどが記憶されている(外部記憶装置に限らず、例えばプログラムを読み出し専用記憶装置であるROMに記憶させておくこととしてもよい)。また、これらのプログラムの処理によって得られるデータなどは、RAMや外部記憶装置などに適宜に記憶される。

[0081]

ハードウェアエンティティでは、外部記憶装置(あるいはROMなど)に記憶された各プログラムとこの各プログラムの処理に必要なデータが必要に応じてメモリに読み込まれて、適宜にCPUで解釈実行・処理される。その結果、CPUが所定の機能(上記、 部 手段などと表した各構成要件)を実現する。

[0082]

本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。また、上記実施形態において説明した処理は、記載の順に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されるとしてもよい。

[0083]

既述のように、上記実施形態において説明したハードウェアエンティティ(本発明の装置)における処理機能をコンピュータによって実現する場合、ハードウェアエンティティが有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、上記ハードウェアエンティティにおける処理機能がコンピュータ上で実現される。

[0084]

この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。具体的には、例えば、磁気記録装置として、ハードディスク装置、フレキシブルディスク、磁気テープ等を、光ディスクとして、DVD(Digital Versatile Disc)、DVD-RAM (Random Access Memory)、CD-ROM (Compact Disc Read Only Memory)、CD-R(Recordable)/RW(ReWritable)等を、光磁気記録媒体として、MO(Magneto Optical disc)等を、半導体メモリとしてEEP-ROM (Electronically Erasable and Programmable Read Only Memory)等を用いることができる。

[0085]

また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD-ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログ

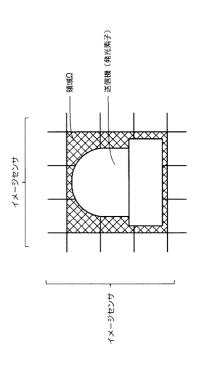
10

20

30

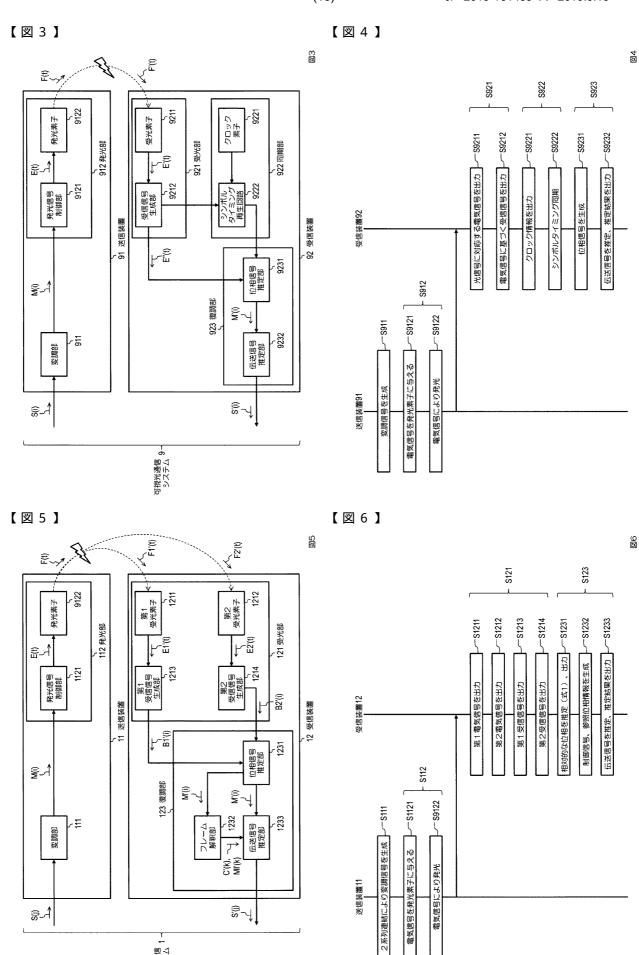
40

ラムを流通させる構成としてもよい。

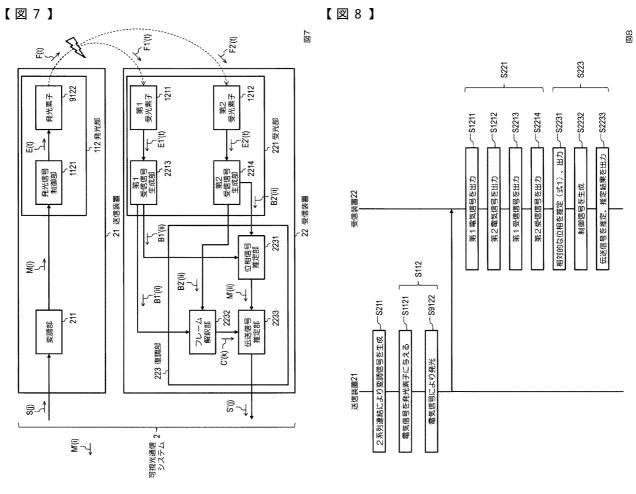

[0086]

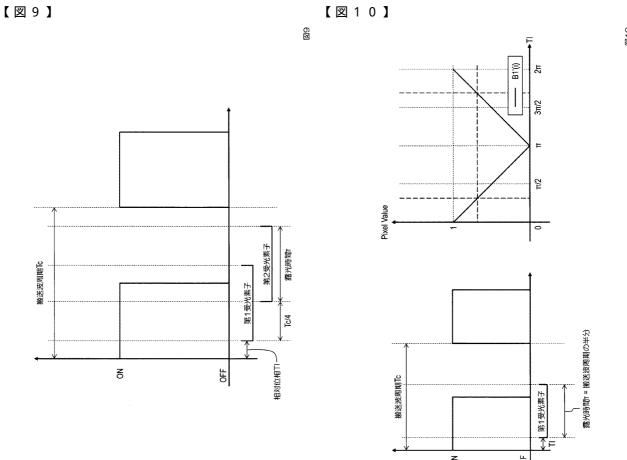
このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶装置に格納する。そして、処理の実行時、このコンピュータは、自己の記録媒体にのプログラムを読み取り、読み取ったプログラムに従った処理を実行することとしてもよく、さら、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよく、逐次コンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次コログラムに従った処理を実行することとしてもよい。また、サーバコンピロータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、本形態におけるラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるものとコータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。

[0087]

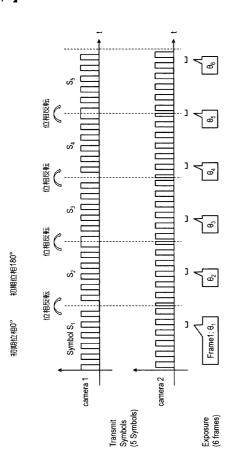

また、この形態では、コンピュータ上で所定のプログラムを実行させることにより、ハードウェアエンティティを構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。

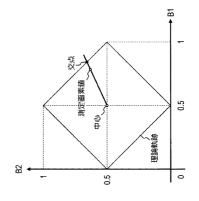
【図1】 【図2】




20

23


OFF.



【図11】

【図12】

【図13】

【図14】

| Me(jj) | MM(j) | M

フロントページの続き

(72)発明者 圓道 知博

新潟県長岡市上富岡町1603-1 国立大学法人長岡技術科学大学内

(72)発明者 白木 善史

東京都千代田区大手町一丁目5番1号 日本電信電話株式会社内

(72)発明者 守谷 健弘

東京都千代田区大手町一丁目5番1号 日本電信電話株式会社内

(72)発明者 佐藤 尚

東京都千代田区大手町一丁目5番1号 日本電信電話株式会社内

F ターム(参考) 5K102 AA21 AA61 AA63 AH22 AH27 AL23 AL28 MA02 MH03 MH14 MH27 PB02 PH38 RD28